

SDMS Doc ID 2000770

REPORT ON
ANNUAL GROUNDWATER MONITORING, 2003
SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

UNDERGROUND ENGINEERING & ENVIRONMENTAL SOLUTIONS

REPORT ON ANNUAL GROUNDWATER MONITORING, 2003 SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

by

Haley & Aldrich, Inc. Tucson, Arizona

for

The Boeing Company Canoga Park, California

File No. 32600/05/10/M442 February 27, 2004

The Boeing Company Rocketdyne Propulsion & Power 6633 Canoga Avenue P.O. Box 7922 Canoga Park, CA 91309-7922

VIA FEDERAL EXPRESS

February 27, 2004 In reply refer to 2004RC0632

Jose Kou, Chief
Facilities Management Branch
California Environmental Protection Agency
Department of Toxic Substances Control
1011 N. Grandview Avenue
Glendale, CA 91201

Subject: Report on Annual Groundwater Monitoring, 2003

Santa Susana Field Laboratory Ventura County, California

RE: Post-Closure Permit Nos. PC-94/95-3-02 and PC-94/95-3-03

Dear Mr. Kou:

The Boeing Company, Rocketdyne (Rocketdyne) hereby submits the "Report on Annual Groundwater Monitoring, 2003", File No. 32600/05/10/M442, Haley & Aldrich, Inc., dated 27 February 2004. This report describes activities on the groundwater program at the Santa Susana Field Laboratory for the period 01 January 2003 through 31 December 2003.

There are currently 218 monitoring wells, 13 facility water supply wells, and 18 offsite private sources included in the groundwater program at SSFL. Water-producing wells in the monitoring network are sampled according to the 2003 monitoring schedule and groundwater sampling and analysis plans that were included in the 2002 Annual Groundwater Monitoring Report dated 28 February 2003. With the concurrence of DTSC, sample collection at several wells was postponed to accommodate the completion of the C-1 corehole pumping test (DTSC, 2003).

Rocketdyne has five active groundwater treatment systems operating at SSFL in Areas I, II, and III. These include the Alfa, Bravo, STL-IV, and Delta air stripping towers plus one ultraviolet (UV)/peroxidation (H₂O₂) unit. The UV/H₂O₂ unit is

J. Kou (2004RC0632) February 27, 2004 Page 2

located along the Area I Service Road. The cumulative volume of groundwater extracted and treated through 2003 is approximately 1,746 million gallons.

If you have any questions, please call me at (818) 586-5695.

Sincerely,

Environmental Remediation

Reference:

California Department of Toxic Substances Control (DTSC), 2003.

Letter from Jose Kou, DTSC, to Art Lenox, The Boeing Company,

re: "Modification of 2003 and 2004 Groundwater Sampling Schedule for Area I, Santa Susana Field Laboratory, EPA ID

CAD093365435." 22 December 2003.

AJL:DHC:bjc

Attachment: Distribution

Enclosure:

Report on Annual Groundwater Monitoring, 2003

Santa Susana Field Laboratory Ventura County, California

File No. 32600/05/10/M442, Haley & Aldrich, Inc.,

dated 27 February 2004

SHEA-99311

SSFL GROUNDWATER PROGRAM MAILING LIS 2003 Annual Report	ST 2004RC0632	27 February 2004
2005 Amada Report	L = Letter E = Enclosure	Mailing Classification
Mr. Jose Kou, P. E., Chief Southern California Permitting Branch Hazardous Waste Management Program Department of Toxic Substances Control 1011 North Grandview Avenue Glendale, CA 91201-2205	L/E	Overnight Express
Mr. Alfredo Zanoria, CEG, CHG, Chief Geological Services Unit Geology and Corrective Action Branch Hazardous Waste Management Program Department of Toxic Substances Control 5796 Corporate Avenue Cypress CA 90630	L/E	First Class
Tom Seckington Geology and Corrective Action Branch Hazardous Waste Management Program Department of Toxic Substances Control 5796 Corporate Avenue Cypress, California 90630	L/E	First Class
Gerard Abrams California Environmental Protection Agency Department of Toxic Substances Control Region 1 Facility Permitting Branch 8800 Cal Center Drive Sacramento, Ca 95826-3200	L/E	First Class
California Regional Water Quality Control Board 320 West 4 th Street, Suite 200 Los Angeles, CA 90013 Attn: Peter Raftery	L/E	First Class
U. S. Environmental Protection Agency Toxics and Waste Mgmt. Division, Mail Stop H-3-1 75 Hawthorne Street San Francisco, CA 94105 Attn: J Beach, Waste Compliance Branch	L/E	First Class
Upper Los Angeles River Area Watermaster Services 111 N. Hope Street, Rm. 1472 Los Angeles, CA 90012 Attn: Mel Blevins, Watermaster Consultant	L/E	First Class
Upper Los Angeles River Area Watermaster Services 111 N. Hope Street, Rm. 1450 Los Angeles, CA 90012 Attn: Mark Mackowski, ULARA Watermaster	L/E	First Class

SSFL GROUNDWATER PROGRAM MAILING LIS 2003 Annual Report	ST 2004RC06	32 27 February 2004
2005 Alimuai Report	L = Letter E = Enclosure	Mailing Classification
State of California Department of Health Services Radiologic Health Branch 601 N. 7th Street P. O. Box 942732 Sacramento, CA 94234-7320 Attn: Ed Bailey, Chief	L/E	First Class
NASA/HQ/JE 300 East Street, S. W. Washington, D. C. 20546 Attn: M. Schoppet, Env. Mgmt. Division	L	First Class
NASA Marshall Space Flight Center Huntsville, AL 35812 Attn: Rebecca McCaleb (AE01) Attn: Allen Elliott (AE01)	L L/E	First Class First Class
U. S. Army Corps of Engineers Omaha District Office 215 North 17th Street Omaha, NE 68102-4978 Attn: Stan Bauer, Proj. Manager CEMRO-MD-HA	L/E	First Class
Lavern C. Hoffman Water Resources & Development Dept. Public Works Agency, County of Ventura 800 S Victoria Avenue Ventura CA 93009	L/E	First Class
PUBLIC		
Mountains Recreation and Conservation Authority 5750 Ramirez Canyon Road Malibu, CA 90265 Attn: Rorie Skei, Program Manager	L/E	First Class
John Varble Brandeis-Bardin Institute Brandeis, CA 93064	L/E (2 copies)	First Class
Mr. Ron Striegel 24690 Woolsey Canyon Road West Hills, CA 91304	L/E	First Class

SSFL GROUNDWATER PROGRAM MAILING LIS 2003 Annual Report	ST 2004RC06	32 27 February 2004
2005 Amidul Report	L = Letter E = Enclosure	Mailing Classification
California State University, Northridge Urban Archives Center Oviatt Library, Room 4 18111 Nordhoff Northridge, CA 91330 Attn: Robert Marshall	L/E	First Class
Simi Valley Library 2969 Tapo Canyon Road Simi Valley, CA 93063 Attn: Ms. Dale Redfield	L/E	First Class
Platt Branch Los Angeles Public Library 23600 Victory Blvd. Woodland Hills, CA 91367 Attn: Ms. Lynn Light	L/E	First Class

TABLE OF CONTENTS

				Page
	Γ OF FIG	GURES CRONYI	M LIST	iv vi
1.	INTE	RODUCT	TION	1
	1.1	Repor	t Organization	2
2.	GRO	UNDWA	ATER MONITORING	3
	2.1	Groun	dwater Elevations and Flow Conditions	3
		2.1.1	Near-Surface Groundwater	4
		2.1.2	Chatsworth Formation	4
			2.1.2.1 Groundwater Elevations and Flow Conditions	5
	2.2	Groun	dwater Quality Results	6
		2.2.1	Near-Surface Groundwater	7
			2.2.1.1 LUFT Program	. 8
			2.2.1.2 Evaluation Monitoring Program/Interim Corrective Act	
			Program	8
			2.2.1.3 Point of Compliance Program	8
			2.2.1.4 Near-Surface Groundwater Radiochemistry Analyses	8
			2.2.1.5 Other Monitoring	10
		2.2.2	Chatsworth Formation	10
			2.2.2.1 LUFT Program	11
			2.2.2.2 Detection Monitoring Program	11
			2.2.2.3 Evaluation Monitoring Program/Interim Corrective Act	
			Program	12
			2.2.2.4 Constituents of Concern Analyses	14
			2.2.2.5 Monitoring of Perimeter Wells and Private Off-Site We	
			Springs 2.2.2.6 Point of Compliance Program	15 17
			2.2.2.6 Point of Compliance Program2.2.2.7 Chatsworth Formation Radiochemistry Analyses	18
			2.2.2.8 Monitoring of Other Facility Wells	19
		2.2.3	•	21
		2.2.5	2.2.3.1 Data Validation	21
			2.2.3.2 Analytical Results	22
		2.2.4	-	23
		2.2.5		25
		2.2.6	Proposed 2004 Groundwater Monitoring Schedule	25
3.	REM	EDIAL	SYSTEMS	26
	3.1		dial Systems Activities	26
		3.1.1	Permitted Systems	27

4. REFERENCES

28

TABLES

FIGURES

- APPENDIX A Water Level Hydrographs
- APPENDIX B Groundwater Monitoring Schedule
- APPENDIX C Monitor Well and Piezometer Construction Data
- APPENDIX D Quality Assurance Assessment
- APPENDIX E Results of Radiological Analyses
- APPENDIX F Constituents of Concern and Perchlorate Concentration versus Time Plots
- APPENDIX G Permitted Groundwater Remediation Systems
- APPENDIX H Data Usability Summary Report

LIST OF TABLES

Table No.	Title
I.	Summary of Annual Rainfall Measured at the Santa Susana Field Laboratory, 1960-2003
II.	Summary of Water Level Data, 2003
III.	Summary of Results for Volatile Organic Compounds in Shallow Wells and the ECL French-Drain, 2003
IV.	Summary of Results for Volatile Organic Compounds in Chatsworth Formation Wells, 2003
V.	Summary of Analyses for Gasoline Range Organics, 2003
VI.	Summary of Analyses for Trace Metal Constituents and Cyanide, 2003
VII.	Summary of Analyses for Semi-volatile Organic Constituents, 2003
VIII.	Summary of Analyses for Perchlorate, 2003
IX.	Summary of Analyses for Gross Alpha, Gross Beta, Radium Isotopes, and Tritium Activities, 2003
X.	Summary of Analyses for Gamma Emitting Radionuclides, 2003
XI.	Summary of Analyses for Appendix IX Constituents, 2003
XII.	Summary of Analyses for Constituents of Concern and Perchlorate, 2003
XIII.	Summary of Analyses for Inorganic Constituents, 2003
XIV.	Summary of Extraction Well Water Levels and Flow Rates, 2003
XV.	Summary of Groundwater Extractions, Permitted Groundwater Remediation Facilities, 2003
XVI.	Summary of Groundwater Extractions, Interim Systems, 2003
XVII.	Summary of Water Quality Results, Permitted Groundwater Remediation Facilities, 2003

LIST OF FIGURES

Figure No.	Title
1.	Facility Location Map
2.	Locations of Well and Springs and Groundwater Reclamation Components
3.	Geologic Map
4.	Groundwater Units
5.	Water Level Elevation Contour Map - November 2003
6.	Maximum Concentration of TCE in Near-Surface Groundwater, 2003
7.	Maximum Concentration of cis-1,2-Dichloroethene in Near-Surface Groundwater, 2003
8.	Maximum Concentration of TCE in Chatsworth Formation Groundwater, 2003
9.	Maximum Concentration of cis-1,2-Dichloroethene in Chatsworth Formation Groundwater, 2003
10.	Maximum Concentration of 1,1-Dichloroethene in Groundwater, 2003
11.	Maximum Concentration of trans-1,2-Dichloroethene in Groundwater, 2003
12.	Maximum Concentration of Tetrachloroethene in Groundwater, 2003
13.	Maximum Concentration of 1,4-Dioxane and Perchlorate in Groundwater, 2003
14.	Maximum Concentration of Chloroform, Carbon Tetrachloride, Benzene, and 1,1-Dichloroethane in Groundwater, 2003
15.	Maximum Concentration of 1,2-Dichloroethane, Ethylbenzene, Methylene Chloride, and Toluene in Groundwater, 2003
16.	Maximum Concentration of 1,1,1-Trichloroethane, 1,1,2-Trichloroethane, Vinyl Chloride, and 2-Butanone in Groundwater, 2003
17.	Maximum Concentration of Acetone, m- & p-Xylenes, o-Xylene, Trichlorofluoromethane, and Trichlorotrifluoroethane (Freon 113) in Groundwater, 2003

18.	Maximum Concentration of Ammonia as Nitrogen, Fluoride, Formaldehyde, and Nitrate as Nitrogen in Groundwater, 2003
19.	Maximum Concentration of N-Nitrosodimethylamine in Groundwater, 2003
20.	Location of Wells Sampled for Appendix IX Constituents during 2003
21.	Inorganic Results for Appendix IX Samples, 2003
22.	Organic Results for Appendix IX Samples, 2003

MASTER ACRONYM LIST

AL action level

CCR California Code of Regulations
CFOU Chatsworth Formation Operable Unit

cis-1,2-DCE cis-1,2-dichloroethene

DHS (California) Department of Health Services

DTSC (California) Department of Toxic Substances Control
EPA (United States) Environmental Protection Agency
FLUTe Flexible Liner Underground Technologies, LLC

Former Sodium Disposal Facility **FSDF** Groundwater Resources Consultants GWRC LUFT leaking underground fuel tank maximum contaminant level MCL **MDA** minimum detectable activity MDL method detection limit milligrams per liter mg/l msl mean sea level

NDMA n-nitrosodimethylamine ng/l nanograms per liter

NPDES National Pollutant Discharge Elimination System

NSGI Near-Surface Groundwater Investigation

pCi/l picoCuries per liter per mil parts per thousand

PQL practical quantitation limit

RMHF Radioactive Materials Handling Facility

SAP sampling and analysis plan SDWA Safe Drinking Water Act SSFL Santa Susana Field Laboratory

TCE trichloroethene

trans-1,2-DCE trans-1,2-dichloroethene ug/l micrograms per liter

USEPA United States Environmental Protection Agency

VOC volatile organic compound

1. INTRODUCTION

This report summarizes the groundwater monitoring and groundwater extraction/treatment activities conducted during 2003 at The Boeing Company, Rocketdyne Propulsion & Power Santa Susana Field Laboratory (SSFL) located in Ventura County, California (Figure 1). This report is intended to fulfill the requirements of multiple regulatory programs at SSFL, which are addressed in the Post-Closure Permits prepared by the California Department of Toxic Substances Control (DTSC), and the Leaking Underground Fuel Tank (LUFT) monitoring program overseen by DTSC. Specific requirements include performance of detection monitoring, evaluation monitoring and interim corrective action monitoring as described in the Facility Post-Closure Permits, and per the requirements of Title 22, Article 6, Sections 66264.97 through 66264.99 of the California Code of Regulations (CCR).

Monitoring activities conducted during the year included:

- measurement of static water levels;
- collection and laboratory analysis of groundwater samples;
- measurement of groundwater extraction/treatment system water levels, pumping rates and volumes; and
- collection and laboratory analysis of water samples from treatment system influent and effluent.

Historic data were reported in the following documents:

- through the year 1999 in the Annual Groundwater Monitoring Report, Santa Susana Field Laboratory, 1999, Boeing North American, Inc., Rocketdyne Propulsion & Power, Ventura County, California (Groundwater Resources Consultants, Inc. (GWRC), February 28, 2000);
- year 2000 in the Report on Annual Groundwater Monitoring, 2000, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2001);
- year 2001 in the Report on Annual Groundwater Monitoring, 2001, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2002a) and Report on Appendix IX Groundwater Monitoring, 2001, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2002b);
- year 2002 in the Report on Annual Groundwater Monitoring, 2002, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2003a), and Addendum to Report on Annual Groundwater Monitoring, 2002, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2003b);
- the first quarter 2003 in the Groundwater Monitoring Quarterly Report, First Quarter 2003, January through March 2003, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2003c);
- the second quarter 2003 in the Groundwater Monitoring Quarterly Report, Second Quarter 2003, April through June 2003, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2003d); and
- the third quarter 2003 in the Groundwater Monitoring Quarterly Report, Third Quarter 2003, July through September 2003, Santa Susana Field Laboratory, Ventura County, California (Haley & Aldrich, 2003e).

The scope of this annual report includes the following as required per the Post-Closure Permits and CCR Title 22, Sections 66264.97 through 66264.99:

- A tabular summary of water level measurements;
- Discussion of the rates and direction of groundwater movement;
- A tabular summary of laboratory analyses of water samples;
- A tabular summary of groundwater extraction volumes and extraction well water levels and flow rates;
- A tabular summary of laboratory analyses of permitted treatment system influent and effluent water samples;
- Water level hydrographs;
- A groundwater elevation contour map of the Chatsworth Formation water table surface for November 2003;
- Contaminant concentration posting maps for the year 2003; and
- Contaminant concentration versus time plots from 1994 through 2003.

Additional groundwater data were collected by MWH and Haley & Aldrich in 2003 as part of the Near-Surface Groundwater Investigation (NSGI), the investigation of seeps and springs, the Chatsworth Formation Operable Unit Investigation (CFOU) and the Perchlorate Characterization Work Plan. In general, these data have been, or will be, reported under separate cover and are not presented in this report. When data from these programs are presented in this report, the text or table(s) will explain the exception.

1.1 Report Organization

Groundwater monitoring results, including analytical results and hydraulic head conditions, are presented in Section 2. Data for remedial systems are presented in Section 3.

2. GROUNDWATER MONITORING

This section presents a discussion of analytical results from 2003 groundwater sampling events conducted at SSFL. Monitoring wells, located as shown in Figure 2, were sampled quarterly, semi-annually, or annually in accordance with the current Sampling and Analysis Plan (SAP) for the Facility (GWRC, 1995a, 1995b).

Additional subsurface investigation programs were conducted at SSFL during 2003. As a result of these ongoing investigations, additional information on site geology and groundwater conditions is becoming available. To the extent possible, this new information is incorporated in this report.

Information on groundwater conditions at SSFL is discussed below. Site geology and groundwater units are summarized and illustrated on Figures 3 and 4. Recently collected data in the eastern portion of SSFL indicate the presence of several geologic features that impact groundwater flow (MWH, 2002). The groundwater conditions depicted in this report are subject to change as additional data become available. Groundwater elevation contours for the first encountered water in the Chatsworth Formation, as determined from groundwater level measurements collected during the fourth quarter 2003 sampling event, are shown on Figure 5. Multi-port FLUTe sampling devices were installed in existing wells in the Former Sodium Disposal Facility (FSDF) and in the northeast corner of SSFL over the last three years as part of the CFOU investigation. The elevation of first water in the multi-port devices varies from that previously observed in the open well bores. Accordingly, the actual elevation of first encountered groundwater probably differs from that shown in Figure 5.

Historic precipitation, year 2003 water level measurements, and historic water level hydrographs for select wells are presented in Tables I and II and Appendix A, respectively. Hydrographs representing vertical profiles of 2003 water levels in wells installed with FLUTe systems were prepared by MWH and are presented in Appendix A. Well and piezometer construction details are summarized in Appendix C. FLUTe system construction details are presented in Appendix A.

Groundwater quality results and trends, as presented in Tables III through XIII and XVII, Appendices E and F, and Figures 6 through 22, are discussed in Section 2.2.

2.1 Groundwater Elevations and Flow Conditions

Groundwater occurs at SSFL in the alluvium, weathered bedrock, and unweathered bedrock (GWRC, 1987; Montgomery Watson, 2000a). First-encountered groundwater exists under water table conditions and may be encountered in any of these media. For the purposes of this report, near-surface groundwater is defined as groundwater that is present in the alluvium and weathered bedrock, and groundwater that occurs below the weathered bedrock is referred to as Chatsworth Formation groundwater.

Near-surface groundwater has a limited areal extent at SSFL, typically occurring in narrow alluvial drainages (topographic lows) and broad valleys (e.g., Burro Flats in Area IV).

Where near-surface groundwater exists, the near-surface and Chatsworth Formation groundwater are often times vertically continuous (i.e., not separated by a vadose zone). In this case, the separation of near-surface groundwater and Chatsworth Formation groundwater is a descriptive term only.

Based on data collected to date, perched groundwater exists at a few locations within SSFL (MWH, 2003c). At these locations, a vadose zone within the Chatsworth Formation separates near-surface and Chatsworth Formation groundwater. Groundwater data collection and analysis is continuing and interpretations of existing hydrogeologic conditions will be modified as necessary based on the data collected.

2.1.1 Near-Surface Groundwater

The near-surface groundwater occurs in a thin layer of Quaternary alluvium distributed primarily in the Burro Flats area and along ephemeral drainages and the upper weathered portion of the Chatsworth Formation. The alluvium consists of unconsolidated sand, silt, and clay materials that have been eroded primarily from the surrounding Chatsworth and Santa Susana Formations.

The occurrence of near-surface groundwater is discontinuous at the Facility. Near-surface groundwater is present along ephemeral drainages and in the southern part of Burro Flats. Some portions of the alluvium and upper weathered Chatsworth Formation are saturated only during and immediately following the wet season.

Water level measurements were obtained quarterly from all 92 near-surface groundwater wells during 2003 (Table II, Appendix A). Near-surface groundwater levels during 2003 followed the general historical trend, highest during the late winter and spring rainy season and lowest during the summer and early fall dry months. For the 2003 water year, 25.20 inches of precipitation was measured, approximately 39% above average (Table I). Discharge of water to Facility storage reservoirs and channels as part of site operations also affects groundwater levels in the shallow wells.

Water level data from shallow wells continue to indicate that near-surface groundwater movement is generally a reflection of surface topography. Groundwater movement within the canyon areas, where most of the near-surface groundwater occurs, is generally in the same direction as surface flow in the canyons. Downward vertical movement of near-surface groundwater into the Chatsworth Formation bedrock also occurs.

2.1.2 Chatsworth Formation

The principal water bearing system at the Facility is the fractured Chatsworth Formation composed of poorly- to well-cemented, massive sandstone with interbeds of siltstone and claystone. Several structural features are apparent at the site including the Shear Zone, trending to the northeast through Area I, and several faults. These major features appear to compartmentalize groundwater flow within delineated units as depicted on Figure 5 (Montgomery Watson, 2000a; MWH, 2002). As indicated

above, studies currently in progress indicate several additional geologic features are present at SSFL which influence groundwater flow, including faults and shale beds. These features are not depicted on Figure 5, since they have not as yet been completely defined.

2.1.2.1 Groundwater Elevations and Flow Conditions

Water level measurements were obtained quarterly from all 126 Chatsworth Formation monitor wells during 2003 (Table II, Appendix A). Access to measure water levels was not available at wells with FLUTe systems installed. Discrete depth-interval water level data from FLUTe wells are presented in Table II and Appendix A. Water levels from the shallowest well in each Chatsworth Formation cluster (or from individual Chatsworth Formation wells at non-cluster locations) obtained in November 2003 were used to prepare the water table contour map presented as Figure 5.

Chatsworth Formation water levels during the fourth quarter 2003 were generally higher than fourth quarter 2002 water levels. This year to year increase was the result of increased precipitation in 2003, and below normal precipitation in 2002. Annual precipitation in 2003 was above the annual average. As noted above, recent field investigations have resulted in the installation of several multi-port sampling devices (FLUTes) in existing wells in the northeast portion and FSDF area of SSFL. The elevation of first water in the multi-port varies from that previously observed in the open well bores. Accordingly, the actual elevation of first encountered groundwater probably differs from that shown in Figure 5.

The determination of groundwater flow rates and direction are required per Title 22 Section 66264.97 of the California Code of Regulations. A groundwater table contour map is included in the annual report (Figure 5) to fulfill, in part, that requirement. A groundwater contour map is used in simple hydrogeologic settings to depict variations in the elevation of the water table surface, which can in turn be interpreted to reflect relative directions of groundwater flow. The groundwater elevation contours depicted in Figure 5 cannot be used to infer groundwater flow directions or rates of groundwater movement for the following reasons:

- Several hydraulically significant features such as fault zones and shale beds are present at SSFL and act as impediments to groundwater flow across them. Accordingly, while significant variations in the elevation of groundwater are present at SSFL, these differences do not necessarily indicate preferred directions of groundwater flow.
- The water level elevations depicted probably do not represent the elevation of the first occurrence of groundwater due to the relatively long open intervals of some of the monitoring wells. The water levels shown represent average heads over the screened or open interval.

 Groundwater flow directions and rates in fractured rock are influenced by the bedrock matrix and possibly the orientation of structural features and stratigraphy.

Static depths to water in Chatsworth Formation wells measured during 2003 ranged from above land surface at artesian wells RD-59B, RD-59C, RD-68A, and RD-68B to 508.78 feet at well RD-47 in the second quarter 2003. Water level elevations measured in Chatsworth Formation monitor wells during November 2003 ranged from approximately 1,314 feet above mean sea level (MSL) at well RD-59A to 1,898 feet above MSL at well RD-42 (Table II). As site characterization studies continue, the rate and direction of groundwater flow in each groundwater unit may be further refined.

2.2 Groundwater Quality Results

The groundwater monitoring program at SSFL fulfills the requirements of multiple regulatory programs prescribed by the Post-Closure Permits (California DTSC, 1995), a Class 2 Permit Modification of the Post-Closure Permits (California DTSC, 2001), the LUFT program overseen by DTSC, and various characterization efforts conducted at SSFL. The Post-Closure Permit monitoring programs include the Evaluation Monitoring Program and Detection Monitoring Program. The Evaluation Monitoring Program requires semi-annual sampling of point of compliance wells, evaluation monitoring wells, and interim corrective action wells. Detection monitoring wells, including background wells, are sampled quarterly.

Per the groundwater monitoring program, groundwater samples were collected during 2003 from shallow and Chatsworth Formation wells, and selected off-site wells and springs. With the concurrence of DTSC, sample collection at several wells was postponed during 2003 to accommodate a pumping test at corehole C-1 (DTSC, 2003). A summary of the specific analyses conducted at individual wells and springs during 2003 is presented in Table B-II of Appendix B. This section summarizes the results of the routine quarterly groundwater monitoring program for 2003.

Groundwater sample results from Facility wells are compared to various regulatory limits for discussion purposes. For those compounds or water quality constituents that have Maximum Contaminant Levels (MCLs) promulgated per the Safe Drinking Water Act (SDWA), the MCLs are used for purposes of comparison. Some constituents of concern do not have associated MCLs, but have California State Action Levels (ALs) that are used for purposes of comparison and discussion. Action levels are health-based advisory levels for chemicals in drinking water that are established for those chemicals for which there are no formal regulatory standards. Water purveyors are required to advise their customers of the presence of these compounds in drinking water when concentrations are at or above action levels. If concentrations of these compounds exceed 10 or 100 times the action levels, water purveyors are required to remove the water source from their distribution system (DHS, 2003). In all cases, it is important to note that the groundwater beneath the SSFL Facility is not used to supply drinking water. All references to MCLs and ALs are for purposes of discussion only. In addition, reporting requirements in the Post-Closure Permits call for posting of all water

quality results above method detection limits. These data are flagged to indicate the uncertainty associated with data reported at concentrations below the reporting limit.

Water quality results are tabulated in Tables III through XIII and XVII. Analytical results for cis-1,2-dichloroethene (cis-1,2-DCE) and trichloroethene (TCE), the most prevalent contaminants detected in groundwater samples collected from the site, are posted on a site base map in Figures 6 through 9 for the near-surface and Chatsworth Formation groundwater systems. Maximum concentrations of constituents of concern detected during 2003 are posted on Figures 10 through 19. Constituents of concern that were not detected in any groundwater samples during 2003 are not posted on the figures. Figure 20 presents wells sampled for Appendix IX constituents during 2003. Concentrations of Appendix IX constituents detected during 2003 are posted on Figures 21 and 22. Concentration versus time plots for constituents of concern at permitted wells are presented in Appendix F.

During the 2003 routine quarterly sampling, laboratory analyses were performed for the determination of volatile organic compounds (VOCs), fuel hydrocarbons, trace metals, cyanide, inorganic constituents, semi-volatile organic compounds, perchlorate, gross alpha and beta, tritium, and gamma-emitting radionuclides. As part of the Chatsworth Formation Operable Unit (CFOU) groundwater investigation, a number of wells were monitored quarterly for constituents of concern (Table XII). A quality assurance summary of the monitoring program is presented in Appendix D.

As required by the existing Post-Closure Permits, seven point of compliance wells were monitored for the full list of Appendix IX constituents during the year per the 2003 schedule (Table B-I of Appendix B). Results of the 2003 Appendix IX analyses were subjected to a data validation process in accordance with guidance from the United States Environmental Protection Agency (USEPA) "National Functional Guidelines for Organic Data Review" (EPA540/R-99/008, October 1999), "National Functional Guidelines for Inorganic Data Review" (EPA540/R-01/008, July 2002), and the EPA Method specific protocol criteria, where applicable. A summary of the data validation process is included in Appendix H.

2.2.1 Near-Surface Groundwater

Groundwater samples were collected from 38 shallow wells as part of the groundwater monitoring program in 2003. In addition, one near-surface groundwater piezometer was sampled during the year. All analytical results were within historic ranges (GWRC, 2000; Haley & Aldrich, Inc., 2001, 2002a, 2002b, 2003a), with the exceptions noted below. Results for each well are summarized in Tables III through XII. Deviations from historic water quality results for analytes exceeding the practical quantitation limits (PQLs) and results of verification sampling are discussed below.

As part of the Near-Surface Groundwater Characterization, 132 piezometers were installed during 2000 through 2003. Groundwater samples were collected from the piezometers for the analysis of various compounds of concern. Results of these samples were summarized in the Near-Surface Groundwater Characterization Report (MWH, 2003c).

2.2.1.1 LUFT Program

Semi-annual sampling of shallow LUFT program wells was conducted during the first half of 2003. During the third and fourth quarters of 2003, semi-annual sampling was postponed to accommodate the C-1 corehole pumping test. All volatile organic and fuel hydrocarbon analytical results for groundwater samples collected during 2003 were within historic ranges (Tables III and V).

2.2.1.2 Evaluation Monitoring Program/Interim Corrective Action Program

Sampling of shallow evaluation monitoring wells and interim corrective action wells was conducted during the first and third quarters of 2003. The sampling of five interim corrective action wells and two evaluation monitoring wells was postponed, with DTSC concurrence, to accommodate the C-1 corehole pumping test (DTSC, 2003). Results for each well are summarized in Table III. Except for the acetone detected in evaluation monitoring well HAR-03 groundwater, all analytical results were within historic ranges, suggesting stable plumes. Reported at 25 micrograms per liter (ug/l) during the first quarter, acetone had not been detected in previous samples collected from HAR-03. Sampling of HAR-03 during the second half of the year was postponed to accommodate the C-1 corehole pumping test.

2.2.1.3 Point of Compliance Program

During the second quarter 2003, shallow wells SH-04, RS-08, HAR-14, and HAR-15 were sampled for the full suite of Appendix IX constituents (Table XI). All analytical results for Appendix IX samples are discussed in Section 2.2.3 below.

2.2.1.4 Near-Surface Groundwater Radiochemistry Analyses

During 2003, near-surface groundwater samples were collected from select shallow wells for the analysis of gross alpha and gross beta, tritium, gamma-emitting radionuclides, isotopic thorium, and isotopic uranium using EPA Methods 900.0, 906.0, 901.1, 907.0, and 908.0, respectively (Tables IX and X). Beginning in the third quarter 2003, samples were collected for the analysis of additional radionuclides per EPA's drinking water regulations (Federal Register, 2000):

- If gross alpha activity exceeded 5 picoCuries per liter (pCi/l), Ra-226 and Ra-228 were analyzed by EPA Methods 903.1 and 904.0, respectively;
- If gross alpha activity exceeded 15 pCi/l, uranium isotopes were analyzed by EPA Method 908.0; and
- If gross beta activity exceeded 50 pCi/l, K-40 and Sr-90 were analyzed by EPA Methods 901.1 and 905.0, respectively.

Results of radiological analyses of near-surface groundwater samples collected during 2003 were consistent with historic data (Appendix E). None of the gross alpha, gross beta, or tritium results exceeded the drinking water Maximum Contaminant Levels (MCLs) of 15 pCi/l, 50 pCi/l, or 20,000 pCi/l, respectively, except for the second quarter RS-18 gross alpha concentration of 29.1 ± 9.1 pCi/l (Table IX). The second quarter RS-18 sample contained uranium isotopes at the following activities: uranium-233/234 at 20.3±1.2 pCi/l, uranium-235 at 1.05±0.12 pCi/l, and uranium-238 at 19.3±1.1 pCi/l (Table X). Results of historic and 2003 isotopic uranium analyses of RS-18 groundwater confirmed that naturally-occurring uranium isotopes are present in groundwater samples collected from RS-18 (Table X, Appendix E).

Groundwater samples are routinely collected from select wells for analysis of gamma ray spectroscopy to document the occurrence of natural gamma emitters in groundwater, and to monitor for potential anthropogenic gamma activity. Project specific technical specifications, including Minimum Detectable Activities (MDAs) have been developed to insure collection of high quality data, and to be consistent with recent EPA Drinking Water regulations (40 CFR Parts 9, 141, and 142). Review of the gamma spectroscopy data indicates that some data do not meet the MDA requirements. Non-attainment of the MDA technical specifications are due, in part, to matrix conditions and, in part, to limitations in the prescribed analytical methods. Matrix conditions, including dissolved and suspended solids, impact the homogeneity of the samples and limit method counting efficiency. Additionally, prescribed analytical methods call for specified sample volumes and counting times that further limit the ability to attain the project MDAs. Potential corrective measures, including increasing counting volumes from 0.5 liters (L) to 1.5 L, and increasing counting times, are being evaluated to attain project MDAs. None of the gamma spectroscopy data exceeded recent EPA Drinking Water MCLs, or indicated the presence of anthropogenic gamma emitters (Table X). Groundwater sample results from the Facility wells are compared to drinking water MCLs for discussion purposes only. The groundwater beneath the SSFL Facility is not used for drinking water purposes.

The radiochemistry laboratory was able to meet the contract-required minimum detectable activity (MDA) for most radiochemical analyses. The contract-required MDAs are equal to or less than detection limits prescribed by CCR Title 17, Sections 64441 through 64447 for drinking water. For a number of samples, the contract-required MDAs could not be met for the following reasons:

Some of the gross alpha and gross beta MDAs were greater than the required MDA. In each case, the positive result determined for the radioisotope exceeded both the required and obtained MDAs.

Some gamma-emitting radioisotopes (eg., Pb-210, Ra-226, and Th-230) exceeded contract-required MDAs even after count times in excess of 5200 minutes.

2.2.1.5 Other Monitoring

Perchlorate was not detected in samples collected from piezometer PZ-012 (Table VIII). PZ-012 water was sampled in December 2003. PZ-012 is not part of the 2003 monitoring program.

All other monitoring of near-surface groundwater water quality during 2003 yielded results consistent with historical data with the exceptions noted below.

- In a sample collected on February 25th from well RS-25, perchlorate was reported below the PQL at an estimated concentration of 2.1 ug/l (Table VIII). Because this well was dry or contained insufficient water for sampling during previous quarters, perchlorate samples had not been collected previously from well RS-25. On March 28, 2003, MWH collected primary, duplicate, and split perchlorate samples from RS-25. Perchlorate was only detected in the split sample at a concentration of 1.546 ug/l. Duplicate and split perchlorate samples collected during the second quarter from well RS-25 did not contain perchlorate above the method detection limit.
- In a sample collected from well RS-19 during the second quarter, perchlorate was reported below the PQL at an estimated concentration of 2.3 ug/l (Table VIII). Perchlorate had not been detected in samples previously collected from this well. RS-19 was dry when monitored in subsequent quarters. Duplicate and split perchlorate samples will be collected from RS-19 during the first quarter 2004 if sufficient water is present in the well for sampling.

The Boeing Company has committed significant resources to resolving the issue of false-positive detection of perchlorate using EPA Method 314.0. Future verification procedures for perchlorate will include enhanced verification procedures including spiking of samples and reanalysis of samples using LC/MS/MS methods. These verification procedures are presented in the QAPP for the Perchlorate Characterization Work Plan (MWH, 2003d).

2.2.2 Chatsworth Formation

Chatsworth Formation groundwater samples were collected from 119 Facility wells and 13 private off-site wells and springs as part of the groundwater monitoring program in 2003. Detection monitoring wells and background wells were sampled quarterly. For the Evaluation Monitoring Program, Chatsworth Formation evaluation monitoring wells and interim corrective action wells were sampled during the first and third quarters of 2003. Three Chatsworth Formation wells serving as point of

compliance wells were sampled for Appendix IX parameters in 2003. As part of the northeast Area I and Area II CFOU groundwater investigation, selected Chatsworth Formation wells were sampled quarterly for constituents of concern. Select seeps and springs were also sampled as part of the groundwater monitoring program.

Analytical results of Chatsworth Formation groundwater samples collected during 2003 are summarized in Tables IV through XIII. Overall, results were consistent with historic results (GWRC, 2000; Haley & Aldrich, Inc., 2001, 2002a, 2002b, 2003a, 2003b). Deviations from historic water quality results for analytes reported above the PQLs are discussed below.

Note: During the year, several samples were collected from multi-level FLUTes installed in Chatsworth Formation wells. Many of the discrete interval samples collected at the wells contained VOCs that were not consistent with groundwater samples collected from these wells according to standard procedures described in the Sampling and Analysis Plan. Benzene and related compounds present in samples collected from FLUTe ports are likely contaminants from FLUTe system components. These low level concentrations of toluene and benzene have been observed by investigators using FLUTe systems at other sites and are attributed to equipment components (Keller, personal communication, 2003).

2.2.2.1 LUFT Program

Semi-annual sampling of Chatsworth Formation wells monitored under the LUFT program occurred during the first quarter 2003. During the third and fourth quarters of 2003, semi-annual sampling was postponed to accommodate the C-1 corehole pumping test. Volatile organic and fuel hydrocarbon samples were collected from all LUFT Program wells that contained sufficient groundwater for sampling. All volatile organic and fuel hydrocarbon analytical results were within historic ranges (Tables IV and V), with the following exceptions:

Acetone was detected in the split sample collected from well RD-37 during the first quarter 2003. The result is discussed in Section 2.2.2.2 below.

2.2.2.2 Detection Monitoring Program

Chatsworth Formation detection monitoring and background wells were sampled quarterly during 2003 (Tables IV through XII). Sampling at a number of detection monitoring wells during the third and fourth quarters was postponed to accommodate the C-1 corehole pumping test. No VOCs were reported above the PQLs in water samples collected from detection monitoring and background wells with the following exceptions:

- Toluene was detected at concentrations of 1.77 ug/l and 1.3 ug/l in the primary and split samples collected from background well RD-13 during the fourth quarter 2003 (Table IV).
- TCE concentrations in samples collected from background well RD-13 ranged from 1.4 ug/l in the first quarter 2003 to not detected above the method detection limit of 0.26 ug/l in the second quarter (Table IV). During the fourth quarter of 2000, TCE had been reported at 400 ug/l and was attributed to field contamination from a temporary pump that was not properly decontaminated prior to installation at RD-13 (Haley & Aldrich, 2002a).
- The first quarter split sample collected from well RD-37 contained 28 ug/l of acetone (Table IV). This compound was not detected above the PQL in either the first quarter primary and duplicate samples or in the second quarter sample. Third and fourth quarter sampling at RD-37 was postponed to accommodate the C-1 corehole pumping test.
- Acetone was reported above the PQL in the second quarter sample collected from background well RD-48B at a concentration of 11 ug/l (Table IV). Acetone was not detected above the PQL in any other samples collected from RD-48B during 2003.
- The third quarter sample collected from detection monitoring well RD-61 contained benzene at a concentration of 0.68 ug/l (Table IV). This contaminant was not detected above the PQL in verification samples collected during the fourth quarter 2003.

Prior to FLUTe installation, a groundwater sample collected from detection monitoring well RD-39A in April 2001 contained TCE at a concentration of 0.5 ug/l. Verification sampling has been scheduled at well RD-39A since that time, but the well has not contained sufficient water for sampling. During the third and fourth quarters 2003, monitoring at RD-39A was postponed to accommodate the C-1 corehole pumping test.

Per the Post-Closure Permits, verification sampling will be conducted at wells RD-13 during the first quarter 2004 and at RD-39A following the completion of the C-1 pumping test to determine if VOCs are present in groundwater at these detection monitoring wells.

2.2.2.3 Evaluation Monitoring Program/Interim Corrective Action Program

Sampling of Chatsworth Formation evaluation monitoring wells and interim corrective action wells was conducted during the first and third quarters of 2003. Results for each well are summarized in Tables IV through XII. All analytical results were within historic ranges (GWRC, 2000; Haley &

Aldrich, Inc., 2001, 2002a, 2002b, 2003a, 2003b) with the following exceptions:

- Concentrations of acetone, cis-1,2-dichloroethene (cis-1,2-DCE), trichloroethene (TCE), and vinyl chloride in groundwater samples collected from evaluation monitoring well RD-55A during 2003 decreased from the high concentrations observed in the fourth quarter 2002 samples.
- During the first quarter 2003, acetone was reported in groundwater collected at evaluation monitoring well RD-55B at a concentration of 13 ug/l (Table IV). Acetone was detected once before in RD-55B groundwater in February 1996 at a concentration of 11 ug/l. Acetone was not detected in samples collected from RD-55B during the second or third quarters.
- Acetone was reported at a concentration of 12 ug/l in the first quarter 2003 groundwater sample collected from interim corrective action well RD-09 (Table IV). Acetone was last reported in this well in 1986 at a concentration of 95 ug/l. Samples could not be collected during subsequent monitoring events due to CFOU investigation activities.
- Groundwater collected from interim corrective action well WS-09A contained 39 ug/l of acetone during the first quarter 2003 (Table IV). Acetone was detected only once before in WS-09A groundwater in 1995 but was identified as a laboratory contaminant. Acetone was not detected in second, third, and fourth quarter 2003 samples collected from WS-09A.
- During 2003, cis-1,2-DCE and TCE increased in samples collected from interim corrective action well WS-09A (Table IV). Maximum cis-1,2-DCE and TCE concentrations of 1,100 ug/l and 2,000 ug/l, respectively, exceeded previous maximums of 240 ug/l cis-1,2-DCE and 1400 ug/l TCE in August 1993.
- During 2003, perchlorate was detected in groundwater collected from well RD-10 (Table VIII). During the first and second quarters, composite samples were collected from RD-10 FLUTe ports 3, 6, and 9 located at depth intervals of approximately 211 to 221 feet, 271 to 281 feet, and 331 to 341 feet, respectively. The composite sample concentrations ranged up to 220 ug/l. These perchlorate results are consistent with composite RD-10 FLUTe samples analyzed during 2002 (Haley & Aldrich, 2003a). The California drinking water action level for perchlorate is 4 ug/l.

2.2.2.4 Constituents of Concern Analyses

Per the Post-Closure Permits, Chatsworth Formation detection monitoring wells and background wells were originally sampled and analyzed for all constituents of concern in 1996. Background wells were sampled and analyzed again for constituents of concern in 1999. During 2000, all detection monitoring wells, background wells, and evaluation monitoring wells were sampled for constituents of concern (Haley & Aldrich, Inc., 2001a). As part of the on-going Chatsworth Formation Operable Unit (CFOU) Investigation, quarterly sampling for constituents of concern was conducted during 2003 at five Area I wells (RD-01, RD-02, RD-10, RD-44, and WS-05) and seven Area II wells (HAR-20, RD-04, RD-49A, RD-49B, RD-49C, WS-06, and WS-09) (Table XII). Well HAR-20 was dry when monitored during the year. During the third and fourth quarters 2003, constituents of concern sampling at wells RD-01, RD-10, and WS-05 was postponed to accommodate the C-1 corehole pumping test. Constituents of concern samples were also collected from former water supply wells WS-12 and WS-13 during the year.

Ammonia was detected in groundwater samples from wells RD-10, RD-49C, WS-05, and WS-06 at concentrations ranging up to 0.13 mg/l in a sample collected from well RD-10. Fluoride concentrations in groundwater collected from the 13 sampled wells were below the federal drinking water primary MCL of 2.0 mg/l. In samples in which nitrate was reported above the method detection limit (MDL), the concentrations were below the federal drinking water primary MCL of 10 mg/l for nitrate-nitrite as nitrogen. Where detected, formaldehyde did not exceed the California drinking water action level of 100 ug/l (Table XII).

NDMA was reported above the PQL in groundwater samples from wells RD-02, RD-04, RD-49A, RD-49B RD-49C, and WS-09. NDMA had been detected previously in each of these wells. Three wells contained NDMA in concentrations exceeding the California drinking water action level of 0.01 ug/l: RD-04, RD-49B, and RD-49C. Maximum NDMA concentrations reported in groundwater from these wells were 0.038 ug/l in RD-04, 0.066 ug/l in RD-49B, and 0.014 ug/l in RD-49C.

VOC concentrations were within historic ranges with the following exceptions:

- Trichlorotrifluoroethane (Freon 113) was reported for the first time in groundwater collected from well RD-49C during the first quarter at a concentration of 5 ug/l. Subsequent samples collected from this well during 2003 did not contain trichlorotrifluoroethane.
- Increased VOC concentrations observed in samples collected from wells RD-01, RD-02, and WS-09, as summarized below, may be concentration rebound effects that occurred following the inactivation

of these extraction wells during CFOU groundwater investigations. Wells RD-01 and RD-02 were inactivated during 2000, while well WS-09 was inactivated during 2002.

Well	Compound	Maximum Concentration (ug/l)			
		2000	2001	2002	2003
RD-01	Cis-1,2-DCE	150	340	900	690
	TCE	220	610	1,200	970
RD-02	Cis-1,2-DCE	140	700	580	450
	TCE	120	700	470	290
WS-09	Cis-1,2-DCE	4.7	3.6	540	430
	TCE	61	46	7,500	7,600

Water levels in all three wells increased through early November 2003.

During 2003, 1,4-dioxane was reported at least once in groundwater samples collected from wells RD-01, RD-02, RD-04, RD-10, RD-49A, RD-49B, RD-49C, WS-05, WS-06, and WS-09. 1,4-Dioxane results exceeded the California drinking water action level of 3 ug/l in the second quarter sample collected from well WS-09 at a concentration of 3.71 ug/l. Previous samples collected from WS-09 contained 1,4-dioxane at concentrations ranging up to 2.1 ug/l (Haley & Aldrich, 2003a). Samples were not collected from WS-09 during the third and fourth quarters because the pumping equipment was removed from the well to accommodate the CFOU investigation. WS-09 will next be monitored for 1,4-dioxane during the first quarter 2004.

2.2.2.5 Monitoring of Perimeter Wells and Private Off-Site Wells and Springs

Perimeter wells near the site boundary were sampled quarterly during 2003 (Tables IV through XIII). Private off-site well OS-28 was sampled for the first time during 2003. This domestic supply well replaced well OS-17 which had become inoperational. Analyses performed on the OS-28 samples included VOCs, low-level 1,4-dioxane, semi-volatile organic compounds (SVOCs), low-level NDMA, inorganics, trace metals, and perchlorate (Tables IV, VI, VII, XII, and XIII). Additional sampling occurred at private off-site wells and springs over the year. Several perimeter and private off-site wells were monitored for perchlorate and inorganic constituents as part of the Perchlorate Characterization Work Plan (MWH, 2003d). Off-site well OS-09 (Bathtub Well No. 1) was sampled weekly during the third and fourth quarters for perchlorate and inorganics and monthly for stable isotopes. Results for OS-09 and wells in the Perchlorate Characterization Work Plan are discussed in Section 2.2.4.

Perchlorate was not detected in perimeter or off-site wells during 2003 monitoring (Table VIII). Analytical results indicated that VOCs were not

detected above the PQLs in groundwater samples collected from perimeter wells and private off-site wells and springs with the following exceptions:

FLUTes installed in perimeter wells RD-22, RD-50, and RD-57. Low levels of VOCs (including acetone, benzene, chlorobenzene, and toluene) were reported in several FLUTe samples (Table IV). Many of these compounds were detected in FLUTe samples collected in previous years (Haley & Aldrich, 2002a, 2003a, 2003b). These compounds have not appeared in groundwater samples collected from these wells using standard procedures described in the Sampling and Analysis Plan. These low level concentrations of toluene and benzene have been observed by investigators using FLUTe systems at other sites and are attributed to equipment components (Keller, personal communication, 2003).

Results of trace metals and cyanide samples collected during 2003 from perimeter wells were within historic ranges with the following exceptions (Table VI):

Arsenic results for samples collected from the FLUTe system installed in perimeter well RD-22, located near the FSDF, were high compared to samples collected prior to FLUTe installation. Collected from FLUTe port 2 at a depth interval of approximately 330 to 430 feet, the second quarter sample contained 35 ug/l of arsenic – less than the first quarter result of 320 ug/l and less than the 50 ug/l drinking water MCL. Prior to 2003, arsenic had been detected at RD-22 once in 2001 at a concentration of 0.69 ug/l in groundwater collected following the standard procedures described in the Sampling and Analysis Plan.

Although manganese results for samples collected from the FLUTe system installed in perimeter well RD-57 exceeded the secondary MCL, the results were comparable to historic groundwater samples. The manganese result for the sample collected from private off-site well OS-28 also exceeded the secondary MCL of 50 ug/l. Manganese is a naturally occurring metal that is commonly present in groundwater in excess of the secondary MCL.

Inorganic results (Table XIII) from wells not included in the Perchlorate Characterization Work Plan did not exceed drinking water MCLs with the following exceptions:

■ Total dissolved solids (TDS) results from OS-28 samples exceeded the secondary MCL of 500 ug/l, ranging from 770 to 790 ug/l.

■ Specific conductance measurements equaled or exceeded the 900 micromhos per centimeter (umhos/cm) secondary MCL in both OS-28 samples (1,200 umho/cm each).

SVOCs were not detected in 2003 samples collected from well OS-28 (Table VII) except for a low concentration of bis(2-ethylhexyl) phthalate which was attributed to laboratory contamination.

NDMA samples were collected from well OS-28 in August, September, and December 2003 (Table XII). Although Del Mar reported a concentration of 0.012 ug/l in the August primary sample, the result was rejected because instrument calibration procedures did not meet the criterion established by the method for the analysis of samples. Del Mar Analytical did not detect NDMA in the duplicate August sample. Weck Laboratories analyzed the same sample extracts and determined that NDMA was detected in one of the two August samples at an estimated value of 0.0019 ug/l. This sample was originally reported as a non-detect at the reporting limit of 0.002 ug/l.

NDMA samples collected from OS-28 in September 2003 were analyzed by Weck Laboratories. Of the three September samples analyzed, NDMA was identified in one sample at 0.006 ug/l, but the result was biased high due to low recovery of the internal standard. This result was flagged as estimated in this report. In the second September sample, the reported result was rejected due a laboratory spike deficiency. The third September sample result was flagged as non-detected because the reported sample concentration was less than five times the NDMA concentration reported in the method blank.

OS-28 samples collected during December 2003 were analyzed for NDMA by Weck Laboratories and Pacific Analytical. Pacific Analytical reported NDMA at 0.002 ug/l and 0.0036 ug/l in the primary and duplicate samples, respectively. Weck Laboratories reported a concentration of 0.0047 ug/l in the split sample.

All NDMA results reported for OS-28 samples were below the California drinking water action level of 0.01 ug/l.

Due to the difficulty of attaining precision and accuracy at the part per trillion level, analytical procedures for modified method 1625 are under review and additional sampling is planned once an augmented QA/QC plan is in place.

2.2.2.6 Point of Compliance Program

During 2003, Chatsworth Formation point of compliance wells HAR-07, HAR-16, and HAR-17 were monitored for Appendix IX constituents (Table XI). Insufficient water conditions precluded the collection of a full suite of Appendix IX constituents at well HAR-16. Composite samples were prepared for the analysis of VOCs, 1,4-dioxane, and semi-volatile organic samples

collected from discrete depth interval ports 7 through 12 of the FLUTe installed in well HAR-16. All analytical results for Appendix IX samples are discussed in Section 2.2.3 below.

2.2.2.7 Chatsworth Formation Radiochemistry Analyses

During 2003, Chatsworth Formation groundwater samples were collected from select wells for the analysis of gross alpha and gross beta, tritium, gamma-emitting radionuclides, isotopic thorium, and isotopic uranium using EPA Methods 900.0, 906.0, 901.1, 907.0, and 908.0, respectively (Tables IX and X). Beginning in the third quarter 2003, samples were collected for the analysis of additional radionuclides per EPA's drinking water regulations:

- If gross alpha activity exceeded 5 picoCuries per liter (pCi/l), Ra-226 and Ra-228 were analyzed by EPA Methods 903.1 and 904.0, respectively;
- If gross alpha activity exceeded 15 pCi/l, uranium isotopes were analyzed by EPA Method 908.0; and
- If gross beta activity exceeded 50 pCi/l, K-40 and Sr-90 were analyzed by EPA Methods 901.1 and 905.0, respectively.

Results of radiological analyses of Chatsworth Formation groundwater samples collected during 2003 were generally consistent with historic data (Appendix E), with the following exceptions and notation.

Groundwater samples from two wells (RD-29 and RD-34A) exceeded the gross alpha drinking water MCL of 15 pCi/l (Table IX). The sum of radium-226 and radium-228 activities for samples from wells RD-07, RD-24, RD-25, RD-28, and RD-30 was below the drinking water MCL of 5 pCi/l for Ra-226/228 combined (Table IX). Review of historic gross alpha results indicate that gross alpha activity from wells RD-29 and RD-34A periodically exceed the MCL. Results of historic isotopic uranium analyses for wells RD-29 and RD-34A and isotopic uranium analyses conducted in 2003 (Table X) confirm that naturally-occurring uranium and thorium isotopes are present in groundwater samples collected from these and other wells located at the SSFL Facility. The results of specific radioisotopes indicate that the slightly elevated concentrations of gross alpha activity observed in groundwater samples can be attributed primarily to components of the naturally occurring uranium-238 decay series.

None of the gross beta results exceeded the drinking water MCL of 50 pCi/l. None of the tritium results exceeded the drinking water MCL of 20,000 pCi/l (Table IX) and all values were consistent with historical results (Appendix E). Results of 2003 isotopic analyses indicate that naturally-occurring uranium isotopes are present in groundwater samples collected from the SSFL Facility (Table X).

Split samples were collected from wells RD-24, RD-27, RD-33C, and RD-59A for the analysis of gross alpha, gross beta, radium isotopes, tritium, and gamma-emitting radionuclides. Split sample results analyzed by Severn Trent Laboratories of Richland, Washington were consistent with results analyzed by primary laboratory Eberline Services of Richmond, California (Tables IX and X).

The radiochemistry laboratory was able to meet the contract-required minimum detectable activity (MDA) for most radiochemicals. The contract-required MDAs are equal to or less than detection limits prescribed by CCR Title 22 for drinking water. See Section 2.2.1.4 for a detailed discussion of MDAs and MCLs. For a number of samples, the contract-required MDAs could not be met for the following reasons:

- Some of the gross alpha, gross beta, and isotopic uranium MDAs were greater than the required MDA. In all cases, the positive result determined for the radioisotope exceeded both the required and obtained MDAs.
- Some gamma-emitting radioisotopes exceeded contract-required MDAs even after count times in excess of 4200 minutes.
- Interference from the Th-229 analytical tracer prevented the laboratory from reaching the required MDA for Th-230 in first quarter samples from wells RD-07, RS-28, and RD-54A.
- Isotopic thorium MDAs exceeded contract-required MDAs in the second quarter sample collected from well RD-34A.

2.2.2.8 Monitoring of Other Facility Wells

Several Facility wells that are not monitored as part of the LUFT program; the interim corrective action, evaluation monitoring, detection monitoring or point of compliance programs; or that are not perimeter wells, were sampled during 2003 (Tables IV through XI). Semi-annual groundwater samples were collected during 2003 from FSDF-area, Radioactive Materials Handling Facility (RMHF)-area wells, Building 59-area wells, and other Facility wells. VOC, trace metal, perchlorate, and radiochemical results for these samples were within historic ranges (GWRC, 2000; Haley & Aldrich, 2001, 2002a, 2002b, 2003a, 2003b) with the following exceptions:

■ Discrete depth interval samples were collected from multi-level FLUTes installed in wells RD-07, RD-21, RD-23, RD-31, RD-33A, RD-54A, RD-64, and RD-65 (Table IV). Low levels of VOCs (including benzene and toluene) were reported in the FLUTe samples. Many of these compounds were detected in FLUTe samples collected previously (Haley & Aldrich, 2002a, 2003a, 2003b). These compounds have not appeared in groundwater samples collected from these wells using standard procedures described in the Sampling and Analysis Plan. These low level concentrations of toluene and benzene

- have been observed by investigators using FLUTe systems at other sites and are attributed to equipment components (Keller, personal communication, 2003).
- In the third and fourth quarter samples collected from port 2 of the FLUTe installed in FSDF-area well RD-21, cis-1,2-DCE was reported at a maximum concentration of 190 ug/l (Table IV). In samples collected prior to FLUTe installation, the maximum cis-1,2-DCE concentration reported was 21 ug/l in a 1990 sample. The 2003 RD-21 samples were collected from FLUTe port 2 at a depth interval of approximately 105 to 115 feet. The RD-21 FLUTe will next be sampled following completion of the corehole C-8 pumping test.
- Chloroethane and 1,2-dichloroethane were reported at concentrations of 1.2 ug/l and 0.57 ug/l, respectively, in the first quarter groundwater sample from well RD-54B (Table IV). These compounds were not detected previously in RD-54B groundwater, and were not detected in subsequent samples collected during 2003.
- TCE was reported at an estimated concentration of 0.5 ug/l in the third quarter sample collected from well RD-54C (Table IV). This result appeared to be a carry-over contaminant introduced from the third quarter RD-23 sample analyzed immediately prior to RD-54C.
- During 2003, arsenic was detected for the first time in RD-23 groundwater at a maximum concentration of 25 ug/l and increased in RD-54A groundwater from the previous maximum concentration of 3.1 ug/l to a maximum concentration of 43 ug/l (Table VI). The RD-23 samples were collected from FLUTe port 1 at a depth interval of approximately 231 to 241 feet. The RD-54A samples were collected from FLUTe port 2 at a depth interval of approximately 170.5 to 180.5 feet. All results are below the federal primary drinking water MCL of 50 ug/l.
- 2003 samples collected from well RD-15, RMHF-area well RD-34A, and FSDF-area wells RD-23, RD-54A, RD-54B, and RD-54C contained iron and/or manganese at concentrations exceeding secondary drinking water MCLs (Table VI). For each of the FSDF-area wells, the reported concentrations were within historical ranges for groundwater at these wells. Iron concentrations in 2003 samples from wells RD-15 and RD-34A were one order of magnitude larger than previous samples. Iron and manganese are naturally occurring metals that are commonly present in groundwater in excess of the 300 ug/l and 50 ug/l secondary drinking water MCLs, respectively.

Extensive sampling for perchlorate in groundwater has been conducted since 1997. Extensive activities related to characterization of perchlorate in soil and water at SSFL were conducted at SSFL in 2003. Characterization and

remediation activities were conducted in Happy Valley in Area I, and investigation of potential off-site migration of perchlorate was conducted in drainages north and east of the facility (MWH, 2003a, 2003b, 2003d).

Only the results of perchlorate sampling conducted as part of the quarterly groundwater monitoring program, and results of the on-going sampling of well OS-09, are reported herein. Findings related to the comprehensive perchlorate source area investigation are reported in the reference cited above. Sampling of well OS-09 is discussed in Section 2.2.4.

Perchlorate samples were collected from several Chatsworth Formation wells during 2003 (Table VIII). Perchlorate was not detected in samples collected from private off-site wells. Samples from four Facility wells contained perchlorate at concentrations ranging from 3.7 ug/l to 220 ug/l. The California action level for perchlorate is 4 ug/l. The 2003 perchlorate results were consistent with historical results, with the following exception:

Perchlorate was detected below the PQL in discrete depth interval samples collected from the multi-level FLUTe installed in well RD-31 (Table VIII). Estimated perchlorate concentrations were 3.7 ug/l in the sample collected from port 5 at an approximate depth interval of 128 to 138 feet, not detected above the 0.8 ug/l MDL in the sample collected from port 6 at an approximate depth interval of 148 to 158 feet, and 3.8 ug/l in the sample collected from port 7 at an approximate depth interval of 168 to 178 feet. Perchlorate has not been detected in previous groundwater samples collected from RD-31 using standard procedures described in the Sampling and Analysis Plan. RD-31 will next be sampled for perchlorate in the second quarter 2004.

2.2.3 Appendix IX Sampling

During 2003, the seven point of compliance wells (shallow wells SH-04, RS-08, HAR-14, and HAR-15; and Chatsworth Formation wells HAR-07, HAR-16, and HAR-17) were sampled for Appendix IX constituents. Insufficient water conditions precluded the collection of a full suite of Appendix IX constituents at well HAR-16.

2.2.3.1 Data Validation

Results of the second quarter 2003 analyses were subjected to a data validation process in accordance with guidance from the United States Environmental Protection Agency (USEPA) "National Functional Guidelines for Organic Data Review" (EPA540/R-99/008, October 1999), "National Functional Guidelines for Inorganic Data Review" (EPA540/R-01/008, July 2002), and the EPA Method specific protocol criteria, where applicable. A summary of the data validation process is included in Appendix H.

2.2.3.2 Analytical Results

Groundwater samples were collected from seven Facility wells as part of the Appendix IX groundwater monitoring program in 2003. Results for each well are summarized in Table XI and on Figures 21 and 22.

All Appendix IX analytical results for point of compliance wells were within historic ranges with the following exceptions:

- Antimony and sulfide were detected at 6.1 ug/l and 0.15 mg/l, respectively, in the sample collected from shallow well HAR-15. Although antimony has been detected in previous samples from HAR-15 in concentrations ranging up to 3.9 ug/l, the 6.1 ug/l result exceeds the primary drinking water MCL of 6 ug/l. Sulfide has not been detected in previous samples collected from HAR-15. An MCL does not exist for sulfide. Under the current groundwater monitoring program, HAR-15 will next be sampled for inorganics during the second quarter 2004.
- Mercury was detected below the PQL, but above the MDL, at an estimated concentration of 0.000069 mg/l in the sample collected from shallow well SH-04. Mercury has not been detected in previous samples collected from this well. The primary drinking water MCL for mercury is 0.002 mg/l. Under the current groundwater monitoring program, SH-04 will next be sampled for mercury during the second quarter 2004.
- 1,4-Dioxane was detected for the first time at concentrations of 29 ug/l and 5.44 ug/l in samples collected from shallow well SH-04 and Chatsworth Formation well HAR-17, respectively. Detected once in 2001, 1,4-dioxane was reported at 43 ug/l in the composite sample collected from the FLUTe system installed in Chatsworth Formation well HAR-16. The California action level for 1,4-dioxane is 3 ug/l. Under the current groundwater monitoring program, these wells will next be sampled for 1,4-dioxane during the second quarter 2004.
- 1,2,3-Trichloropropane was detected between the PQL and MDL at an estimated concentration of 0.0094 ug/l in the sample collected from shallow well SH-04. This analyte had not been detected previously in SH-04 groundwater samples. The California action level for 1,2,3-trichloropropane is 0.005 ug/l. Verification samples to determine if 1,2,3-trichloropropane is present in groundwater at SH-04 were scheduled for subsequent monitoring events in 2003, but the well was dry when monitored. Verification samples will be scheduled for collection during the first quarter 2004.

NDMA was detected in shallow wells HAR-14, RS-08, and SH-04 and Chatsworth Formation wells HAR-07, HAR-16, and HAR-17 at concentrations ranging from 22 nanograms per liter (ng/l) to 18,000 ng/l. NDMA had been detected previously in groundwater samples collected from each of these wells. The California action level for NDMA is 10 ng/l.

Appendix IX compounds detected above the PQLs in point of compliance wells during the second quarter 2003 were already listed as constituents of concern; no new compounds were detected above the PQLs. 1,2,3-Trichloropropane was detected below the PQL, but above the primary drinking water MCL. Verification samples will be collected during the first quarter 2004 to determine if 1,2,3-trichloropropane is present in SH-04 groundwater. Per the Post-Closure Permits, the point of compliance wells are monitored annually for Appendix IX constituents and will next be sampled during the second quarter 2004.

2.2.4 Perchlorate Characterization Sampling

Weekly sampling of groundwater from well OS-09 was conducted during 2003 beginning July 2. Water samples were submitted each week for the analysis of perchlorate using EPA method 314.0 (Table VIII). Water samples were also submitted weekly for the analysis of general mineral constituents. General mineral constituents included major anions (carbonate, bicarbonate, chloride, and sulfate), major cations (calcium, magnesium, sodium, and potassium), nitrate, electrical conductivity, total dissolved solids, and pH (Table XIII). Water samples collected on July 2, July 17, August 28, September 25, November 6, and December 4 were submitted for analysis of the stable isotopes deuterium and oxygen-18 (Table XII).

OS-09 groundwater samples collected for perchlorate and for the general mineral constituents were submitted to Del Mar Analytical. Water samples for analysis of perchlorate were also submitted to Ceimic Corporation, and on July 31, to American Analytics. Samples collected for deuterium and oxygen-18 were submitted to the University of Ottawa, G.G. Hatch Isotope Laboratories.

Beginning in the fourth quarter 2003, perchlorate and inorganic samples were collected from select wells as described in the Perchlorate Characterization Work Plan (MWH, 2003c). Wells scheduled and sampled for perchlorate characterization during the fourth quarter 2003 are listed below.

Perchlorate Characterization San	npling, Fourth Quarter 2003
Wells Sampled	RD-51B, RD-51C, RD-52B, RD-52C, RD-59A, RD-
	59B, RD-59C, RD-68A, RD-68B, WS-04A, WS-09B,
	OS-02, OS-03, OS-04, OS-05, spring OS-08, OS-09,
	OS-10, OS-21, OS-26
Wells Not Sampled due to	RD-32, RD-36A, RD-36B, RD-36C, RD-36D, RD-
C-1 Corehole Pumping Test	37, RD-38A, RD-38B, RD-39A, RD-39B, RD-43A,
	RD-43B, RD-43C, RD-45A, RD-45B, RD-45C, RD-
	66, RD-71, spring OS-13, OS-15, OS-16, OS-24, OS-
	27
Wells Not Sampled	RD-51A, RD-52A, OS-25
due to Lack of Groundwater	
Wells Not Sampled	RD-70 (pump removed for CFOU investigation)
for Other Reasons	Spring OS-12 (sample point not accessible)
	OS-17 (inoperable)

Inorganic results (Table XIII) did not exceed drinking water MCLs with following exceptions:

- The pH of the RD-68A sample and several OS-09 samples slightly exceeded the upper secondary MCL of 8.5. The RD-68A sample had a pH of 8.72. The maximum pH measured in OS-09 samples was 8.7.
- Total dissolved solids (TDS) results from all samples exceeded the secondary MCL of 500 ug/l except in samples collected from wells RD-59B, RD-68A, RD-68B, and OS-10. TDS values ranged from 410 to 810 ug/l.
- Specific conductance measurements equaled or exceeded the 900 micromhos per centimeter (umhos/cm) secondary MCL in two of the twenty-three OS-09 samples (both at 900 umhos/cm). Samples collected from wells RD-51B, RD-51C, RD-52B, RD-52C, RD-59A, WS-04A, WS-09B, OS-04, OS-05, OS-21, OS-26, and OS-28 and spring OS-08 also exceeded the specific conductance secondary MCL.

Perchlorate was not detected in any of the groundwater samples collected by Boeing from well OS-09 or the other Perchlorate Characterization Work Plan wells (Table VIII). Concentrations of perchlorate have been reported in samples collected by DTSC and Ventura County, but are not reported herein (MWH, 2003d). Results of analyses for the general mineral constituents in groundwater samples collected from well OS-09 indicate the groundwater is sodium-bicarbonate type water (Table XIII). Sodium is the predominant cation in solution and bicarbonate is the predominant anion. Results of analyses for the groundwater samples indicate that the ratio of deuterium to hydrogen expressed as deviation from Vienna Standard Mean Ocean Water (V-SMOW) ranged from -51.0 to -53.8 parts per thousand (per mil) and that the ratio of oxygen-18 to oxygen-16 expressed as deviation from V-SMOW ranged from -7.17 to -7.52 per mil (Table XIII). These data suggest that groundwater collected from OS-09 is not near-surface groundwater or a surface water source.

2.2.5 Results of Fourth Quarter 2003 Verification Sampling

During the fourth quarter 2003, verification samples were collected from detection monitoring wells RD-05B and RD-61, and perimeter well RD-56B. Detection monitoring well RD-39A contained inadequate water for verification sampling during the year; this well will be re-scheduled for the first quarter 2004. Verification samples scheduled from point of compliance well SH-04 for the analysis of 1,2,3-trichloropropane were not collected due to insufficient water volume in the well. Verification procedures include collecting primary and duplicate samples, a split sample, and a field blank at each well. Results for the target wells and analytes are summarized in the following table.

Fourth Qu	arter 2003 Verific	ation Results				
		Monitoring	Concentra	tion (ug/l)		
Well	Constituent(s)	Program	Primary	Duplicate	Split	Field Blank
SH-04	1,2,3- Trichloro- propane	Point of Compliance	Dry			
RD-05B	Methylene chloride	Detection	0.48 U	0.48 U	3 U	1.6 J,L
RD-39A	TCE	Detection	Dry			
RD-56B	TCE	Perimeter	0.35 J	0.36 J	0.2 U	0.26 U
RD-61	Benzene	Detection	0.28 U	0.28 U	0.1 U	0.28 U

U = not detected L = laboratory contaminant

2.2.6 Proposed 2004 Groundwater Monitoring Schedule

Appendix B, Table B-III presents the proposed 2004 groundwater monitoring schedule which complies with monitoring requirements specified in the Post-Closure Permits. The 2003 results indicated that verification sampling be conducted during the first quarter of 2004 to determine if VOCs are present in groundwater at detection monitoring wells RD-13, RD-37, and RD-39A and if 1,2,3-trichloropropane is present in SH-04 groundwater.

The proposed 2004 sampling schedule reflects on-going groundwater monitoring programs as established under the current Facility Post-Closure Permits, Permit Modification, LUFT programs, and voluntary monitoring activities. Boeing is presently working with DTSC on comprehensive review of the Post-Closure Permits. It is anticipated that portions of the Regulated Unit Monitoring Programs, including the Detection Monitoring Program, Evaluation Monitoring Program, Interim Corrective Measures, and Appendix IX, will differ from the schedule presented in Table B-III once permit modifications are implemented.

J = estimated value; analyte detected between method detection limit and reporting limit

3. REMEDIAL SYSTEMS

3.1 Remedial Systems Activities

Remedial systems in operation at the Facility during the 2003 calendar year included two permitted air-stripping units located at Delta and STL-IV and one permitted UV/hydrogen peroxide system at the WS-5 area. The Area I Road and Canyon air-stripping units, and the RD-9 UV/hydrogen peroxide system have been placed on "stand-by" status as part of a Post-Closure Permit modification granted by DTSC, in 2001 (DTSC, 2001). The Alfa air-stripping unit was turned off in March 2001 and the Bravo air-stripping unit was turned off in May 2002, as part of the Chatsworth Formation Operable Unit (CFOU) investigation by Montgomery Watson (2000b; Ogden, 2000). The STL-IV air-stripping unit was turned off in March 2003. The WS-5 Area UV/hydrogen peroxide system had been off since late 2000, but was restarted in August 2003 to treat water pumped from the C-1 corehole as part of a long-term pumping test conducted by MWH. DTSC granted temporary authorization to use the WS-5 system to treat C-1 effluent (DTSC, 2003). Pumping at the C-1 corehole ended on 23 January 2004. Data obtained during the pumping test and recovery period will be presented in a report at a later date by MWH (Boeing, 2003).

Of the 20 shallow and 12 Chatsworth Formation extraction wells at the Facility, only two of the Chatsworth Formation wells (WS-09A and HAR-17) were in operation during 2003. All shallow extraction wells were inactive including wells along Area I Road, Area II Road, near APTF, in STL-IV, and at ECL in support of the Near-Surface Groundwater Investigation (Ogden, 2000). The remediation systems and their associated extraction wells are listed in Tables XIV and XV. Monthly and cumulative extraction volume and VOC mass removal at each permitted system are presented in Appendix G, Figures G-1 to G-8.

Additionally, there are three interim extraction/remediation systems located in Area IV at RMHF, FSDF, and B/059. These systems treat pumped groundwater with granular activated carbon prior to discharge. The FSDF system also uses ion exchange resin in series to treat perchlorate-impacted groundwater prior to discharge. There are five Chatsworth Formation wells, one shallow well, one sump, and one excavated pit associated with the interim systems. The interim systems and their associated extraction wells are listed in Table XVI.

All operating remedial systems are monitored monthly by EnviroSolve Corporation, which completes monthly reports listing routine operational data of all systems, including sample analytical data for treatment system influents and effluents. Samples from remedial system influents and effluents are analyzed for VOCs by EPA Methods 8010B and 8260B. Concentrations of TCE and both isomers of 1,2-DCE, the primary VOCs detected from all permitted systems, are summarized for the year 2003 in Table XVII. In addition to these primary VOCs, concentrations of other chlorinated solvents were occasionally detected in treatment system influent streams. Concentrations of 1,1-dichloroethylene and vinyl chloride were detected in the Delta ASU influent during 2003. During 2003, samples from the Delta and STL-IV influents were also analyzed for perchlorate by modified EPA method 300.0, but none was detected (Table XVII).

Surface water discharge is regulated by National Pollution Discharge Elimination System (NPDES) permit No. CA-0001309. Discharge limits and results of water quality analyses of surface water samples collected at Outfalls 001 and 002 are presented in Appendix G, Tables G-I and G-II.

3.1.1 Permitted Systems

Only the Delta and STL-IV remediation systems were in operation during 2003. The Delta system was in operation the entire year, but the STL-IV system was turned off in March to support the Near-Surface Groundwater Investigation (Ogden, 2000). The Bravo remediation system was shut off in May 2002 and did not operate during the reporting period. The WS-5 Area UV/hydrogen peroxide system was shut off in late 2000, but was restarted in August 2003 to treat water pumped from the C-1 corehole as part of a long-term pumping test conducted by MWH. The Alfa system was shut down in March 2001, also to accommodate the CFOU investigation. Total pumpage from all permitted systems in 2003 was approximately 4.639 million gallons. Monthly water levels and flow rates are listed by well in Table XIV. Monthly and cumulative pumpage volumes are listed by well in Table XV. Routine operational data for each permitted system are presented in the monthly reports from EnviroSolve Corporation (2003a through 2004).

TCE was detected in one secondary effluent sample from the Delta system in December, at a reported concentration of 0.58 ug/l, which is below the drinking water MCL. A subsequent sample collected from the Delta system secondary effluent, indicated that TCE was not present above the reporting limit of 0.5 ug/l. Perchlorate was not detected in any of the influent samples at Delta and STL-IV.

3.1.2 Interim Systems

Interim systems in operation at the Facility during 2003 included the RMHF extraction/treatment system and the B/059 construction/dewatering system, which includes the B/056 pit and the S-2 sump. The FSDF system, with RS-54 as the sole extraction well, was shut off in March to facilitate aquifer testing and to support MWH operations. The total pumpage from all interim systems during 2003 was approximately 407,800 gallons. Monthly and cumulative pumpage volumes are listed by well in Table XVI. Routine operational data for each interim system are presented in the monthly reports from EnviroSolve Corporation (2003a through 2004).

No VOCs or perchlorate were detected in effluent samples collected from the interim systems during 2003. Previous samples from well RS-54 had indicated the presence of perchlorate in shallow groundwater near FSDF. Consequently, the interim treatment system in that area includes two carbon drums used to remove VOCs from the water and ion exchange resin drums to remove perchlorate.

4. REFERENCES

- The Boeing Company, 2003. Letter from Art Lenox, The Boeing Company, to Jose Kou, California Department of Toxic Substances Control, re: "Request for Temporary Authorization for Class 2 Permit Modification, C-1 Pumping Test Effluent Treatment, Santa Susana Field Laboratory, Ventura County, California, Post-Closure Permit Number PC-94/95-3-02 (Boeing, Areas I and III), EPA ID Number CAD093365435." 27 May 2003.
- California Department of Health Services, 2003. "Drinking Water Action Levels: Current." www.dhs.ca.gov/ps/ddwem/chemicals/AL/actionlevels.htm, updated 5 November 2003.
- 3. California Department of Toxic Substances Control (DTSC), 1995. Hazardous Waste Facility Post-Closure Permit, Regional Permit Numbers PC-94/95-3-02 and PC-94/95-3-03." Permits for Areas I and III, and Area II, effective 11 May 1995.
- 4. -----, 2001. Letter from Jose Kou, DTSC, to Steve Lafflam, The Boeing Company, re: "Class 2 Permit Modification of Two Post-Closure Permits—Boeing-Rocketdyne Santa Susana Field Laboratory Areas I and III (EPA ID Number CAD093365435) and Nasa/Boeing Santa Susana Field Laboratory Area II (EPA ID Number CA1800090010)." 9 November 2001.
- 5. ----, 2003. Letter from Jose Kou, DTSC, to Art Lenox, The Boeing Company, re: "Modification of 2003 and 2004 Groundwater Sampling Schedule for Area I, Santa Susana Field Laboratory, EPA ID CAD093365435." 22 December 2003.
- 6. EnviroSolve Corporation, Inc., 2003a. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, December 8, 2002 to January 7, 2003."
- 7. ----, 2003b. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, January 7, 2003 to February 7, 2003."
- 8. ----, 2003c. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, February 8, 2003 to March 7, 2003."
- 9. ----, 2003d. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, March 8, 2003 to April 7, 2003."
- 10. ----, 2003e. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, April 8, 2003 to May 7, 2003."
- 11. ----, 2003f. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, May 8, 2003 to June 7, 2003."

- 12. ----, 2003g. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, June 8, 2003 to July 7, 2003."
- 13. ----, 2003h. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, July 8, 2003 to August 7, 2003."
- 14. ----, 2003i. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, August 8, 2003 to September 7, 2003."
- 15. ----, 2003j. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, September 8, 2003 to October 7, 2003."
- 16. -----, 2003k. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, October 8, 2003 to November 7, 2003."
- 17. ----, 20031. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, November 8, 2003 to December 7, 2003."
- 18. ----, 2004. "Santa Susana Field Laboratory, Groundwater Treatment System, Monthly Monitoring Report, December 8, 2003 to January 7, 2004."
- 19. Federal Register, 2000. "Environmental Protection Agency, 40 CFR Parts 9, 141, and 142, National Primary Drinking Water Regulations; Radionuclides; Final Rule." Federal Register Volume 65, Number 236, pp 76708 76753. 7 December 2000.
- Groundwater Resources Consultants, Inc., 1995a. "Sampling and Analysis Plan, Hazardous Waste Facility Post-Closure Permit PC-94/95-3-02, Area II, Santa Susana Field Laboratory, Rockwell International Corporation, Rocketdyne Division." 5 June 1995.
- 21. ----, 1995b. "Sampling and Analysis Plan, Hazardous Waste Facility Post-Closure Permit PC-94/95-3-03, Areas I and III, Santa Susana Field Laboratory, Rockwell International Corporation, Rocketdyne Division." 5 June 1995.
- 22. ----, 2000. "Annual Groundwater Monitoring Report, Santa Susana Field Laboratory, 1999, Boeing North American, Inc., Rocketdyne Propulsion & Power, Ventura County, California." 28 February 2000.
- 23. Haley & Aldrich, Inc, 2001. "Report on Annual Groundwater Monitoring, 2000, Santa Susana Field Laboratory, Ventura County, California." 28 February 2001.
- 24. ----, 2002a. "Report on Annual Groundwater Monitoring, 2001, Santa Susana Field Laboratory, Ventura County, California." 28 February 2002.
- 25. ----, 2002b. "Report on Appendix IX Groundwater Monitoring, 2001, Santa Susana Field Laboratory, Ventura County, California." 22 March 2002.

- 26. ----, 2003a. "Report on Annual Groundwater Monitoring, 2002, Santa Susana Field Laboratory, Ventura County, California." 28 February 2003.
- 27. ----, 2003b. "Addendum to Report on Annual Groundwater Monitoring, 2002, Santa Susana Field Laboratory, Ventura County, California." 4 March 2003.
- 28. ----, 2003c. "Groundwater Monitoring Quarterly Report, First Quarter 2003, January through March 2003, Santa Susana Field Laboratory, Ventura County, California." 30 May 2003.
- 29. ----, 2003d. "Groundwater Monitoring Quarterly Report, Second Quarter 2003, April through June 2003, Santa Susana Field Laboratory, Ventura County, California." 29 August 2003.
- 30. ----, 2003e. "Groundwater Monitoring Quarterly Report, Third Quarter 2003, July through September 2003, Santa Susana Field Laboratory, Ventura County, California." 26 November 2003.
- 31. Keller, Carl. Personal communication with Haley & Aldrich, Inc. on 24 February 2003.
- 32. Montgomery Watson, 2000a. "Technical Memorandum, Conceptual Site Model, Movement of TCE in the Chatsworth Formation." April 2000.
- 33. -----, 2000b. "Work Plan for Additional Field Investigations, Chatsworth Formation Operable Unit, Santa Susana Field Laboratory, Ventura County, California." October 2000.
- 34. MWH, 2002. "Technical Memorandum, Geologic Characterization of the Eastern Portion of the Santa Susana Field Laboratory, Ventura County, California." February 2002.
- 35. ----, 2003a. "Perchlorate Source Evaluation and Technical Report, Santa Susana Field Laboratory, Ventura County, California." February 2003.
- -----, 2003b. "Northern Drainage Perchlorate Sampling Results Technical Memorandum, Santa Susana Field Laboratory, Ventura County, California." November 2003.
- 37. ----, 2003c. "Near-Surface Groundwater Characterization Report, Santa Susana Field Laboratory, Ventura County, California." November 2003.
- 38. ----, 2003d. "Perchlorate Characterization Work Plan, Revision 1, Santa Susana Field Laboratory, Ventura County, California." December 2003.
- 39. Ogden Environmental and Energy Services Company, Inc., 2000. "RCRA Facility Investigation, Shallow Zone Groundwater Investigation Work Plan, Santa Susana Field Laboratory, Ventura County, California." December 2000.

 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Annual \label{lem:condition} G: \label{lem:condition} Annual \label{lem:condition} Annua$

TABLE I
SUMMARY OF ANNUAL RAINFALL
MEASURED AT THE SANTA SUSANA FIELD LABORATORY, 1960-2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Water Year Ending in	Precipitation (inches)	Water Year Ending in	Precipitation (inches)
1960	10.52	1982	· 12.11
1961	6.18	1983	40.93
1962	24.79	1984	9.50
1963	13.74	1985	9.64
1964	9.96	1986	23.55
1965	16.06	1987	6.27
1966	27.18	1988	17.75
1967	23.99	1989	9.46
1968	19.54	1990	8.38
1969	32.11	1991	15.10
1970	11.81	1992	32.21
1971	16.79	1993	36.23
1972	8.68	1994	12.52
1973	20.69	1995	29.91
1974	16.11	1996	21.81
1975	16.58	1997	15.44
1976	10.99	1998	41.24
1977	13.91	1999	8.84
1978	40.06	2000	12.07
1979	22.96	2001	17.52
1980	28.61	2002	5.70
1981	16.25	2003	25.20

Average Annual Precipitation = 18.05 Inches

NOTE: Precipitation reported annually for the period of October through September.

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
		(feet above MSL)	(feet)	(feet above MSL)	
Shallow Wells		4770.04			
SH-01	01/28/03	1772.84	Dry		
SH-01	04/29/03	1772.84	Dry		
SH-01	08/06/03	1772.84	Dry		
SH-01	11/03/03	1772.84	Dry		
SH-02	01/28/03	1762.76	Dry		
SH-02 _.	04/29/03	1762.76	6.40	1756.36	
SH-02	08/06/03	1762.76	9.90	1752.86	
SH-02	11/03/03	1762.76	Dry		
SH-03	01/28/03	1762.53	Dry		
SH-03	04/28/03	1762.53	6.32	1756.21	
SH-03	08/06/03	1762.53	9.60	1752.93	
SH-03	11/03/03	1762.53	Dry	***	
SH-04	01/28/03	1765.08	Dry		
SH-04	04/28/03	1765.08	7.33	1757.75	
SH-04	08/06/03	1765.08	Dry	****	
SH-04	11/03/03	1765.08	Dry		
SH-05	01/28/03	1762.97	Dry		
SH-05	04/29/03	1762.97	9.17	1753.80	
SH-05	08/06/03	1762.97	Dry		
SH-05	11/03/03	1762.97	Dry		
SH-06	01/28/03	1776.99	Dry		
SH-06	04/29/03	1776.99	10.65	1766.34	
SH-06	08/06/03	1776.99	Dry		
SH-06	11/03/03	1776.99	Dry		
SH-07	01/28/03	1775.11	.Dry		
SH-07 .	04/29/03	1775.11	12.48	1762.63	
SH-07	08/06/03	1775.11	Dry		
SH-07	11/03/03	1775.11	Dry		
SH-08	01/28/03	1763.25	Dry		
SH-0 8	04/29/03	1763.25	7.41	1755.84	
SH-08	08/06/03	1763.25	10.94	1752.31	
SH-08	11/03/03	1763.25	12.00	1751.25	
SH-09	01/28/03	1761.19	Dry		
SH-09	04/29/03	1761.19	6.47	1754.72	
SH-09	08/06/03	1761.19	Dry		
SH-09	11/03/03	1761.19	Dry		
SH-10	01/28/03	1757.69	Dry		
SH-10	04/29/03	1757.69	6.63	1751.06	
SH-10	08/06/03	1757.69	Dry		
SH-10	11/03/03	1757.69	Dry		
SH-11	01/28/03	1756.00	17.06	1738.94	
SH-11	04/29/03	1756.00	8.96	1747.04	
SH-11	08/06/03	1756.00	13.54	1742.46	
SH-11	11/03/03	1756.00	16.28	1739.72	
RS-01	01/27/03	1879.68	Dry	——————————————————————————————————————	
RS-01	04/30/03	1879.68	Dry		
RS-01	08/07/03	1879.68	Dry		
RS-01	11/03/03	1879.68	Drý		

TABLE II SUMMARY OF WATER LEVEL DATA, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
Identifier	Measurement	(feet above MSL)	(feet)	(feet above MSL)	loundes
Shallow Well	s	(icot above moz)	(1001)	(receasore moz)	
RS-02	01/27/03	1901.08	Dry		
RS-02	04/29/03	1901.08	Dry		
RS-02	08/05/03	1901.08	Dry	·	
RS-02	11/04/03	1901.08	Dry		
RS-03	01/28/03	1834.22	Dry		
RS-03	04/29/03	1834.22	18.70	1815.52	
RS-03	08/07/03	1834.22	Dry		
RS-03	11/04/03	1834.22	Dry		
RS-04	01/28/03	1826.56	Dry		
RS-04	04/29/03	1826.56	25.39	1801.17	
RS-04	08/06/03	1826.56	30.65	1795.91	
RS-04	11/04/03	1826.56	Dry		
RS-04 RS-05	01/28/03	1783.73	Dry		
RS-05	04/29/03	1783.73	-		
		1783.73	Dry		
RS-05	08/06/03		Dry	 4762 6E	
RS-05	11/05/03	1783.73	20.08	1763.65	
RS-06	01/28/03	1757.43	Dry	4700.00	
RS-06	04/30/03	1757.43	18.81	1738.62	
RS-06	08/05/03	1757.43	18.22	1739.21	
RS-06	11/06/03	1757.43	18.84	1738.59	
RS-07	01/28/03	1732.27	6.47	1725.80	
RS-07	04/30/03	1732.27	3.69	1728.58	
RS-07	08/05/03	1732.27	4.60	1727.67	
RS-07	11/05/03	1732.27	Dry	1000.00	
RS-08	01/30/03	1821.57	13.29	1808.28	
RS-08	04/29/03	1821.57	8.01	1813.56	
RS-08	08/06/03	1821.57	11.24	1810.33	
RS-08	11/04/03	1821.57	Dry		
RS-09	01/28/03	1735.52	Dry		
RS-09	04/28/03	1735.52	24.38	1711.14	
RS-09	08/05/03	1735.52	Dry		
RS-09	11/03/03	1735.52	Dry		
RS-10	01/28/03	1762.08	15.03	1747.05	
RS-10	04/30/03	1762.08	8.78	1753.30	
RS-10	08/05/03	1762.08	Dry		
RS-10	11/05/03	1762.08	Dry		
RS-11	01/28/03	1790.39	Dry		
RS-11	04/28/03	1790.39	17.48	1772.91	
RS-11	08/07/03	1790.39	Dry		
RS-11	11/06/03	1790.39	Dry	***	
RS-12	01/28/03	1727.48	Dry		
RS-12	04/28/03	1727.48	Dry		
RS-12	08/06/03	1727.48	Dry	***	
RS-12	11/03/03	1727.48	Dry		
RS-13	01/27/03	1644.20	Dry		
RS-13	04/28/03	1644.20	21.55	1622.65	
RS-13	08/05/03	1644.20	Dry		
RS-13	11/04/03	1644.20	Dry		

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Mali	Data of	Reference Point	Depth	Static Water	
Well Identifier	Date of Measurement	Elevation	to Water	Level Elevation	Footnotes
laenuner	Measurement	(feet above MSL)	(feet)	(feet above MSL)	
Shallow Wells					
RS-14	01/28/03	1734.78	·Dry		
RS-14	04/28/03	1734.78	Dry		
RS-14	08/05/03	1734.78	Dry		
RS-14	11/03/03	1734.78	Dry		
RS-15	01/28/03	1764.86	9.81	1755.05	
RS-15	04/28/03	1764.86	7.49	1757.37	
RS-15	08/05/03	1764.86	9.94	1754.92	
RS-15	11/03/03	1764.86	11.65	1753.21	
RS-16	01/27/03	1811.05	Dry	***	
RS-16	04/28/03	1811.05	Dry		
RS-16	08/05/03	1811.05	Dry		
RS-16	11/04/03	1811.05	Dry		
RS-17	01/28/03	1766.52	13.66	1752.86	
RS-17	04/28/03	1766.52	11.12	1755.40	
RS-17	08/05/03	1766.52	13.94	1752.58	
RS-17	11/04/03	1766.52	NM		
RS-18	01/27/03	1802.86	8.64	1794.22	
RS-18	04/28/03	1802.86	5.92	1796.94	
RS-18	08/05/03	1802.86	10.94	1791.92	
RS-18	11/04/03	1802.86	13.99	1788.87	
RS-19	01/28/03	1812.42	Dry		
RS-19	04/30/03	1812.42	8.37	1804.05	
RS-19	08/06/03	1812.42	Dry		
RS-19	11/04/03	1812.42	Dry		
RS-20	01/28/03	1823.77	Dry		
RS-20	04/29/03	1823.77	9.44	1814.33	
RS-20	08/06/03	1823.77	13.63	1810.14	
RS-20	11/04/03	1823.77	19.93	1803.84	
RS-21	01/28/03	1767.36	Dry		
RS-21	04/29/03	1767.36	Dry		
RS-21	08/06/03	1767.36	14.31	1753.05	
RS-21	11/03/03	1767.36	Dry		
RS-22	01/28/03	1771.23	Dry		
RS-22	04/29/03	1771.23	30.18	1741.05	
RS-22	08/06/03	1771.23	29.83	1741.40	
RS-22	11/03/03	1771.23	Dry		
RS-23	01/27/03	1887.25	Dry		
RS-23	04/28/03	1887.25	Dry		
RS-23	08/05/03	1887.25	Dry		
RS-23	11/04/03	1887.25	Dry	4	
RS-24	01/30/03	1809.24	Dry		
RS-24	04/28/03	1809.24	Dry		
RS-24	08/07/03	1809.24	Dry		
RS-24	11/03/03	1809.24	Dry	****	
RS-25	02/05/03	1862.71	Dry		
	04/29/03	1862.71	13.62	1849.09	
RS-25					
RS-25 RS-25	08/06/03	1862.71	14.27	1848.44	

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point	Depth	Static Water	
Identifier	Measurement	Elevation	to Water	Level Elevation	Footnotes
		(feet above MSL)	(feet)	(feet above MSL)	
Shallow Wells RS-27	01/27/03	1804.78	Dry		
RS-27	04/28/03	1804.78	Dry		
RS-27	08/07/03	1804.78	Dry		
RS-27	11/04/03 01/27/03	1804.78	Dry		
RS-28		1768.59	Dry		
RS-28	04/30/03	1768.59	Dry		
RS-28	08/07/03	1768.59 1768.59	Dry		
RS-28	11/04/03		Dry		
RS-29	01/28/03	1833.09	Dry		
RS-29	04/29/03	1833.09	Dry	4-5-4	
RS-29	08/06/03	1833.09	Dry		
RS-29	11/03/03	1833.09	Dry		
RS-30	01/27/03	1909.01	Dry	4000.00	
RS-30	04/28/03	1909.01	19.98	1889.03	
RS-30	08/05/03	1909.01	20.08	1888.93	
RS-30	11/04/03	1909.01	Dry		
RS-31	01/27/03	1909.03	Dry		
RS-31	04/28/03	1909.03	15.86	1893.17	
RS-31	08/05/03	1909.03	17.13	1891.90	
RS-31	11/04/03	1909.03	Dry	•••	
RS-32	01/27/03	1908.99	16.20	1892.79	
RS-32	04/28/03	1908.99	12.47	1896.52	
RS-32	08/05/03	1908.99	15.22	1893.77	
RS-32	11/04/03	1908.99	Dry		
RS-54	01/27/03	1846.66	30.27	1816.39	(P)
RS-54	04/28/03	1846.66	29.64	1817.02	
RS-54	08/05/03	1846.66	30.53	1816.13	
RS-54	11/04/03	1846.66	30.77	1815.89	
ES-01	02/03/03	1782.20	Dry	***	(**)
ES-01	05/03/03	1782.20	19.71	1762.49	(**)
ES-01	08/06/03	1782.20	20.18	1762.02	
ES-01	11/05/03	1782.20	18.60	1763.60	
ES-02	01/28/03	1814.60	Dry	-m-	
ES-02	04/29/03	1814.60	Dry		
ES-02	08/06/03	1814.60	Dry	***	
ES-02	11/04/03	1814.60	Dry		
ES-03	01/28/03	1783.39	Dry		
ES-03	05/06/03	1783.39	Dry	***	(*)
ES-03	08/06/03	1783.39	21.43	1761.96	
ES-03	11/05/03	1783.39	19.71	1763.68	
ES-04	01/28/03	1817.24	Dry		
ES-04	04/29/03	1817.24	9.62	1807.62	
ES-04	08/06/03	1817.24	11.57	1805.67	
ES-04	11/04/03	1817.24	Dry		
ES-05	01/28/03	1818.13	Dry		
ES-05	04/29/03	1818.13	8.20	1809.93	
ES-05	08/06/03	1818.13	11.26	1806.87	
ES-05	11/04/03	1818.13	17.94	1800.19	

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point	Depth	Static Water	
Identifier	Measurement	Elevation	to Water	Level Elevation	Footnotes
		(feet above MSL)	(feet)	(feet above MSL)	
Shallow Wells	·				
ES-06	02/03/03	1825.41	Dry		(**)
ES-06	05/03/03	1825.41	12.09	1813.32	(**)
ES-06	08/06/03	1825.41	15.00	1810.41	
ES-06	11/04/03	1825.41	17.32	1808.09	
ES-07	01/28/03	1826.53	Dry		
ES-07	05/06/03	1826.53	Dry		(*)
ES-07	08/06/03	1826.53	Dry		
ES-07	11/04/03	1826.53	Dry		
ES-08	01/28/03	1826.60	Dry		
ES-08	04/29/03	1826.60	Dry		
ES-08	08/06/03	1826.60	Dry		
ES-08	11/04/03	1826.60	Dry	*	
ES-09	01/28/03	1827.80	Dry		
ES-09	04/29/03	1827.80	10.64	1817.16	
ES-09	08/06/03	1827.80	Dry		
ES-09	11/04/03	1827.80	Dry		
ES-10	01/28/03	1829.46	Dry		
ES-10	04/29/03	1829.46	12.02	1817.44	
ES-10	08/06/03	1829.46	20.72	1808.74	
ES-10	11/04/03	1829.46	20.89	1808.57	
ES-11	01/30/03	1835.07	Dry	***	
ES-11	04/29/03	1835.07	19.72	1815.35	
ES-11	08/07/03	1835.07	Dry		
ES-11	11/04/03	1835.07	Dry		
ES-12	01/27/03	1838.19	19.12	1819.07	
ES-12	04/29/03	1838.19	13.68	1824.51	
ES-12	08/05/03	1838.19	23.81	1814.38	
ES-12	11/04/03	1838.19	24.04	1814.15	
ES-13	01/28/03	1782.58	21.19	1761.39	
ES-13	04/29/03	1782.58	17.18	1765.40	
ES-13	08/06/03	1782.58	17.24	1765.34	
ES-13	11/05/03	1782.58	14.50	1768.08	
ES-14	02/04/03	1728.69	Dry		(*)
ES-14	05/06/03	1728.69	Dry		(*)
ES-14	08/06/03	1728.69	Dry		•
ES-14	11/04/03	1728.69	Dry		(*)
ES-15	01/28/03	1730.21	Dry	*	
ES-15	04/28/03	1730.21	Dry		
ES-15	08/05/03	1730.21	Dry		
ES-15	11/03/03	1730.21	Dry		
ES-16	01/28/03	1737.90	Dry		
ES-16	04/28/03	1737.90	24.26	1713.64	
ES-16	08/05/03	1737.90	Dry		
ES-16	11/03/03	1737.90	Dry		
ES-17	02/04/03	1739.31	24.87	1714.44	(*)
ES-17	05/06/03	1739.31	24.05	1715.26	(*)
ES-17	08/04/03	1739.31	21.04	1718.27	` '
ES-17	11/03/03	1739.31	28.15	1711.16	
	· · · · · · · · · ·				

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point	Depth	Static Water	
Identifier	Measurement	Elevation	to Water	Level Elevation	Footnotes
Shallow Wells		(feet above MSL)	(feet)	(feet above MSL)	
	01/28/03	4770.05			
ES-18		1770.25	Dry Dry	*****	
ES-18	04/29/03	1770.25	Dry		
ES-18	08/06/03	1770.25	Dry		
ES-18	11/03/03	1770.25	Dry		
ES-19	01/28/03	1769.44	Dry		
ES-19	04/29/03	1769.44	Dry		
ES-19	08/06/03	1769.44	Dry		
ES-19	11/03/03	1769.44	Dry		
ES-20	01/28/03	1770.58	Dry		
ES-20	04/29/03	1770.58	Dry		
ES-20	08/06/03	1770.58	Dry		
ES-20	11/03/03	1770.58	Dry		
ES-21	02/03/03	1769.62	31.13	1738.49	(**)
ES-21	05/03/03	1769.62	28.89	1740.73	(**)
ES-21	08/06/03	1769.62	29.27	1740.35	• •
ES-21	11/06/03	1769.62	31.10	1738.52	
ES-22	02/04/03	1770.93	27.90	1743.03	(*)
ES-22	05/06/03	1770.93	25.34	1745.59	(*)
ES-22	08/06/03	1770.93	30.34	1740.59	()
ES-22	11/03/03	1770.93	12.22	1758.71	
ES-23	02/04/03	1760.73	12.64	1748.09	(*)
ES-23	05/06/03	1760.73	12.58	1748.15	(*)
ES-23	08/05/03	1760.73	11.47	1749.26	()
ES-23	11/06/03	1760.73	12.41	1748.32	
ES-24	02/03/03	1728.67	Dry		(**)
ES-24	05/03/03	1728.67	21.48	1707.19	(**)
ES-24	08/06/03	1728.67	26.94	1701.73	()
ES-24	11/03/03	1728.67	Dry	1701.75	
ES-25	01/28/03	1737.78	Dry		
ES-25	04/28/03	1737.78			
ES-25	08/05/03	1737.78	Dry		
ES-25	11/03/03	1737.78	Dry	***	
ES-26	02/04/03	1748.01	Dry 28.76	1719.25	(*)
ES-26	05/06/03	1748.01	28.14	1719.87	(*) (*)
ES-26	08/04/03				(*)
		1748.01	20.46	1727.55	
ES-26	11/03/03	1748.01	28.27	1719.74	(+)
ES-27	02/04/03	1740.67	28.82	1711.85	(*)
ES-27	05/06/03	1740.67	27.83	1712.84	(*)
ES-27	08/04/03	1740.67	21.72	1718.95	
ES-27	11/03/03	1740.67	29.05	1711.62	
ES-28	01/28/03	1759.15	10.18	1748.97	
ES-28	04/28/03	1759.15	9.16	1749.99	
ES-28	08/05/03	1759.15	10.38	1748.77	
ES-28	11/03/03	1759.15	11.43	1747.72	
ES-29	01/28/03	1760.47	11.06	1749.41	
ES-29	04/28/03	1760.47	9.88	1750.59	
ES-29	08/05/03	1760.47	11.18	1749.29	
ES-29	11/03/03	1760.47	12.22	1748.25	

TABLE II SUMMARY OF WATER LEVEL DATA, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
Shallow Wells	~	(feet above MSL)	(feet)	(feet above MSL)	
ES-30	02/04/03	1759.51	14.65	1744.86	(*)
ES-30	05/06/03	1759.51	15.49	1744.02	(*)
ES-30	08/05/03	1759.51	11.73	1747.78	()
ES-30	11/06/03	1759.51	12.50	1747.70	
ES-31	01/30/03	1787.01	19.57	1767.44	
ES-31	04/28/03	1787.01	13.11	1773.90	
				1769.38	
ES-31	08/07/03	1787.01	17.63 20.98		
ES-31	11/06/03 01/28/03	1787.01 1740.65	~	1766.03	
ES-32			Dry	4700 40	
ES-32	04/28/03	1740.65	11.53	1729.12	
ES-32	08/04/03	1740.65	19.66	1720.99	
ES-32	11/03/03	1740.65	Dry		
HAR-02	01/27/03	1886.38	Dry	4050.04	
HAR-02	05/02/03	1886.38	28.07	1858.31	
HAR-02	08/07/03	1886.38	Dry		
HAR-02	11/04/03	1886.38	Dry		
HAR-03	01/27/03	1875.48	21.23	1854.25	
HAR-03	04/29/03	1875.48	16.88	1858.60	
HAR-03	08/07/03	1875.48	18.92	1856.56	
HAR-03	11/04/03	1875.48	21.63	1853.85	
HAR-04	02/04/03	1873.40	20.37	1853.03	(*)
HAR-04	04/29/03	1873.40	16.72	1856.68	(*)
HAR-04	08/05/03	1873.40	19.39	1854.01	
HAR-04	11/04/03	1873.40	21.47	1851.93	
HAR-09	01/30/03	1820.62	13.69	1806.93	
HAR-09	04/29/03	1820.62	7.56	1813.06	
HAR-09	08/06/03	1820.62	11.88	1808.74	
HAR-09	11/04/03	1820.62	14.90	1805.72	
HAR-11	01/30/03	1827.90	11.17	1816.73	
HAR-11	04/29/03	1827.90	10.24	1817.66	
HAR-11	08/06/03	1827.90	9.81	1818.09	
HAR-11	11/04/03	1827.90	12.71	1815.19	
HAR-12	01/30/03	1796.73	14.04	1782.69	•
HAR-12	04/29/03	1796.73	9.21	1787.52	
HAR-12	08/06/03	1796.73	11.89	1784.84	
HAR-12	11/04/03	1796.73	14.55	1782.18	
HAR-13	01/30/03	1801.18	18.47	1782.71	
HAR-13	04/29/03	1801.18	13.75	1787.43	
HAR-13	08/06/03	1801.18	15.86	1785.32	
HAR-13	11/04/03	1801.18	17.97	1783.21	
HAR-14	01/30/03	1797.02	14.69	1782.33	
HAR-14	04/29/03	1797.02	10.85	1786.17	
HAR-14	08/06/03	1797.02	12.72	1784.30	
HAR-14	11/04/03	1797.02	14.49	1782.53	
HAR-15	01/30/03	1809.69	19.54	1790.15	
HAR-15	04/29/03	1809.69	14.06	1795.63	
HAR-15	08/06/03	1809.69	14.44	1795.25	
HAR-15	11/04/03	1809.69	17.00	1792.69	

TABLE II SUMMARY OF WATER LEVEL DATA, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point	Depth	Static Water	
Identifier	Measurement	Elevation	to Water	Level Elevation	Footnotes
identities	Weasurement	(feet above MSL)	(feet)	(feet above MSL)	
Shallow Well	s				
HAR-27	01/28/03	1719.39	26.42	1692.97	
HAR-27	04/30/03	1719.39	25.38	1694.01	
HAR-27	08/06/03	1719.39	26.45	1692.94	
HAR-27	11/05/03	1719.39	27.00	1692.39	
HAR-28	01/28/03	1720.17	27.86	1692.31	
HAR-28	04/30/03	1720.17	24.05	1696.12	
HAR-28	08/06/03	1720.17	25.29	1694.88	
HAR-28	11/05/03	1720.17	26.59	1693.58	
HAR-29	01/28/03	1724.13	32.21	1691.92	
HAR-29	04/30/03	1724.13	26.08	1698.05	
HAR-29	08/06/03	1724.13	25.49	1698.64	
HAR-29	11/05/03	1724.13	28.50	1695.63	-
HAR-30	01/30/03	1806.47	. Dry		
HAR-30	04/29/03	1806.47	13.49	1792.98	
HAR-30	08/06/03	1806.47	13.91	1792.56	
HAR-30	11/04/03	1806.47	16.65	1789.82	
HAR-31	01/30/03	1812.45	24.23	1788.22	
HAR-31	04/29/03	1812.45	18.34	1794.11	
HAR-31	08/06/03	1812.45	18.23	1794.22	
HAR-31	11/04/03	1812.45	21.28	1791.17	
HAR-32	01/28/03	1736.58	34.80	1701.78	
HAR-32	04/28/03	1736.58	19.37	1717.21	
HAR-32	08/05/03	1736.58	21.71	1714.87	
HAR-32	11/03/03	1736.58	32.43	1704.15	
HAR-33	01/28/03	1744.66	30.60	1714.06	
HAR-33	04/28/03	1744.66	20.41	1724.25	
HAR-33	08/04/03	1744.66	22.02	1722.64	
HAR-33	11/03/03	1744.66	29.13	1715.53	
HAR-34	01/28/03	1751.17	Dry		
HAR-34	04/28/03	1751.17	18.63	1732.54	
HAR-34	08/04/03	1751.17	21.21	1729.96	
HAR-34	11/03/03	1751.17	Dry		

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
	F	(feet above MSL)	(feet)	(feet above MSL)	
	Formation Wells	1025.00	207.77	1728.12	
RD-01	01/27/03	1935.89			/#\\
RD-01	05/06/03	1935.89	201.33	1734.56	(*)
RD-01	08/05/03	1935.89	206.20	1729.69	***
RD-01	11/04/03	1935.89	204.47	1731.42	(*)
RD-02	02/04/03	1873.92	172.32	1701.60	(*)
RD-02	05/06/03	1873.92	170.79	1703.13	(*)
RD-02	08/06/03	1873 92	171.34	1702.58	
RD-02	11/06/03	1873.92	171.15	1702.77	
RD-03	01/28/03	1743.50	19.71	1723.79	
RD-03	04/30/03	1743 50	14.27	1729.23	
RD-03	08/05/03	1743.50	13.00	1730.50	
RD-03	11/05/03	1743.50	15.57	1727.93	
RD-04	01/30/03	1883.85	UTM		
RD-04	04/29/03	1883.85	UTM		
RD-04	08/06/03	1883.85	340.76		
RD-04	11/04/03	1883.85	337.15		
RD-05A	01/27/03	1704.66	98.89	1605.77	
RD-05A	04/28/03	1704.66	91.85	1612.81	
RD-05A	08/05/03	1704.66	91.08	1613.58	
RD-05A	11/04/03	1704.66	94.46	1610.20	
RD-05B	01/27/03	1705.89	77.64	1628.25	
RD-05B	04/28/03	1705.89	78.15	1627.74	
RD-05B	08/05/03	1705.89	78.27	1627.62	
RD-05B	11/04/03	1705.89	78.24	1627.65	
RD-05C	01/27/03	1705.25	63.10	1642.15	
RD-05C	04/28/03	1705.25	62.77	1642.48	
RD-05C	08/05/03	1705.25	62.66	1642.59	
RD-05C	11/04/03	1705.25	62.13	1643.12	
RD-06	01/27/03	1617.21	50.89	1566.32	
RD-06	04/28/03	1617.21	48.95	1568.26	
RD-06 RD-06	08/05/03	1617.21	46.95 49.67	1567.54	
RD-06	11/04/03	1617.21	49.67 48.55	1568.66	
RD-06	02/05/03		40.00	1000.00	(1)
RD-07 RD-07	04/28/03	1812.82 1812.82			(1) (1)
RD-07 RD-07		1812.82			(1) (1)
	08/05/03				(1)
RD-07	11/04/03	1812.82	10.24	4745 O4	(1)
RD-08	01/28/03	1763.38	18.34	1745.04	
RD-08	04/28/03	1763.38	8.80	1754.58	
RD-08	08/06/03	1763.38	10.70	1752.68	
RD-08	11/03/03	1763.38	13.36	1750.02	/#\
RD-09	02/04/03	1768.20	32.95	1735.25	(*)
RD-09	05/06/03	1768.20	33.05	1735.15	(*)
RD-09	08/06/03	1768.20	29.85	1738.35	***
RD-09	11/03/03	1768.20	35.41	1732.79	(*)
RD-10	02/05/03	1904.43			(1)
RD-10	04/29/03	1904.43			(1)
RD-10	08/05/03	1904.43			(1)
RD-10	11/04/03	1904.43			(1)

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Footnotes
Chatsworth I	Formation Wells	(reet above wor)	(leet)	(reet above moz)	****
RD-11	01/28/03	1762.65	36.44	1726.21	
RD-11	04/29/03	1762.65	21.19	1741.46	
RD-11	08/06/03	1762.65	15.49	1747.16	
RD-11	11/03/03	1762.65	17.02	1745.63	
RD-12	01/28/03	1762.62	22.72	1739.90	
RD-12	04/29/03	1762.62	15.02	1747.60	
RD-12	08/06/03	1762.62	19.55	1743.07	
RD-12	11/03/03	1762.62	23.84	1738.78	
RD-12	01/27/03	1840.27	57.16	1783.11	·- -
RD-13	04/28/03	1840.27	58.08	1782.19	
RD-13	08/05/03	1840.27	58.93	1781.34	
RD-13	11/04/03	1840.27	59.85	1780.42	
	02/25/03			1746.82	
RD-14 RD-14	04/29/03	1824.29 1824.29	77.47 78.31	1745.82 1745.98	
RD-14 RD-14	08/06/03			1745.43	
		1824.29	78.86		
RD-14	11/05/03	1824.29	79.82	1744,47	
RD-15	01/30/03	1817.70	58.99	1758.71	
RD-15	04/29/03	1817.70	56.41	1761.29	
RD-15	08/07/03	1817.70	56.11	1761.59	
RD-15	11/05/03	1817.70	58.00	1759.70	
RD-16	01/30/03	1808.99	50.33	1758.66	
RD-16	04/28/03	1808.99	47.01	1761.98	
RD-16	08/07/03	1808.99	48.54	1760.45	
RD-16	11/03/03	1808.99	51.46	1757.53	
RD-17	02/20/03	1836.30	27.17	1809.13	
RD-17	04/29/03	1836.30	25.49	1810.81	
RD-17	08/07/03	1836.30	25.98	1810.32	
RD-17	11/04/03	1836.30	27.84	1808.46	
RD-18	01/27/03	1839.49	88.74	1750.75	
RD-18	04/29/03	1839.49	89.11	1750.38	
RD-18	08/06/03	1839.49	89.25	1750.24	
RD-18	11/04/03	1839.49	90.24	1749.25	
RD-19	02/05/03	1853.13	83.66	1769.47	
RD-19	04/29/03	1853.13	81.15	1771.98	
RD-19	08/06/03	1853.13	79.51	1773.62	
RD-19	11/04/03	1853.13	81.00	1772.13	
RD-20	01/28/03	1819.72	44.87	1774.85	
RD-20	04/28/03	1819.72	43.53	1776.19	
RD-20	08/05/03	1819.72	43.62	1776.10	
RD-20	11/04/03	1819.72	44.93	1774.79	
RD-21	02/05/03	1866.96			(1)
RD-21	05/01/03	1866.96			(1)
RD-21	08/05/03	1866.96			(1)
RD-21	11/04/03	1866.96			(1)
RD-22	02/05/03	1853.41			(1)
RD-22	04/28/03	1853.41			(1)
RD-22	08/05/03	1853.41			(1)
RD-22	11/04/03	1853.41			(1)

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
		(feet above MSL)	(feet)	(feet above MSL)	
	Formation Wells				
RD-23	02/05/03	1838.19			(1)
RD-23	05/01/03	1838.19			(1)
RD-23	08/05/03	1838.19			(1)
RD-23	11/04/03	1838.19			(1)
RD-24	02/04/03	1809.93	116.67	1693.26	(*)
RD-24	05/06/03	1809.93	121.54	1688.39	(*) (P)
RD-24	08/07/03	1809.93	48.39	1761. 54	
RD-24	11/06/03	1809.93	89.51	1720.42	
RD-25	02/04/03	1810.76	138.43	1672.33	(*)
RD-25	05/06/03	1810.76	144.12	1666.64	(*) (P)
RD-25	08/07/03	1810.76	84.23	1726.53	
RD-25	11/13/03	1810.76	77.52	1733.24	
RD-26	01/28/03	1880.39	115.49	1764.90	
RD-26	05/02/03	1880.39	114.72	1765.67	•
RD-26	08/07/03	1880.39	113.43	1766.96	
RD-26	11/05/03	1880.39	115.38	1765.01	
RD-27	02/20/03	1841.67	57.35	1784.32	
RD-27	05/14/03	1841.67	54.33	1787.34	
RD-27	08/04/03	1841.67	UTM		
RD-27	11/14/03	1841.67	55.61	1786.06	
RD-28	02/04/03	1810.92	124.25	1686.67	(*)
RD-28	05/06/03	1810.92	130.47	1680.45	(*) (P)
RD-28	08/04/03	1810.92	UTM	1000.43	()(")
RD-28	11/11/03	1810.92	59.67	1751.25	
RD-29	01/27/03	1806.29	18.75	1787.54	
RD-29	04/28/03	1806.29	17.27	1789.02	
RD-29	08/07/03	1806.29	16.67	1789.62	
RD-29 RD-29		1806.29			
RD-29	11/04/03 01/27/03	1768.69	17.95 29.34	1788.34 1739.35	
RD-30 RD-30	04/30/03	1768.69	20.08	1748.61 1747.89	
RD-30 RD-30	08/07/03	1768.69	20.80	1747.89	
	11/04/03	1768.69	34.41	1134.20	(1)
RD-31	02/05/03	1945.02			(1)
RD-31	05/01/03	1945.02			(1)
RD-31	08/05/03	1945.02			(1)
RD-31	11/06/03	1945.02	20.00	1777 OC	(1)
RD-32	01/27/03	1808.47	30.82	1777.65	
RD-32	04/28/03	1808.47	27.34	1781.13	
RD-32	08/05/03	1808.47	29.13	1779.34	
RD-32	11/03/03	1808.47	30.85	1777.62	
RD-33A	02/05/03	1792.97			(1)
RD-33A	04/28/03	1792.97			(1)
RD-33A	08/05/03	1792.97			(1)
RD-33A	11/04/03	1792.97			(1)
RD-33B	01/27/03	1793.21	288.22	1504.99	
RD-33B	04/28/03	1793.21	288.28	1504.93	
RD-33B	08/05/03	1793.21	288.69	1504.52	
RD-33B	11/04/03	1793.21	287.71	1505.50	

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
Chatawarth I	Formation Wells	(feet above MSL)	(feet)	(feet above MSL)	
RD-33C	02/10/03	1793.54	289.76	1503.78	
RD-33C	04/28/03	1793.54	289.04	1504.50	
RD-33C	08/05/03	1793.54	287.90	1505.64	
RD-33C	11/04/03	1793.54	288.53	1505.01	
RD-34A	01/27/03	1761.83	50.12	1711.71	
RD-34A	04/30/03	1761.83	41.49	1720.34	
RD-34A	08/07/03	1761.83	43.33	1718.50	
RD-34A	11/04/03	1761.83	50.44	1711.39	
RD-34B	01/27/03	1762.51	59.69	1702.82	
RD-34B	04/30/03	1762.51	50.70	1711.81	
RD-34B	08/07/03	1762.51	50.15	1712.36	
RD-34B	11/04/03	1762.51	70.51	1692.00	
RD-34C	01/27/03	1762.60	19.72	1742.88	
RD-34C	04/30/03	1762,60	19.08	1743.52	
RD-34C	08/07/03	1762.60	15.35	1747.25	
RD-34C	11/04/03	1762.60	17.16	1745.44	
RD-35A	01/28/03	1906.68	86.87	1819.81	
RD-35A	04/29/03	1906.68	86.41	1820.27	
RD-35A	08/05/03	1906.68	86.46	1820.22	
RD-35A	11/04/03	1906.68	Dry		**
RD-35B	01/27/03	1905.65	85.71	1819.94	
RD-35B	04/29/03	1905.65	85.40	1820.25	
RD-35B	08/05/03	1905.65	85.41	1820.24	
RD-35B	11/04/03	1905.65	132.55	1773.10	**
RD-36A	01/27/03	1913.09	Dry		(C)
RD-36A	04/28/03	1913.09	Dry		(C)
RD-36A	08/05/03	1913.09	Dry		(C)
RD-36A	11/04/03	1913.09	Dry		(C)
RD-36B	01/27/03	1915.26	140.41	1774.85	(0)
RD-36B	04/28/03	1915.26	142.12	1773.14	
RD-36B	08/05/03	1915.26	142.12	1773.14	
			143. 4 6 144.63		
RD-36B	11/04/03	1915.26		1770.63	
RD-36C	01/27/03	1913.82	197.37	1716.45	
RD-36C	04/28/03	1913.82	197.38	1716.44	
RD-36C	08/05/03	1913.82	197.81	1716.01	
RD-36C	11/04/03	1913.82	198.52	1715.30	
RD-36D	01/27/03	1920.08	365.03	1555.05	
RD-36D	04/28/03	1920.08	364.92	1555.16	
RD-36D	08/05/03	1920.08	364.77	1555.31	
RD-36D	11/04/03	1920.08	365.47	1554.61	
RD-37	01/27/03	1870.01	325.06	1544.95	
RD-37	04/30/03	1870.01	325.61	1544.40	
RD-37	08/07/03	1870.01	321.99	1548.02	
RD-37	11/06/03	1870.01	321.15	1548.86	
RD-38A	02/13/03	1878.92	106.84	1772.08	
RD-38A	05/02/03	1878.92	108.03	1770.89	
RD-38A	08/05/03	1878.92	109.46	1769.46	
RD-38A	11/04/03	1878.92	111.75	1767.17	**

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
Chatawarth	Formation Wells	(feet above MSL)	(feet)	(feet above MSL)	
RD-38B	01/27/03	1881.45	327.36	1554.09	
RD-38B	04/28/03	1881.45	326.62	1554.83	
	08/05/03		326.93	1554.52	
RD-38B	11/04/03	1881.45			**
RD-38B	01/27/03	1881.45	328.16	1553.29	
RD-39A		1960.23	152.67	1807.56	
RD-39A	04/28/03	1960.23	152.33	1807.90	
RD-39A	08/04/03	1960.23	152.64	1807.59	
RD-39A	11/03/03	1960.23	Dry		
RD-39B	01/27/03	1959.48	291.58	1667.90	
RD-39B	04/28/03	1959.48	UTM		
RD-39B	08/04/03	1959.48	UTM		
RD-39B	11/03/03	1959.48	293.50	1665.98	
RD-40	01/28/03	1972.02	285.54	1686.48	
RD-40	04/30/03	1972.02	285.65	1686.37	
RD-40	08/05/03	1972.02	285.34	1686.68	(C)
RD-40	11/05/03	1972.02	285.01	1687.01	(C)
RD-41A	01/28/03	1774.48	35.41	1739.07	
RD-41A	04/30/03	1774.48	25.59	1748.89	
RD-41A	08/05/03	1774.48	32.90	1741.58	
RD-41A	11/05/03	1774.48	48.08	1726.40	
RD-41B	01/28/03	1774.71	125.61	1649.10	
RD-41B	04/30/03	1774.71	116.84	1657.87	
RD-41B	08/05/03	1774.71	116.84	1657.87	
RD-41B	11/05/03	1774.71	129.32	1645.39	
RD-41C	01/28/03	1773.73	148.30	1625.43	
RD-41C	04/30/03	1773.73	144.00	1629.73	
RD-41C	08/05/03	1773.73	141.15	1632.58	
RD-41C	11/05/03	1773.73	143.83	1629.90	
RD-410	01/28/03	1945.46	53.65	1891.81	
RD-42 RD-42	04/29/03	1945.46 1945.46	53.65 50.74	1894.72	
RD-42 RD-42	08/05/03				
RD-42 RD-42		1945.46	47.30 50.10	1898.16	
	11/06/03	1945.46	50.19	1895.27	
RD-43A	01/27/03	1680.16	52.73	1627.43	
RD-43A	04/28/03	1680.16	42.63	1637.53	
RD-43A	08/05/03	1680.16	49.32	1630.84	
RD-43A	11/03/03	1680.16	52.48	1627.68	
RD-43B	01/27/03	1680.21	94.62	1585.59	
RD-43B	04/28/03	1680.21	92.59	1587.62	
RD-43B	08/05/03	1680.21	93.76	1586.45	
RD-43B	11/03/03	1680.21	95.14	1585.07	
RD-43C	01/27/03	1679.31	98.47	1580.84	•
RD-43C	04/28/03	1679.31	96.77	1582.54	
RD-43C	08/05/03	1679.31	97.55	1581.76	
RD-43C	11/03/03	1679.31	98.82	1580.49	
RD-44	01/28/03	2035.92	413.55	1622.37	
RD-44	04/30/03	2035.92	413.04	1622.88	
RD-44	08/06/03	2035.92	412.35	1623.57	
RD-44	11/04/03	2035.92	412.18	1623.74	

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
Identifier	Measurement	(feet above MSL)	(feet)	(feet above MSL)	1 00010103
Chatsworth F	ormation Wells	(icct above moz)	(1000)	(rect dbote mol)	
RD-45A	01/27/03	1841.59	UTM		
RD-45A	04/29/03	1841.59	UTM		
RD-45A	08/05/03	1841.59	UTM		
RD-45A	11/05/03	1841.59	UTM		
RD-45/R	01/27/03	1840.09	308.12	1531.97	
RD-45B	04/29/03	1840.09	299.27	1540.82	
RD-45B	08/05/03	1840.09	298.63	1541.46	
RD-45B	11/05/03	1840.09	295.28	1544.81	
RD-45C	01/27/03	1835.74	299.61	1536.13	
		1835.74	296.05	1539.69	
RD-45C	04/29/03				
RD-45C	08/05/03	1835.74	291.31	1544.43	
RD-45C	11/05/03	1835.74	288.15	1547.59	
RD-46A	01/28/03	1805.80	82.09	1723.71	
RD-46A	04/30/03	1805.80	76.79 75.20	1729.01	
RD-46A	08/06/03	1805.80	75.30	1730.50	
RD-46A	11/04/03	1805.80	77.71	1728.09	
RD-46B	01/28/03	1807.19	74.07	1733.12	
RD-46B	04/30/03	1807.19	73.87	1733.32	
RD-46B	08/06/03	1807.19	73.12	1734.07	
RD-46B	11/04/03	1807.19	73.56	1733.63	
RD-47	01/30/03	2045.72	508.78	1536.94	
RD-47	04/29/03	2045.72	503.28	1542.44	
RD-47	08/06/03	2045.72	489.89	1555.83	(C)
RD-47	11/04/03	2045.72	495.62	1550.10	(C)
RD-48A	01/27/03	1736.54	109.12	1627.42	
RD-48A	04/28/03	1736.54	109.75	1626.79	
RD-48A	08/05/03	1736.54	110.27	1626.27	
RD-48A	11/04/03	1736.54	110.57	1625.97	
RD-48B	01/27/03	1735.40	135.23	1600.17	
RD-48B	04/28/03	1735.40	135.23	1600.17	
RD-48B	08/05/03	1735.40	135.47	1599.93	
RD-48B	11/04/03	1735.40	135.45	1599.95	
RD-48C	01/27/03	1734.95	180.36	1554.59	
RD-48C	04/28/03	1734.95	180.26	1554.69	
RD-48C	08/05/03	1734.95	180.05	1554.90	
RD-48C	11/04/03	1734.95	179.93	1555.02	
RD-49A	01/30/03	1867.25	16.68	1850.57	
RD-49A	04/29/03	1867.25	17.28	1849.97	
RD-49A	08/06/03	1867.25	18.25	1849.00	
RD-49A	11/04/03	1867.25	18.32	1848.93	
RD-49B	01/30/03	1867.95	267.01	1600.94	
RD-49B	04/29/03	1867.95	266.74	1601.21	
RD-49B	08/06/03	1867.95	262.21	1605.74	
RD-49B	11/05/03	1867.95	260.22	1607.73	
RD-49C	01/30/03	1869.45	324.97	1544.48	
RD-49C	04/29/03	1869.45	320.35	1549.10	
RD-49C	08/06/03	1869.45	316.05	1553.40	
RD-49C	11/05/03	1869.45	313.85	1555.60	

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
identifier	Measurement	(feet above MSL)	(feet)	(feet above MSL)	
Chatsworth F	ormation Wells				
RD-50	02/05/03	1914.88			(1)
RD-50	04/28/03	1914.88			(1)
RD-50	08/05/03	1914.88			(1)
RD-50	11/04/03	1914.88			(1)
RD-51A	01/28/03	1832.51	250.94	1581.57	
RD-51A	04/29/03	1832.51	251.18	1581.33	
RD-51A	08/04/03	1832.51	Dry		
RD-51A	11/03/03	1832.51	Dry		
RD-51B	01/28/03	1832.68	302.65	1530.03	
RD-51B	04/29/03	1832.68	297.76	1534.92	
RD-51B	08/06/03	1832.68	251.11	1581.57	
RD-51B	11/03/03	1832.68	291.17	1541.51	
RD-51C	01/28/03	1831.65	299.59	1532.06	
RD-51C	04/29/03	1831.65	294.29	1537.36	
RD-51C	08/06/03	1831.65	289.95	1541.70	
RD-51C	11/03/03	1831.65	287.08	1544.57	
RD-52A	01/28/03	1755.09	Dry		
RD-52A	04/29/03	1755.09	125.07	1630.02	
RD-52A	08/06/03	1755.09	127.33	1627.76	
RD-52A	11/05/03	1755.09	127.25	1627.84	
RD-52B	01/28/03	1712.15	180.13	1532.02	
RD-52B	04/29/03	1712.15	174.87	1537.28	
RD-52B	08/06/03	1712.15	171.22	1540.93	
RD-52B	11/05/03	1712.15	167.55	1544.60	
RD-52C	01/28/03	1712.83	180.63	1532.20	
RD-52C	04/29/03	1712.83	175.27	1537.56	
RD-52C	08/06/03	1712.83	170.75	1542.08	
RD-52C	11/05/03	1712.83	167.90	1544.93	
RD-53	02/05/03	1909.19			(1)
RD-53	05/01/03	1909.19			(1)
RD-53	08/05/03	1909.19			(1)
RD-53	11/04/03	1909.19			(1)
RD-54A	02/05/03	1841.72			(1)
RD-54A	04/28/03	1841.72			(1)
RD-54A	08/05/03	1841.72			(1)
RD-54A	11/04/03	1841.72			(1)
RD-54B	01/27/03	1842.54	239.83	1602.71	
RD-54B	04/28/03	1842.54	250.01	1592.53	
RD-54B	08/05/03	1842.54	250.23	1592.31	
RD-54B	11/04/03	1842.54	NM		•
RD-54C	01/27/03	1843.77	227.19	1616.58	
RD-54C	04/28/03	1843.77	227.75	1616.02	
RD-54C	08/05/03	1843.77	227.91	1615.86	
RD-54C	11/04/03	1843.77	228.34	1615.43	
RD-55A	01/28/03	1756.87	36.46	1720.41	
RD-55A	04/28/03	1756.87	22.55	1734.32	
RD-55A	08/04/03	1756.87	23.77	1733.10	
RD-55A	11/03/03	1756.87	29.14	1727.73	

TABLE II SUMMARY OF WATER LEVEL DATA, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point	Depth	Static Water	
Identifier	Measurement	Elevation	to Water	Level Elevation	Footnotes
		(feet above MSL)	(feet)	(feet above MSL)	
	Formation Wells				
RD-55B	01/28/03	1757.19	60.61	1696.58	
RD-55B	04/28/03	1757.19	55.27	1701.92	
RD-55B	08/04/03	1757.19	54.89	1702.30	
RD-55B	11/03/03	1757.19	58.21	1698.98	
RD-56A	01/27/03	1758.62	326.91	1431.71	
RD-56A	04/29/03	1758.62	326.97	1431.65	
RD-56A	08/06/03	1758.62	321.78	1436.84	
RD-56A	11/04/03	1758.62	322.54	1436.08	
RD-56B	01/27/03	1761.83	231.46	1530.37	
RD-56B	04/29/03	1761.83	225.01	1536.82	
RD-56B	08/06/03	1761.83	222.00	1539.83	
RD-56B	11/04/03	1761.83	220.23	1541.60	
RD-57	02/05/03	1774.15			(1)
RD-57	04/28/03	1774.15			(1)
RD-57	08/05/03	1774.15			(1)
RD-57	11/04/03	1774.15			(1)
RD-58A	01/27/03	1756.11	90.92	1665.19	
RD-58A	04/28/03	1756.11	88.72	1667.39	
RD-58A	08/04/03	1756.11	86.63	1669.48	
RD-58A	11/03/03	1756.11	87.59	1668.52	
RD-58B	01/27/03	1761.34	113.97	1647.37	
RD-58B	04/28/03	1761.34	110.29	1651.05	
RD-58B	08/04/03	1761.34	108.58	1652.76	
RD-58B	11/03/03	1761.34	110.58	1650.76	
RD-58C	01/27/03	1759.59	129.35	1630.24	
RD-58C	04/28/03	1759.59	125.76	1633.83	
RD-58C	08/04/03	1759.59	125.70	1634.58	
RD-58C	11/03/03	1759.59	127.13	1632.46	
RD-59A	01/31/03	1340.50	25.78	1314.72	
RD-59A	05/15/03	1340.50	25.76 25.45	1314.72	
RD-59A	08/08/03	1340.50	27.25	1313.25	
RD-59A	11/14/03	1340.50	26.47	1314.03	
	01/31/03		-50.82		(4)
RD-59B	05/15/03	1342.49		1393.31	(A)
RD-59B		1342.49	0.00	1342.49	(A)
RD-59B	08/04/03	1342.49	0.00	1342.49	(A)
RD-59B	12/04/03	1342.49	0.00	1342.49	(A)
RD-59C	01/31/03	1345.41	-50.82	1396.23	(A)
RD-59C	05/15/03	1345.41	0.00	1345.41	(A)
RD-59C	08/04/03	1345.41	0.00	1345.41	(A)
RD-59C	12/04/03	1345.41	0.00	1345.41	(A)
RD-60	01/28/03	1870.40	95.13	1775.27	
RD-60	04/29/03	1870.40	99.43	1770.97	
RD-60	08/06/03	1870.40	94.52	1775.88	
RD-60	11/04/03	1870.40	93.23	1777.17	····
RD-61	01/28/03	1843.88	108.50	1735.38	
RD-61	04/30/03	1843.88	109.69	1734.19	
RD-61	08/06/03	1843.88	110.49	1733.39	
RD-61	11/04/03	1843.88	UTM		

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point Elevation	Depth to Water	Static Water Level Elevation	Footnotes
Identifier	Measurement	(feet above MSL)	(feet)	(feet above MSL)	
Chatsworth I	Formation Wells			<u> </u>	
RD-62	01/27/03	1837.20	210.05	1627.15	
RD-62	04/28/03	1837.20	210.60	1626.60	
RD-62	08/05/03	1837.20	211.02	1626.18	
RD-62	11/04/03	1837.20	211.25	1625.95	
RD-63	02/04/03	1764.85	46.48	1718.37	(*)
RD-63	05/06/03	1764.85	41.38	1723.47	(*) <u>.</u>
RD-63	08/07/03	1764.85	34.01	1730.84	().
RD-63	11/04/03	1764.85	113.15	1651.70	(P)
RD-64	02/05/03	1857.04	110.10	1001.70	(1)
RD-64	04/28/03	1857.04			
RD-64	08/05/03	1857.04			(1)
RD-64	11/04/03	1857.04			(1) (1)
RD-65	02/05/03	1819.14		, , , , , , , , , , , , , , , , , , ,	(1)
RD-65	04/28/03	1819.14			(1)
		1819.14			(1)
RD-65	08/05/03				(1)
RD-65	11/04/03 01/30/03	1819.14 1730.79	175.46	1555.33	(1)
RD-66					
RD-66	04/28/03	1730.79	174.62	1556.17	
RD-66	08/05/03	1730.79	175.61	1555.18	
RD-66	11/03/03	1730.79	175.99	1554.80	
RD-67	01/27/03	1901.71	61.94	1839.77	
RD-67	04/28/03	1901.71	61.24	1840.47	
RD-67	08/05/03	1901.71	62.64	1839.07	
RD-67	11/05/03	1901.71	63.75	1837.96	
RD-68A	02/04/03	1307.64	0.00	1307.64	(A)
RD-68A	05/15/03	1307.64	0.00	1307.64	(A)
RD-68A	08/04/03	1307.64	0.00	1307.64	(A)
RD-68A	12/04/03	1307.64	0.00	1307.64	(A)
RD-68B	02/04/03	1312.44	0.00	1312.44	(A)
RD-68B	05/15/03	1312.44	0.00	1312.44	(A)
RD-68B	08/04/03	1312.44	0.00	1312.44	(A)
RD-68B	12/04/03	1312.44	0.00	1312.44	(A)
RD-69	01/28/03	1831.28	58.39	1772.89	
RD-69	04/29/03	1831.28	59.83	1771.45	
RD-69	08/06/03	1831.28	59.52	1771.76	
RD-69	11/05/03	1831.28	60.68	1770.60	
RD-70	01/28/03	1732.26	202.11	1530.15	
RD-70	04/29/03	1732.26	197.39	1534.87	
RD-70	08/06/03	1732.26	192.70	1539. 56	(C)
RD-70	11/04/03	1732.26	189.10	1543.16	(C)
RD-71	01/30/03	1740.02	185.22	1554.80	
RD-71	04/28/03	1740.02	185.50	1554.52	
RD-71	08/05/03	1740.02	185.63	1554.39	
RD-71	11/03/03	1740.02	185.91	1554.11	<u></u>
RD-72	02/05/03	1907.25			(1)
RD-72	05/01/03	1907.25			(1)
RD-72	08/05/03	1907.25			(1)
RD-72	11/06/03	1907.25			(1)

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Footnotes
Chatsworth I	Formation Wells	(leet above MSL)	(leet)	(leet above MSL)	
RD-73	02/05/03	1901.60			(1)
RD-73	05/01/03	1901.60			(1)
RD-73	08/05/03	1901.60			(1)
RD-73	11/04/03	1901.60			(1)
RD-74	01/27/03	1810.90	Dry		
RD-74	04/28/03	1810.90	46.79	1764.11	•
RD-74	08/05/03	1810.90	68.21	1742.69	
RD-74	11/04/03	1810.90	Dry		
HAR-01	02/05/03	1874.13	2.,		(1)
HAR-01	05/01/03	1874.13			(1)
HAR-01	08/05/03	1874.13			(1)
HAR-01	11/04/03	1874.13			(1)
HAR-05	01/30/03	1812.65	25.31	1787.34	
HAR-05	04/29/03	1812.65	20.11	1792.54	
HAR-05	08/06/03	1812.65	20.40	1792.25	
HAR-05	11/04/03	1812.65	23.10	1789.55	
HAR-06	01/30/03	1815.03	25.99	1789.04	
HAR-06	04/29/03	1815.03	19.29	1795.74	
HAR-06	08/06/03	1815.03	20.95	1794.08	
HAR-06	11/04/03	1815.03	24.62	1790.41	
	01/30/03	1728.38	72.95	1655.43	
HAR-07	05/06/03		72. 3 3 75.32	1653.06	/ * \
HAR-07		1728.38			(*)
HAR-07	08/06/03	1728.38	56.86	1671.52	
HAR-07	11/05/03	1728.38	72.77	1655.61	
HAR-08	01/28/03	1730.75	45.22	1685.53	
HAR-08	04/30/03	1730.75	35.08	1695.67	
HAR-08	08/06/03	1730.75	36.80	1693.95	
HAR-08	11/05/03	1730.75	43.97	1686.78	
HAR-16	02/05/03	1872.31			(1)
HAR-16	04/30/03	1872.31			(1)
HAR-16	08/05/03	1872.31			(1)
HAR-16	11/04/03	1872.31	00.54	4005.05	(1) .
HAR-17	02/04/03	1711.59	26.54	1685.05	(*)
HAR-17	05/06/03	1711.59	22.67	1688.92	(*)
HAR-17	08/06/03	1711.59	22.97	1688.62	
HAR-17	11/03/03	1711.59	26.56	1685.03	
HAR-18	02/04/03	1749.41	29.78	1719.63	(*)
HAR-18	05/06/03	1749.41	29.12	1720.29	(*)
HAR-18	08/04/03	1749.41	22.65	1726.76	
HAR-18	11/03/03	1749.41	25.86	1723.55	
HAR-19	01/30/03	1833.42	Dry	***	
HAR-19	04/29/03	1833.42	Dry	***	
HAR-19	08/06/03	1833.42	Dry		
HAR-19	11/04/03	1833.42	Dry		
HAR-20	01/30/03	1830.47	Dry		
HAR-20	04/29/03	1830.47	Dry		
HAR-20	08/06/03	1830.47	222.15	1608.32	
HAR-20	11/04/03	1830.47	222.65	1607.82	

TABLE II
SUMMARY OF WATER LEVEL DATA, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier Chatsworth F	Date of Measurement	Elevation	ta Matar	farral Clarestian	
Chatsworth F			to Water	Level Elevation	Footnotes
	·	(feet above MSL)	(feet)	(feet above MSL)	
114D 04					
HAR-21	01/30/03	1821.30	12.61	1808.69	
HAR-21	04/29/03	1821.30	7.53	1813.77	
HAR-21	08/06/03	1821.30	11.33	1809.97	
HAR-21	11/04/03	1821.30	13.30	1808.00	
HAR-22	01/28/03	1816.41	32.56	1783.85	
HAR-22	04/29/03	1816.41	28.56	1787.85	
HAR-22	08/13/03	1816.41	29.15	1787.26	
HAR-22	11/04/03	1816.41	30.85	1785.56	
HAR-23	01/30/03	1805.87	23.23	1782.64	
HAR-23	04/29/03	1805.87	19.18	1786.69	
HAR-23	08/06/03	1805.87	20.34	1785.53	
HAR-23	11/04/03	1805.87	21.57	1784.30	
HAR-24	02/05/03	1906.89			(1)
HAR-24	05/01/03	1906.89			(1)
HAR-24	08/05/03	1906.89			(1)
HAR-24	11/04/03	1906.89			(1)
HAR-25	01/27/03	1889.75	68.10	1821.65	(C)
HAR-25	04/29/03	1889.75	68.07	1821.68	(C)
HAR-25	08/05/03	1889.75	67.76	1821.99	(C)
HAR-25	11/04/03	1889.75	Dry		**
HAR-26	01/28/03	1763.23	22.82	1740.41	
HAR-26	04/29/03	1763.23	16.78	1746.45	
HAR-26	08/06/03	1763.23	19.02	1744.21	
HAR-26	11/03/03	1763.23	23.08	1740.15	
WS-04A	01/28/03	1749.77	217.49	1532.28	
WS-04A	04/29/03	1749.77	213.17	1536.60	
WS-04A	08/07/03	1749.77	208.84	1540.93	
WS-04A	11/05/03	1749.77	205.56	1544.21	
WS-05	02/04/03	1830.20	292.17	1538.03	(*)
WS-05	05/06/03	1830.20	286.22	1543.98	(*)
WS-05	08/06/03	1830.20	284.73	1545.47	(C)
WS-05	11/04/03	1830.20	284.28	1545.92	C • 7
WS-06	01/30/03	1932.72	400.15	1532.57	
WS-06	04/29/03	1932.72	395.35	1537.37	
WS-06	08/06/03	1932.72	390.75	1541.97	
WS-06	11/05/03	1932.72	387.50	1545.22	
WS-07	01/28/03	1826.19	68.37	1757.82	
WS-07	04/29/03	1826.19	65.81	1760.38	
WS-07	08/06/03	1826.19	65.24	1760.95	
WS-07	11/06/03	1826.19	66.90	1759.29	
WS-07	01/28/03	1794.39	178.12	1616.27	
WS-08	05/02/03	1794.39	175.81	1618.58	
WS-08	08/06/03	1794.39	173.01	1621.42	
WS-08	11/06/03	1794.39	UTM	1021.42	
WS-09	01/30/03	1883.99	346.82	1537.17	
WS-09 WS-09	05/06/03	1883.99	357.98	1526.01	(*)
WS-09 WS-09	08/06/03	1883.99	358.21	1525.78	(*) (*) (C)
443-UB	11/05/03	1883.99	331.98	1525.76	(°) (C) (C)

TABLE II SUMMARY OF WATER LEVEL DATA, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well	Date of	Reference Point	Depth	Static Water	
Identifier	Measurement	Elevation	to Water	Level Elevation	Footnotes
identifier in		(feet above MSL)	(feet)	(feet above MSL)	
	Formation Wells				
WS-09A	01/27/03	1647.61	36.07	1611.54	
WS-09A	05/06/03	1647.61	38.43	1609.18	(*) (P)
WS-09A	08/05/03	1647.61	32.31	1615.30	
WS-09A	11/04/03	1647.61	37.24	1610.37	
WS-09B	01/30/03	1796.89	175.48	1621.41	
WS-09B	04/29/03	1796.89	167.73	1629.16	
WS-09B	08/06/03	1796.89	161.90	1634.99	
WS-09B	11/04/03	1796.89	162.92	1633.97	
WS-11	01/28/03	1748.70	56.02	1692.68	
WS-11	04/28/03	1748.70	47.94	1700.76	
WS-11	08/05/03	1748.70	49.40	1699.30	
WS-11	11/03/03	1748.70	55.38	1693.32	
WS-12	02/05/03	1705.98	173.28	1532.70	
WS-12	04/29/03	1705.98	168.33	1537.65	
WS-12	08/06/03	1705.98	164.34	1541.64	
WS-12	11/05/03	1705.98	161.14	1544.84	
WS-13	01/28/03	1658.62	126.57	1532.05	
WS-13	04/29/03	1658.62	121.21	1537.41	
WS-13	08/06/03	1658.62	117.06	1541.56	
WS-13	11/05/03	1658.62	113.22	1545.40	
WS-14	01/27/03	1878.23	358.34	1519.89	
WS-14	04/29/03	1878.23	356.14	1522.09	
WS-14	08/07/03	1878.23	354.48	1523.75	
WS-14	11/05/03	1878.23	352.80	1525.43	
WS-SP	01/28/03	1766.76	30.58	1736.18	
WS-SP	04/29/03	1766.76	27.78	1738.98	
WS-SP	08/06/03	1766.76	28.47	1738.29	
WS-SP	11/03/03	1766.76	29.21	1737.55	
OS-24	02/05/03	1947.30			(1)
OS-24	04/28/03	1947.30			(1)
OS-24	08/04/03	1947.30			(1)
OS-24	11/03/03	1947.30			(1)
OS-25	01/28/03	2043.58	Dry		
OS-25	05/15/03	2043.58	Dry		
OS-25	08/04/03	2043.58	UTM		
OS-25	11/04/03	2043.58	Dry		
OS-26	01/28/03	2080.58	221.56	1859.02	
OS-26	05/02/03	2080.58	224.15	1856.43	
OS-26	08/04/03	2080.58	228.92	1851.66	
OS-26	11/04/03	2080.58	231.13	1849.45	

(*)	=	Water level measured by EnviroSolve Corporation.
(**)	=	Water level measured by MWH.
(A)	=	Artesian.
(C)	=	Depth to water measured from top of casing. During the monitoring period, pumps had been removed from several wells to allow hydrogeologic testing.
(ft btc)	=	Feet below top of casing.
(P)	=	Pumping water level.
MSL	=	Mean Sea Level.
NM	=	Not monitored.
υτм	=	Unable to measure.
()	=	No data available/not applicable.

A negative value in the Depth to Water column indicates the head above the reference point elevation.

(1) = FLUTe installed in well. Water level could not be measured.

The C-1 pumping test started August 25, 2003 and may have impacted the water level measurements for HAR-01, HAR-16, HAR-24, RD-10, RD-31, RD-53, RD-72, and RD-73.

Water levels recorded by dataloggers at saturated ports were provided by MWH for wells listed in the following table.

TABLE II FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
HAR-01	02/05/03	15:44	4	43 - 48	Dry
	02,00,00	10.71	5	53 - 58	50.1
			6	63 - 68	51.471
			7	73 - 78	51.714
			8	83 - 88	51.598
			9	93 - 98	50.461
			10	103 - 108	51.636
	04/30/03	No data		m datalogger 2nd quar	
	08/21/03	13:51	1	13 - 18	
	00/21100	10.01	2	23 - 28	
			3	33 - 38	Dry
			4	43 - 48	Dry
			5	53 - 58	Dry
			6	63 - 68	56.921
			7	73 - 78	57.258
			8	83 - 88	57.075
			9	93 - 98	57.280
			10	103 - 108	57.088
	11/04/03	13:17	1	13 - 18	57.000
	11/04/03	13.17	2	23 - 28	
			3	33 - 38	Dry
			4	43 - 48	•
			5	53 - 58	Dry
			6		Dry 60.544
			7	63 - 68	60.892
			8	73 - 78	
				83 - 88	60.803
			9	93 - 98	61.012
HAR-16	02/05/03	15:06	<u>10</u> 3	103 - 108 19 - 24	60.824
HAR-10	02/03/03	15.00	4	19 - 24 29 - 34	Dry
				29 - 34 39 - 44	Dry NM
			5 6		
			7	49 - 54 50 - 64	45.127
			8	59 - 64 69 - 74	46.144 46.694
			9		40.094
			9 10	79 - 84	46.864
			11	89 - 94 99 - 104	40.004
	04/30/03	14:26	12 3	109 - 114 19 - 24	Dry
	04/30/03	14.20	4		•
			5	29 - 34 39 - 44	Dry 40.876
					40.876 45.201
			6 7	49 - 54 59 - 64	45.201 45.125
			, 8	59 - 6 4 69 - 74	
			9		45.427
				79 - 84 80 - 04	45 025
			10	89 - 94 00 - 104	45.925 45.433
			11 12	99 - 104 100 - 114	45.433
	08/21/03	14:12	3	109 - 114	48.395
	00/21/03	14.14	3 4	19 - 24 29 - 34	ab
			4 5		 40 917
			ပ	39 - 44	40.817

TABLE II
FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
HAR-16	08/21/03	14:12	6	49 - 54	Dry
			7	59 - 64	52.604
			8	69 - 74	52.956
			9	79 - 84	
			10	89 - 94	57.565
			11	99 - 104	53.211
			12	109 - 114	55.650
	11/04/03	13:17	3	19 - 24	
			4	29 - 34	
			5	39 - 44	40.774
			6	49 - 54	Dry
			7	59 - 64	60.685
			8	69 - 74	70.527
			9	79 - 84	
			10	89 - 94	86.964
			11	99 - 104	77.649
			12	109 - 114	82.398
HAR-24	02/05/03	11:40	1	37 - 42	
⊓AR-24	02/03/03	11.40	2	47 - 52	Dry
			3	57 - 62	Dry
			4		Dry
				67 - 72	Dry
			5	77 - 82	Dry
			6	87 - 92	Dry
			7	97 - 102	100.821
	0.4100700	44.40	8	107 - 112	101.034
	04/30/03	11:40	1	37 - 42	Dry
			2	47 - 52	Dry
			3	57 - 62	Dry
			4	67 - 72	Dry
			5	77 - 82	Dry
			6	87 - 92	81.685
			7	97 - 102	81.689
			88	107 - 112	81.662
	08/21/03	14:42	1	37 - 42	Dry
			2	47 - 52	Dry
			3	57 - 62	Dry
			4	67 - 72	Dry
			5	77 - 82	Dry
			6	87 - 92	87.080
			7	97 - 102	87.437
			8	107 - 112	87.242
	11/04/03	13:17	1	37 - 42	Dry
			2	47 - 52	Dry
			3	57 - 62	`Dry
			4	67 - 72	Dry
			5	77 - 82	Dry
			6	87 - 92	88.557
			7	97 - 102	98.450
			8	107 - 112	97.347

TABLE II
FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)				
OS-24	02/05/03			ed 1st quarter 2003					
	04/30/03	No datalogger installed 2nd quarter 2003							
	08/21/03	No datalogger installed 3rd quarter 2003							
	11/03/03	No datalogger installed 4th quarter 2003							
RD-07	02/05/03			m datalogger 1st quar	ter 2003				
	04/30/03			m datalogger 2nd qua					
	08/21/03								
	11/04/03		No data available from datalogger 3rd quarter 2003 No data available from datalogger 4th quarter 2003						
RD-10	02/05/03			d from datalogger 1st					
110	04/30/03		No datalogger installed 2nd quarter 2003						
	08/25/03	11:00	1	171 - 181	Dry				
	00/23/03	11.00	2	191 - 201	183.298				
			3	211 - 221	182.240				
			4	231 - 241	182.154				
			5	251 - 261	181.571				
			6	271 - 281	182.294				
			7	291 - 301	NM				
			8	311 - 321	182.413				
			9	331 - 341	182.033				
			10	351 - 361	181.965				
			11	371 - 381	182.186				
			12	391 - 401	182.130				
	11/04/03	13:17	1	171 - 181	Dry				
			2	191 - 201	183.284				
			3	211 - 221	181.682				
			4	231 - 241	181.619				
			5	251 - 261	181.003				
			6	271 - 281	181.817				
			7	291 - 301	NM				
			8	311 - 321	181.990				
			9	331 - 341	181.625				
			10	351 - 361	180.919				
			11	371 - 381	181.746				
			12	391 - 401	181.676				
RD-21	02/05/03	15:30	1	85 - 95	Dry				
			2	105 - 115	90.46				
			3	125 - 135	90.266				
			4	145 - 155	90.366				
			5	165 - 175	90.489				
	04/30/03	10:27	1	85 - 95	Dry				
			2	105 - 115	91.249				
			3	125 - 135	91.070				
			4	145 - 155	92.510				
			5	165 - 175	91.361				
	08/28/03	15:51	1	85 - 95	Dry				
			2	105 - 115	98.646				
			3	125 - 135	97.487				
			4	145 - 155	98.015				
			5	165 - 175	95.824				

TABLE II
FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)			
RD-21	10/19/03	18:58	1	85 - 95	Dry			
			2	105 - 115	93.142			
			3	125 - 135	93.005			
			4	1 45 - 155	97.041			
			5	165 - 175	93.882			
RD-22	02/05/03	No datalogger installed 1st quarter 2003						
	04/30/03	8:29	1	310 - 320	298.174			
			2	330 - 340	298.079			
			3	350 - 360	298.360			
			4	370 - 380	298.559			
			5	390 - 400	298.760			
			6	410 - 420	298.756			
			7	430 - 440				
	08/04/03	12:10	1	310 - 320	298.431			
			2	330 - 340	298.223			
			3	350 - 360	298.476			
			4	370 - 380	298.645			
			5	390 - 400	298.499			
			6	410 - 420	298.482			
			7	430 - 440				
	11/04/03	16:02	1	310 - 320	298.359			
			2	330 - 340	298.094			
			3	350 - 360	298.360			
			4	370 - 380	298.617			
			5	390 - 400	298.456			
			6	410 - 420	298.482			
			7	430 - 440	435.755			
RD-23	02/05/03	No data available from datalogger 1st quarter 2003						
	04/30/03	15:37	1	231 - 241				
			2	251 - 261				
			3	271 - 281				
			4	291 - 301				
			5	311 - 321				
			6	331 - 341				
			7	351 - 361				
			8	371 - 381				
			9	391 - 396	381.257			
	08/01/03	No data	available 3rd	l quarter 2003				
	11/04/03	14:55	1	231 - 241				
			2	251 - 261				
			3	271 - 281				
			4	291 - 301				
			5	311 - 321				
			6	331 - 341				
			7	351 - 361				
			8	371 - 381				
			9	391 - 401				
			10	411 - 416				

TABLE II FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
RD-31	02/05/03	16:55	3	88 - 98	
			4	108 - 118	
			5	128 - 138	117.743
			6	148 - 158	116.729
			7	168 - 178	116.321
	04/30/03	10:55	3	88 - 98	
			4	108 - 118	
			5	128 - 138	125.196
			6	148 - 158	125.222
			7	168 - 178	124.707
	08/21/03	13:09	1	48 - 58	Dry
			2	68 - 78	Dry
			3	88 - 98	Dry
			4	108 - 118	Dry
			5	128 - 138	125.738
			6	148 - 158	125.770
			7	168 - 178	125.227
	11/06/03	13:17	1	48 - 58	Dry
	11700700	10211	2	68 - 78	Dry
			3	88 - 98	Dry
			4	108 - 118	Dry
			5	128 - 138	135.153
			6	148 - 158	155.052
			7	168 - 178	167.743
RD-33A	02/05/03	No data :		m datalogger 1st quart	
110 00/1	05/12/03	15:02	1	211 - 221	208.962
	55 2. 65	10.02	2	231 - 241	209.270
			3	251 - 261	209.540
			4	271 - 281	209.442
			5	291 - 301	209.492
			6	311 - 321	209.492
	08/04/03	9:02	1	211 - 221	208.481
	06/04/03	9.02	2		209.006
			3	231 - 241	
			4	251 - 261	208.898
			5	271 - 281 291 - 301	208.727
					209.099
	44/04/02	10:10	6	311 - 321	209.514
	11/04/03	12:10	1	211 - 221	206.791
			2	231 - 241	207.301
			3	251 - 261	207.165
			4	271 - 281	207.037
			5	291 - 301	207.337
DD 50	00/05/00	44.47	6	311 - 321	207.752
RD-50	02/05/03	14:47	1	106 - 116	Dry
			2	126 - 136	113.406
			3	146 - 156	Dry
			4	166 - 176	113.306
			5	186 - 196	113.406
	04/30/03	14:51	1	106 - 116	106.893
			2	126 - 136	111.965
			3	146 - 156	

TABLE II FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
RD-50	04/30/03	14:51	4	166 - 176	111.995
			5	186 - 196	112.100
	08/04/03	8:51	1	106 - 116	107.081
			2	126 - 136	113.516
			3	146 - 156	
			4	166 - 176	113.723
			5	186 - 196	113.901
	10/18/03	13:28	1	106 - 116	112.533
			2	126 - 136	114.166
			3	146 - 156	
			4	166 - 176	114.302
			5	186 - 196	114.514
RD-53	02/05/03	11:54	1	74 - 79	
	0	11.0	2	84 - 89	Dry
			3	94 - 99	Dry
			4	104 - 109	Dry
			5	114 - 1:19	110.53
			6	124 - 129	123.737
			7	134 - 139	129.325
			8	144 - 149	128.423
			9	154 - 159	137.633
	04/30/03	Ratteries		ata available 2nd quart	
	08/21/03	12:14	1	74 - 79	
	00/21/03	12.17	2	84 - 89	
			3	94 - 99	Dry
			4	104 - 109	Dry
			5	104 - 109 114 - 119	Dry
					109.746
			6 7	124 - 129	Dry
			-	134 - 139	Dry
			8	144 - 149	140.235
	11/04/03	13:17	9	154 - 159	140.342
	11/04/03	13:17	1	74 - 79	 D
			2	84 - 89	Dry
			3	94 - 99	Dry
			4	104 - 109	Dry
			5	114 - 119	116.116
			6	124 - 129	Dry
			7	134 - 139	Dry
			8	144 - 149	142.023
			9	154 - 159	142.109
RD-54A	08/27/03	9:51	1	150.5 - 160.5	224.854
			2	170.5 - 180.5	142.569
			3	190.5 - 200.5	146.455
			4	210.5 - 220.5	149.410
			5	230.5 - 240.5	
			6	250.5 - 260.5	
			7	270.5 - 280.5	176.351
	11/04/03	16:29	1	150.5 - 160.5	
			2	170.5 - 180.5	149.183
			3	190.5 - 200.5	153.055
			4	210.5 - 220.5	155.763

TABLE II
FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
RD-54A	11/04/03	16:29	5	230.5 - 240.5	
			6	250.5 - 260.5	
			7	270.5 - 280.5	182.994
RD-57	02/05/03	11:58	1	228 - 238	Dry
			2	248 <i>-</i> 258	Dry
			3	268 - 278	Dry
			4	288 - 298	Dry
•			5	308 - 318	Dry
			6	328 - 338	Dry
			7	348 - 358	350.354
			8	368 - 378	348.704
		11:01	9	388 - 398	347.792
		11.01	10	408 - 418	346.781
	04/30/03	9:12	1	228 - 238	
	0 1/00/00	0.12	2	248 - 258	
			3	268 - 278	
			4	288 - 298	
			5	308 - 318	
			6	328 - 338	
			7	348 - 358	
			8	368 - 378	
			9	388 - 398	346.458
			10	408 - 418	345.727
	08/28/03	9:34	1	228 - 238	Dry
	00/20/03	3.54	2	248 - 258	Dry
			3	268 - 278	Dry
			4	288 - 298	Dry
			5	308 - 318	Dry
			6	328 - 338	Dry
			7	348 - 358	343.939
			8	368 - 378	347.893
		9:33	9	388 - 398	347.004
		9.55	10	408 - 418	346.002
	11/04/03	8:54	1	228 - 238	
	1 1/04/03	0.04	2	248 - 258	Dry
			3	268 - 278	Dry
				288 - 298	Dry
			4		Dry
			5	308 - 318	Dry
			6 7	328 - 338	Dry 246 074
				348 - 358	346.974
			8	368 - 378	351.004
			9	388 - 398	350.168
DD 64	02/05/02	14.11	10	408 - 418	349.136
RD-64	02/05/03	14:11	1	170.5 - 180.5	Dry
			2	190.5 - 200.5	Dry
			3	210.5 - 220.5	217.255
		44.47	4	230.5 - 240.5	230.588
		14:17	5	250.5 - 260.5	227.358
			6	270.5 - 280.5	230.46
			7	290.5 - 300.5	230.601
			8	310.5 - 320.5	230.471

TABLE II FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
RD-64		14:17	9	330.5 - 340.5	230.787
			10	350.5 - 360.5	230 789
			11	370.5 - 380.5	232.972
			12	390.5 - 400.5	231.067
	04/30/03		s failed, no d	ata available 2nd quart	er 2003
	08/04/03	8:55	1	170.5 - 180.5	Dry
			2	190.5 - 200.5	Dry
			3	210.5 - 220.5	Dry
		•	4	230.5 - 240.5	148.859
			5	250.5 - 260.5	
			6	270.5 - 280.5	
			7	290.5 - 300.5	
			8	310.5 - 320.5	
			9	330.5 - 340.5	
			10	350.5 - 360.5	
			11	370.5 - 380.5	
			12	390.5 - 400.5	
	11/04/03	8:55	1	170.5 - 180.5	Dry
			2	190.5 - 200.5	Dry
			3	210.5 - 220.5	
	4.0.00.00		4	230.5 - 240.5	
	10/22/03	16:00	5	250.5 - 260.5	233.489
			6	270.5 - 280.5	234.517
			7	290.5 - 300.5	
			8	310.5 - 320.5	234.606
			9	330.5 - 340.5	
			10	350.5 - 360.5	234.887
			11	370.5 - 380.5	235.151
DD 05	00/05/00	44.00	12	390.5 - 400.5	235.272
RD-65	02/05/03	14:22	1	168.5 - 178.5	Dry
			2	188.5 - 198.5	Dry
			3	208.5 - 218.5	Dry
			4	228.5 - 238.5	171.815
			5	248.5 - 258.5	230.451
			6	268.5 - 278.5	241.331
			7	288.5 - 298.5	256.081
		14.04	8	308.5 - 318.5	293.721
		14:24	9	328.5 - 338.5	235.052
			10	348.5 - 358.5	231.426
			11	368.5 - 378.5	236.205
	04/30/03	Hydroulic	12	388.5 - 398.5	388.78
	08/04/03	13:01	testing (ivivi	/H), no data available 2	
	00/04/03	13.01	2	168.5 - 178.5	Dry
			3	188.5 - 198.5 208.5 - 218.5	Dry
			4	208.5 - 218.5 228.5 - 238.5	Dry
			5	248.5 - 258.5 248.5 - 258.5	222.798
			6		224.887
			7	268.5 - 278.5	228.856
			8	288.5 - 298.5 308.5 318.5	209.664
			9	308.5 - 318.5 328.5 - 338.5	235.054
			3	320.0 - 330.0	

TABLE II FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
RD-65	08/04/03	13:01	10	348.5 - 358 5	
			11	368.5 - 378.5	
			12	388.5 - 398.5	
	11/04/03	13:30	1	168.5 - 178.5	Dry
			2	188.5 - 198.5	Dry
			3	208.5 - 218.5	Dry
			4	228.5 - 238 5	222.973
		•	5	248.5 - 258.5	224.405
			6	268.5 - 278.5	228.52
			7	288.5 - 298.5	
			8	308.5 - 318.5	234.725
			9	328.5 - 338.5	250.255
			10	348.5 - 358.5	
			11	368.5 - 378.5	251.198
			12	388.5 - 398.5	392.766
RD-72	02/05/03	15:29	2	65 - 75	Dry
ND-72	02/05/05	10.20	3	85 - 95	88.608
			4	105 - 115	88.158
			5	125 - 135	87.88
			6	145 - 155	86.041
			7	165 - 175	NM
			8	185 - 195	83.624
	04/30/03	15:29	2	65 - 75	03,024
	04/30/03	13.23	3	85 - 95	92.068
			4	105 - 115	92.831
			5	125 - 135	92.641
			6	145 - 155	91.510
			7	165 - 175	00 505
	00/04/02	42.00	8	185 - 195	89.535
	08/21/03	13:06	2	65 - 75 05 - 05	Dry
			3	85 - 95 405 - 445	Dry
			4	105 - 115	92.974
			5	125 - 135	92.743
			6	145 - 155	91.918
			7	165 - 175	
	44/00/00	40.47	8	185 - 195	89.783
	11/06/03	13:17	2	65 - 75 05 - 05	Dry
			3	85 - 95	Dry
			4	105 - 115	103.032
			5	125 - 135	103.518
			6	145 - 155	106.276
			7	165 - 175	400 = :=
	00/05/00	4465	8	185 - 195	108.747
RD-73	02/05/03	14:25	5	67 - 72	Dry
			6	77 - 82	74.355
			7	87 - 92	74.811
			8	97 - 102	73.869
			9	107 - 112	74.735
			10	117 - 122	NM
			11	127 - 132	74.933
			12	137 - 140	76.945

TABLE II FOOTNOTES AND EXPLANATIONS

Well	Date	Time	Port	Spacer Interval	DTW (ft btc)
RD-73	04/30/03	Batteries	failed, no d	ata available 2nd quart	er 2003
	08/21/03	13:07	1	27 - 32	
			2	37 - 42	
			3	47 - 52	
			4	57 - 62	Dry
			5	67 - 72	Dry
			6	77 - 82	Dry
			7	87 - 92	79.535
			8	97 - 102	79.608
			9	107 - 112	79.420
			10	117 - 122	
			11	127 - 132	79.652
			12	137 - 140	79.711
	11/04/03	13:17	4	57 - 62	Dry
			5	67 - 72	Dry
			6	77 - 82	Dry
			7	87 - 92	88.458
			8	97 - 102	98.323
			9	107 - 112	108.065
			10	117 - 122	
			11	127 - 132	109.011
			12	137 - 140	109.058

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	SH-03	SH-04	SH-04	SH-11	SH-11	SH-11
FLUTe Sample Port						
Sample Date	05/02/03	04/14/03	04/14/03	02/21/03	08/25/03	08/25/03
Sample Type	Primary	Primary	Split	Primary	Primary	Dup
Sample Qualifier				рН		
Compound (ug/l)						
1,1,1-Trichloroethane	8.3 J	4	4	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	2.9 U	0.58 U	0.4 U	0.29 U	0.24 U	0.24 U
1,1,2-Trichloroethane	3 U	0.6 U	0.2 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	43	14	12	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	9.1 J	5 J	4.3	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	3.2 U	0.64 U	0.2 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	360	6.2	7.3	0.35 J	0.28 U	0.28 U
1,2-Dichloropropane	3.5 U	0.7 U	0.4 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	3.5 U	0.7 U	0.2 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	3.7 U	0.74 U	0.2 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane		29				
2-Butanone	38 U	7.6 U	7 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether		0.3 U	0.3 U			
2-Hexanone	25 U	5 U	0.7 U	2.5 U	2.6 U	2.6 U
4-Methyl-2-pentanone (MIBK)	25 U	5 U	0.2 U	2.5 U	2.5 U	2.5 U
Acetone	45 U	9 U	3 U	4.5 U	4.5 U	4.5 U
Benzene	2.8 U	0.56 U	0.1 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	3 U	0.6 U	0.1 U	0.3 U	0.3 U	0.3 U
Bromoform	2.5 U	0.5 U	0.4 U	0.25 U	0.32 U	0.32 ป
Bromomethane	2 U	0.4 U	0.5 U	0.2 U	0.34 U	0.34 U
Carbon disulfide	3.3 U	0.66 U	0.2 U	0.33 U	0.48 U	0.48 U
Carbon tetrachloride	520	170	170	0.28 U	0.28 U	0.28 U
Chlorobenzene	3.6 U	0.72 U	0.1 U	0.36 U	0.36 U	0.36 U
Chloroethane	3.3 U	0.66 U	0.3 U	0.33 U	0.33 U	0.33 U
Chloroform	720	51	50	0.33 U	0.33 U	0.33 U
Chloromethane	1.4 U	0.28 U	0.4 U	0.14 U	0.3 U	0.3 U
cis-1,2-Dichloroethene	33	11	10	0.44 J	0.59 J	0.63 J
cis-1,3-Dichloropropene	2.2 U	0.44 U	0.2 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	2.8 U	0.56 U	0.2 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	2.5 U	0.5 U	0.2 U	0.25 U	0.25 U	0.25 U
n,p-Xylenes	3.8 U	0.76 U	0.3 U	0.38 U	0.52 U	0.52 U
Methylene chloride	3.3 U	1.3 U	3 U	0.33 U	0.48 U	0.48 U
o-Xylene	2.4 U	0.48 U	0.2 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	20	13	16	0.32 U	0.32 U	0.32 U
Foluene	4.9 U	0.98 U	0.2 U	0.49 U	0.36 U	0.36 U
rans-1,2-Dichloroethene	2.7 U	0.54 U	0.2 U	0.43 U	0.27 U	0.27 U
rans-1,3-Dichloropropene	2.7 U	0.48 U	0.2 U	0.27 U	0.27 U 0.24 U	0.24 U
Trichloroethene	190	69	70	0.24 U 0.26 J,C	0.24 U	0.24 U
Trichlorofluoromethane	3.4 U	0.68 U	7.0 0.1 U	0.26 J,C 0.34 U	0.26 U	0.26 U
Trichlorotrifluoroethane (Freon 113)	130	0.00 U	54	1.2 U	1.2 U	1.2 U
Vinyl chloride	1.9 U	0.38 U	0.2 U	0.19 U	0.26 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	AMA	DMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

VA/-IIII-I	DC 07	DC 07	DC 00	DC 00	DC 40	DC 40
Well Identifier	RS-07	RS-07	RS-08	RS-08	RS-10	RS-10
FLUTe Sample Port	02/21/03	08/22/03	04/14/03	04/14/03	00/06/00	02/26/02
Sample Date					02/26/03	02/26/03
Sample Cyclifics	Primary	Primary	Primary pH	Split	Primary	Dup
Sample Qualifier			рп			
Compound (ug/l)	0.211	0.211	0211	0.011	0.211	0.2.(1
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.29 U	0.4 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U
1,4-Dioxane			0.07 U			
2-Butanone	3.8 U	3.8 U	3.8 U	7 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether			0.3 U	0.3 U		
2-Hexanone	2.5 U	2.6 U	2.5 U	0.7 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U
Acetone	6.6 J	4.5 U	4.9 UJ	3 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.28 U	0.1 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.1 U	0.3 U	0.3 U
Bromoform	0.25 U	0.32 U	0.25 U	0.4 U	0.25 U	0.25 U
Bromomethane	0.2 U	0.34 U	0.2 U	0.5 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.48 U	0.33 U	0.2 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.3 U	0.28 U	0.28 ป
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.1 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U
Chloromethane	0.23 J	0.3 U	0.14 U	0.4 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	7.8	6.3	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.2 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.52 U	0.38 U	0.3 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.48 U	0.33 U	3 U	0.33 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U
Toluene	0.49 U	0.36 U	0.49 U	0.2 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.91 J	0.75	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0.26 U	0.2 U	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U		0.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.26 U	0.75 J	0.2 U	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	AMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RS-11	RS-11	RS-13	RS-13	RS-18	RS-19
FLUTe Sample Port	NO-11	K0-11	NO-13	NO-13	NO-10	K2-19
· · · · · · · · · · · · · · · · · · ·	05/01/03	05/01/03	02/21/03	02/21/03	05/02/03	05/01/03
Sample Date						
Sample Type	Primary	Dup	Primary	Dup	Primary	Primary
Sample Qualifier						***
Compound (ug/l)	0.211	0.011	0.211	0.311	0.011	0.011
1,1,1-Trichloroethane	0.3 U	0.3 U				
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U				
1,1,2-Trichloroethane	0.3 U	0.3 U				
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.3 J	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.61 J	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U				
1,2-Dichloroethane	0.28 U	0.28 U				
1,2-Dichloropropane	0.35 U	0.35 U				
1,3-Dichlorobenzene	0.35 U	0.35 U				
1,4-Dichlorobenzene	0.37 U	0.37 U				
1,4-Dioxane						
2-Butanone	3.8 U	3.8 U				
2-Chloroethyl Vinyl Ether		***			****	-
2-Hexanone	2.5 U	2.5 U				
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U				
Acetone	4.5 U	4.5 U				
Benzene	0.28 U	0.28 U				
Bromodichloromethane	0.3 U	0.3 U				
Bromoform	0.25 U	0.25 U				
Bromomethane	0.2 U	0.2 U				
Carbon disulfide	0.33 U	0.33 U				
Carbon tetrachloride	0.28 U	0.28 U				
Chlorobenzene	0.36 U	0.36 U				
Chloroethane	0.33 U	0.33 U				
Chloroform	0.33 U	0.33 U				
Chloromethane	0.14 U	0.14 U	0.14 J	0.14 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U				
cis-1,3-Dichloropropene	0.22 U	0.22 U				
Dibromochloromethane	0.28 U	0.28 U				
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 _, U	0.25 U
m,p-Xylenes	0.38 U	0.38 U				
Methylene chloride	0.33 U	0.33 U				
o-Xylene	0.24 U	0.24 U				
Tetrachloroethene	0.32 U	0.32 U				
Toluene	0.49 U	0.49 U				
trans-1,2-Dichloroethene	0.27 U	0.27 U				
trans-1,3-Dichloropropene	0.24 U	0.24 U				
Trichloroethene	0.26 U	0.26 U	0.24 U	0.26 U	17	1.5
Trichlorofluoromethane	0.20 U	0.20 U	0.20 U	0.20 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U				
Vinyl chloride	0.19 U	0.19 U				
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA
Lavoratory	DIVIA	DIVIA	DINIU.	רואוי/	DINIU	DIAIL

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Man I de alifer	DC 20	DC 21	RS-32	EC 02		EC 05
Well Identifier	RS-30	RS-31		ES-03	ES-04	ES-05
FLUTe Sample Port	05/04/00	05/04/02	02/25/03	12/10/03	05/44/00	05/44/02
Sample Date	05/01/03	05/01/03			05/14/03	05/14/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier	***		рН			
Compound (ug/l)	2011	0.011	0.011	0.014	0.011	0.011
1,1,1-Trichloroethane	0.3 U					
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.29 U	0.24 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U					
1,1-Dichloroethane	0.27 U					
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.62 J	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U					
1,2-Dichloroethane	0.28 U					
1,2-Dichloropropane	0.35 U					
1,3-Dichlorobenzene	0.35 U					
1,4-Dichlorobenzene	0.37 U					
1,4-Dioxane						
2-Butanone	3.8 U					
2-Chloroethyl Vinyl Ether						
2-Hexanone	2.5 U	2.5 U	2.5 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U					
Acetone	7.9 J	4.5 U				
Benzene	4.8	0.28 U				
Bromodichloromethane	0.3 U					
Bromoform	0.25 U	0.25 U	0.25 U	0.32 U	0.25 U	0.25 U
Bromomethane	0.2 U	0.2 U	0.2 U	0.34 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.33 U	0.48 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U					
Chlorobenzene	0.36 U					
Chloroethane	0.33 U					
Chloroform	0.33 U					
Chloromethane	0.14 U	0.14 U	0.14 U	0.3 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	68	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U					
Dibromochloromethane	0.28 U					
Ethylbenzene	36	0.25 U				
m,p-Xylenes	0.38 U	0.38 U	0.38 U	0.52 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.33 U	0.48 U	0.33 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 Ų	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.76 J	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	0.49 U	0.36 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	15	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U					
Trichloroethene	0.26 U	0.26 U	0.52 J	130	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U					
Trichlorotrifluoroethane (Freon 113)	1.2 U					
Vinyl chloride	0.19 U	0.19 U	0.19 U	3.7	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	ES-06	ES-09	ES-10	ES-11	ES-12	ES-17
FLUTe Sample Port						
Sample Date	05/14/03	05/01/03	05/01/03	05/14/03	02/27/03	05/16/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier						
Compound (ug/l)						
1,1,1-Trichloroethane	0.3 U	0 3 U	0.3 U	0.3 U	0.3 U	2.2 J
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0 29 U	0.29 U	0.29 U	1.4 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0 3 U	1.5 U
1,1-Dichloroethane	0.27 U	2.6 J				
1,1-Dichloroethene	0.32 U	12				
1,2-Dichlorobenzene	0.32 U	1.6 U				
1,2-Dichloroethane	0.28 U	1.4 U				
1,2-Dichloropropane	0.35 U	1.8 U				
1,3-Dichlorobenzene	0.35 U	1.8 U				
1,4-Dichlorobenzene	0.37 U	1.8 U				
1,4-Dioxane						
2-Butanone	3.8 U	19 U				
2-Chloroethyl Vinyl Ether						
2-Hexanone	2.5 U	12 U				
4-Methyl-2-pentanone (MIBK)	2.5 U	12 U				
Acetone	9.1 J,L	4.5 U	4.5 U	6.1 J,L	4.5 U	22 U
Benzene	0.28 U	1.4 U				
Bromodichloromethane	0.3 U	0.20 U	0.3 U	0.20 U	0.3 U	1.5 U
Bromoform	0.25 U	1.2 U				
Bromomethane	0.2 U	10				
Carbon disulfide	0.33 U	1.6 U				
Carbon tetrachloride	0.28 U	1.4 U				
Chlorobenzene	0.36 U	1.8 U				
Chloroethane	0.33 U	1.6 U				
Chloroform	0.33 U	1.6 U				
Chloromethane	0.32 J	0.14 U	0.14 U	0.14 U	0.14 U	0.7 U
cis-1,2-Dichloroethene	0.32 U	190				
cis-1,3-Dichloropropene	0.22 U	1.1 U				
Dibromochloromethane	0.28 U	1.4 U				
Ethylbenzene	0.25 U	1.2 U				
m,p-Xylenes	0.38 U	1.9 U				
Methylene chloride	0.33 U	1.6 U				
o-Xylene	0.24 U	1.2 U				
Tetrachloroethene	0.32 U	1.6 U				
Toluene	0.49 U	2.4 U				
trans-1,2-Dichloroethene	0.27 U	2.4 J				
trans-1,3-Dichloropropene	0.24 U	1.2 U				
Trichloroethene	10	0.26 U	0.26 U	6.3	0.26 U	530
Trichlorofluoromethane	0.34 U	1.7 U				
Trichlorotrifluoroethane (Freon 113)	1.2 U	6400				
Vinyl chloride	0.19 U	0.95 U				
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	ES-17	ES-22	ES-23	ES-23	ES-26	ES-26
FLUTe Sample Port	E0-17			E3-23 		
Sample Date	08/25/03	12/10/03	02/20/03	08/25/03	02/20/03	08/25/03
Sample Date Sample Type	Primary	Primary	Primary	Primary	Primary	Primary
Sample Type Sample Qualifier		•		•		

Compound (ug/l) 1,1,1-Trichloroethane	30 U	0.3 U	0.3 U	0.3 U	1.5 U	0.3 U
	24 U	0.3 U 0.24 U	0.3 U 0.29 U	0.3 U 0.24 U	1.5 U 1.4 U	0.3 U 0.24 U
1,1,2,2-Tetrachloroethane	30 U	0.24 U	0.29 U	0.24 U 0.3 U	1. 4 U 1.5 U	0.24 U
1,1,2-Trichloroethane 1,1-Dichloroethane	27 U	0.3 U 0.27 U	0.3 U 0.27 U	0.3 U 0.27 U	1.5 U 1.4 U	0.3 U 0.27 U
•	32 U	0.27 U	0.27 U 0.32 U	0.27 U 0.55 J	1.4 U 1.6 U	0.27 U 0.32 U
1,1-Dichloroethene	32 U	0.32 U	0.32 U	0.32 U		0.32 U 0.32 U
1,2-Dichlorobenzene					1.6 U	
1,2-Dichloroethane	28 U	0.28 U	0.28 U	0.28 U	1.4 U	0.28 U
1,2-Dichloropropane	35 U	0.35 U	0.35 U	0.35 U	1.8 U	0.35 U
1,3-Dichlorobenzene	35 U	0.35 U	0.35 U	0.35 U	1.8 U	0.35 U
1,4-Dichlorobenzene	37 U	0.37 U	0.37 U	0.37 U	1.8 U	0.37 U
1,4-Dioxane	200 11	0.011			40.11	0.011
2-Butanone	380 U	3.8 U	3.8 U	3.8 U	19 U	3.8 U
2-Chloroethyl Vinyl Ether	20011		0.511		40.11	
2-Hexanone	260 U	2.6 U	2.5 U	2.6 U	12 U	2.6 U
4-Methyl-2-pentanone (MIBK)	250 U	2.5 U	2.5 U	2.5 U	12 U	2.5 U
Acetone	710 J	4.5 U	14	4.5 U	22 U	8.1 U
Benzene	28 U	0.28 U	0.28 U	0.28 U	1.4 U	0.28 U
Bromodichloromethane	30 U	0.3 U	0.3 U	0.3 U	1.5 U	0.3 U
Bromoform	32 U	0.32 U	0.25 U	0.32 U	1.2 U	0.32 U
Bromomethane Carbon disulfide	34 U	0.34 U	0.2 U	0.34 U	1 U	0.34 U
	48 U	0.48 U	0.33 U	0.48 U	1.6 U	0.48 U
Carbon tetrachloride	28 U	0.28 U	0.28 U	0.28 U	1.4 U	0.28 U
Chlorobenzene	36 U	0.36 U	0.36 U	0.36 U	1.8 U	0.36 U
Chloroform	33 U	0.33 U	0.33 U	0.33 U	1.6 U	0.33 U
Chloroform	33 U	0.33 U	0.33 U	0.33 U	1.6 U	0.33 U
Chloromethane	30 U	0.3 U	0.28 J	0.3 U	0.7 U	0.3 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	230	18	0.32 U	2.1	1.6 U	0.32 U
Dibromochloromethane	22 U	0.22 U	0.22 U	0.22 U	1.1 U	0.22 U
	28 U	0.28 U	0.28 U	0.28 U	1.4 U	0.28 U
Ethylbenzene	25 U	0.25 U	0.25 U	0.25 U	1.2 U	0.25 U
m,p-Xylenes	52 U	0.52 U	0.38 U	0.52 U	1.9 U	0.52 U
Methylene chloride	48 U	0.48 U	0.33 U	1.3 J,L	1.6 U	0.48 U
o-Xylene	24 U	0.24 U	0.24 U	0.24 U	1.2 U	0.24 U
Tetrachloroethene	32 U	0.32 U	0.32 U	0.32 U	1.6 U	0.32 U
Toluene	36 U	0.36 U	0.49 U	0.36 U	2.4 U	0.36 U
trans-1,2-Dichloroethene	27 U	0.77 J	0.27 U	0.27 U	1.4 U ·	0.27 U
trans-1,3-Dichloropropene	24 U	0.24 U	0.24 U	0.24 U	1.2 U	0.24 U
Trichloroethene Trichlorofluoromethane	1600	140	19	43	38	37
	34 U	0.34 U	0.34 U	0.34 U	1.7 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	9600	1.2 U	1.2 U	1.2 U	330	140
Vinyl chloride	26 U	0.26 U	0.19 U	0.26 U	0.95 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	ES-27	ES-27	ES-30	ES-30	ES-30	ES-31
FLUTe Sample Port					***	***
Sample Date	02/20/03	08/25/03	02/20/03	02/20/03	08/25/03	02/19/03
Sample Type	Primary	Primary	Primary	Split	Primary	Primary
Sample Qualifier						***
Compound (ug/l)						
1,1,1-Trichloroethane	15 U	6 U	0.3 U	0.2 U	0.7 J	0.3 U
1,1,2,2-Tetrachloroethane	14 U	4.8 U	0.29 U	0.4 U	0.24 U .	0.29 U
1,1,2-Trichloroethane	15 U	6 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1-Dichloroethane	14 U	5.4 U	0.27 U	0.2 U	0.27 U	0.27 ป
1,1-Dichloroethene	16 U	6.4 U	0.4 J	0.3 U	4.1	1.4
1,2-Dichlorobenzene	16 U	6.4 U	0.32 U	0.2 U	0.32 U	0.32 U
1,2-Dichloroethane	14 U	5.6 U	0.28 U	0.2 U	0.28 U	0.28 U
1,2-Dichloropropane	18 U	7 U	0.35 U	0.4 U	0.35 U	0.35 U
1,3-Dichlorobenzene	18 U	7 U	0.35 U	0.2 U	0.35 U	0.35 U
1,4-Dichlorobenzene	18 U	7.4 U	0.37 U	0.2 U	0.37 U	0.37 U
1,4-Dioxane						
2-Butanone	190 U	76 U	3.8 U	7 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether .				0.3 U		
2-Hexanone	120 U	52 U	2.5 U	0.7 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	120 U	50 U	2.5 U	0.2 U	2.5 U	2.5 U
Acetone	220 U	90 U	16	3 U	4.5 U	9.4 J
Benzene	14 U	5.6 U	0.28 U	0.1 U	0.28 U	0.28 U
Bromodichloromethane	15 U	6 U	0.3 U	0.1 U	0.3 U	0.3 U
Bromoform	12 U	6.4 U	0.25 U	0.4 U	0.32 U	0.25 U
Bromomethane	10 U	6.8 U	0.2 U	0.5 U	0.34 U	0.2 U
Carbon disulfide	16 U	9.6 U	0.33 U	0.2 U	0.48 U	0.33 U
Carbon tetrachloride	14 U	5.6 U	0.28 U	0.3 U	0.28 U	0.28 U
Chlorobenzene	18 U	7.2 U	0.36 U	0.1 U	0.36 U	0.36 U
Chloroethane	16 U	6.6 U	0.33 U	0.3 U	0.33 U	0.33 U
Chloroform	16 U	6.6 U	0.33 U	0.2 U	0.33 U	0.33 U
Chloromethane	7 U	6 U	0.14 U	0.4 U	0.3 U	0.29 J
cis-1,2-Dichloroethene	36 J	8.8 J	0.65 J	0.2 U	7.2	0.32 U
cis-1,3-Dichloropropene	11 U	4.4 U	0.22 U	0.2 U	0.22 U	0.22 U
Dibromochloromethane	14 U	5.6 U	0.28 U	0.2 U	0.28 U	0.28 U
Ethylbenzene	12 U	5 U	0.25 U	0.2 U	0.25 U	0.25 U
m,p-Xylenes	19 U	10 U	0.38 U	0.3 U	0.52 U	0.38 U
Methylene chloride	16 U	9.6 U	0.33 U	3 U	0.48 U	0.33 U
o-Xylene	12 U	4.8 U	0.24 U	0.2 U	0.24 U	0.24 U
Tetrachloroethene	16 U	6.4 U	0.32 U	0.2 U	0.32 U	0.32 U
Toluene	24 U	7.2 U	0.49 U	0.2 U	0.36 U	0.49 U
trans-1,2-Dichloroethene	14 U	5.4 U	0.27 U	0.2 U	0.44 J	0.27 U
trans-1,3-Dichloropropene	12 U	4.8 U	0.24 U	0.2 U	0.24 U	0.24 U
Trichloroethene	820	180	79	63	110	0.48 J
Trichlorofluoromethane	17 U	6.8 U	0.34 U	0.1 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	3900	3300	1.2 U	0.1 U	16	1.2 U
Vinyl chloride	9.5 U	5.2 U	0.19 U	0.2 U	0.26 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	ES-32	HAR-03	HAR-04	HAR-11	HAR-11	HAR-14
FLUTe Sample Port					* 17-31 \- 1.1	
Sample Date	05/16/03	02/13/03	05/14/03	02/27/03	08/25/03	04/15/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier						
Compound (ug/l)						
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 J	0.3 U	0.3 U	1.1 J
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.29 U	0.29 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U				
1,1-Dichloroethane	0.27 U	0.3 U				
1,1-Dichloroethene	0.59 J	0.32 U	0.32 U	0.32 U	0.32 U	8.4
1,2-Dichlorobenzene	0.32 U	0.32 U				
1,2-Dichloroethane	0.28 U	0.28 U				
1,2-Dichloropropane	0.25 U	0.35 U	0.35 U	0.35 U	0.35 U	0.25 U
1,3-Dichlorobenzene	0.35 U	0.35 U				
1,4-Dichlorobenzene	0.37 U	0.37 U				
1,4-Dioxane						160
2-Butanone	3.8 U	3.8 UJ				
2-Chloroethyl Vinyl Ether						
2-Hexanone	2.5 U	2.5 U	2.5 U	2.5 U	2.6 U	2.5 UJ
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U				
Acetone	4.7 J,L	25	4.9 J,L	5.6 J	8.2 U	4.5 UJ
Benzene	0.28 U	0.28 U				
Bromodichloromethane	0.3 U	0.3 U				
Bromoform	0.25 U	0.25 U	0.25 U	0.25 U	0.32 U	0.25 U
Bromomethane	0.2 U	0.2 U	0.2 U	0.2 U	0.34 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.33 U	0.33 U	0.48 U	0.33 U
Carbon tetrachloride	0.28 U	1.7 J				
Chlorobenzene	0.36 U	0.36 U				
Chloroethane	0.33 U	0.33 U				
Chloroform	0.33 U	2.6				
Chloromethane	0.14 U	0.17 J	0.14 U	0.14 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	8.3	0.32 U	0.32 U	11	5.6	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U				
Dibromochloromethane	0.28 U	0.28 U				
Ethylbenzene	0.25 U	0.25 U				
m,p-Xylenes	0.38 U	0.38 U	0.38 U	0.38 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.33 U	0.33 U	0.48 U	0.33 U
o-Xylene	0.24 U	0.24 U				
Tetrachloroethene	0.32 U	0.32 U				
Toluene	0.49 U	0.49 U	0.49 U	0.49 U	0.36 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.45 J	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U				
Trichloroethene	40	3	27	0.26 U	0.26 U	4.6
Trichlorofluoromethane	0.34 U	0.34 U				
Trichlorotrifluoroethane (Freon 113)	150	1.2 U	1.2 U	1.2 U	1.2 U	
Vinyl chloride	0.19 Ų	0.19 U	0.19 U	0.39 J	0.26 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

1.1 0.24 U 0.3 U 0.27 U 9.6 0.32 U 0.29 U	HAR-15 04/15/03 Primary 0.3 U 0.29 U 0.3 U 0.27 U 0.32 U	HAR-15 12/03/03 Primary 0.3 U 0.24 U 0.3 U 0.27 U	HAR-15 12/03/03 Dup 0.3 U 0.24 U 0.3 U	HAR-27 02/13/03 Primary 0.3 U 0.29 U
12/03/03 Primary 1.1 0.24 U 0.3 U 0.27 U 9.6 0.32 U	04/15/03 Primary 0.3 U 0.29 U 0.3 U 0.27 U	12/03/03 Primary 0.3 U 0.24 U 0.3 U	12/03/03 Dup 0.3 U 0.24 U	02/13/03 Primary
1.1 0.24 U 0.3 U 0.27 U 9.6 0.32 U	0.3 U 0.29 U 0.3 U 0.27 U	Primary 0.3 U 0.24 U 0.3 U	0.3 U 0.24 U	Primary 0.3 U
1.1 0.24 U 0.3 U 0.27 U 9.6 0.32 U	0.3 U 0.29 U 0.3 U 0.27 U	0.3 U 0.24 U 0.3 U	0.3 U 0.24 U	0.3 U
0.24 U 0.3 U 0.27 U 9.6 0.32 U	0.29 U 0.3 U 0.27 U	0.3 U 0.24 U 0.3 U	0.3 U 0.24 U	0.3 U
0.24 U 0.3 U 0.27 U 9.6 0.32 U	0.29 U 0.3 U 0.27 U	0.24 U 0.3 U	0.24 U	
0.24 U 0.3 U 0.27 U 9.6 0.32 U	0.29 U 0.3 U 0.27 U	0.24 U 0.3 U	0.24 U	
0.3 U 0.27 U 9.6 0.32 U	0.3 U 0.27 U	0.3 U		0.29 U
0.27 U 9.6 0.32 U	0.27 U		0.3 U	
9.6 0.32 U		0 27 H		0.3 U
0.32 U	0.32 U		0.27 U	0.27 U
		0.32 U	0.32 U	0.32 U
0.2011				0.32 U
				0.28 U
0.35 U				0.35 U
0.35 U				0.35 U
0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
	2.54 C			atres es
3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2.6 U	2.5 U	2.6 U	2.6 U	2.5 U
2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4.5 U	4.8 U	4.5 U	4.6 J	11 U
0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
0.32 U	0.25 U	0.32 U	0.32 U	0.25 U
0.34 U	0.2 U	0.34 U	0.34 U	0.2 U
0.48 U	0.33 U	0.48 U	0.48 U	0.33 U
2.2	0.28 UJ	0.28 U	0.28 U	0.28 U
0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
2.5	0.33 U	0.33 U	0.33 U	0.33 U
0.3 U	0.14 U	0.3 U	0.3 U	0.14 U
0.32 U	0.32 U	0.32 U	0.32 U	4.9
0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
0.52 U	0.38 U	0.52 U	0.52 U	0.38 U
0.48 U	0.33 U	0.48 U	0.48 U	0.33 U
0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
0.36 U	0.49 U	0.36 U	0.36 U	0.49 U
0.27 U	0.27 U	0.27 U	0.27 U	3.5
0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
4.4	0.26 U	0.26 U	0.26 U	0.26 U
0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
11				1.2 U .
0.26 U	0.19 U			1.6
8260B	8260B	8260B	8260B	8260B
DMA	DMA	DMA	DMA	DMA
	0.28 U 0.35 U 0.37 U 3.8 U 2.6 U 2.5 U 4.5 U 0.28 U 0.32 U 0.34 U 0.34 U 0.33 U 2.5 0.3 U 0.22 U 0.22 U 0.25 U 0.25 U 0.25 U 0.24 U 0.32 U 0.24 U 0.32 U 0.24 U 0.32 U 0.32 U 0.25 U 0.28 U 0.32 U 0.33 U 0.34 U 0.35 U 0.36 U 0.27 U 0.36 U 0.36 U 0.37 U 0.38 U 0.29 U 0.39 U 0.29 U 0.39 U 0.29 U 0.39 U 0.29 U 0.39 U 0.29 U 0.30 U 0.31 U 0.22 U 0.32 U 0.33 U 0.34 U 0.35 U 0.25 U 0.36 U 0.26 U 0.36 U 0.37 U 0.38 U 0.39 U 0.39 U 0.29 U 0.39 U 0.39 U 0.39 U 0.39 U 0.29 U 0.30 U 0.31 U 0.32 U 0.32 U 0.35 U 0.36 U 0.37 U 0.38 U 0.39 U 0.30	0.28 U 0.28 U 0.35 U 0.35 U 0.35 U 0.35 U 0.37 U 0.37 U 0.37 U 0.37 U 0.38 U 0.38 U 0.38 U 0.38 U 0.25 U 0.32 U 0.32 U 0.33 U 0.32 U 0.33 U 0.32 U 0.36 U 0.33 U 0.32 U 0.25 U 0.38 U 0.39 U 0.25 U 0.39 U 0.25 U 0.39 U 0.29 U 0.30 U 0.	0.28 U 0.28 U 0.28 U 0.35 U 0.35 U 0.35 U 0.37 U 0.37 U 0.37 U 2.54 C 3.8 U 3.8 U 3.8 U 2.6 U 2.5 U 2.6 U 2.5 U 2.5 U 2.5 U 4.5 U 4.5 U 0.28 U 0.28 U 0.28 U 0.28 U 0.3 U 0.3 U 0.3 U 0.32 U 0.25 U 0.32 U 0.34 U 0.25 U 0.32 U 0.34 U 0.20 U 0.34 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.33 U 0.33 U 0.33 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.25 U 0.22 U 0.22 U 0.25 U 0.25 U 0.25 U 0.25	0.28 U 0.28 U 0.28 U 0.28 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.37 U 0.37 U 0.37 U 0.37 U 2.6 U 2.5 U 2.6 U 2.6 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 4.5 U 4.8 U 4.5 U 4.6 J 0.28 U 0.28 U 0.28 U 0.28 U 0.3 U 0.3 U 0.3 U 0.3 U 0.32 U 0.32 U 0.25 U 0.32 U 0.32 U 0.32 U 0.34 U 0.24 U 0.24 U 0.24 U 0.24 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.32 U

TABLE III
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND THE ECL FRENCH-DRAIN, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA .

VERTORY COOKITY ONER CRIMING	
Well Identifier	HAR-27
FLUTe Sample Port	
Sample Date	12/09/03
Sample Type	Primary
Sample Qualifier	
Compound (ug/l)	
1,1,1-Trichloroethane	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U
1,1,2-Trichloroethane	0.3 U
1,1-Dichloroethane	0.27 U
1,1-Dichloroethene	0.32 U
1,2-Dichlorobenzene	0.32 U
1,2-Dichloroethane	0.28 U
1,2-Dichloropropane	0.35 U
1,3-Dichlorobenzene	0.35 U
1,4-Dichlorobenzene	0.37 U
1,4-Dioxane	
2-Butanone	3.8 U
2-Chloroethyl Vinyl Ether	2.6 U
2-Hexanone	
4-Methyl-2-pentanone (MIBK)	2.5 U
Acetone	4.5 U
Benzene	0.28 U
Bromodichloromethane	0.3 U
Bromoform	0.32 U
Bromomethane	0.34 U
Carbon disulfide	0.48 U
Carbon tetrachloride	0.28 U
Chlorobenzene	0.36 U
Chloroethane	0.33 U
Chloroform	0.33 U
Chloromethane	0.3 U
cis-1,2-Dichloroethene	21
cis-1,3-Dichloropropene	0.22 U
Dibromochloromethane	0.28 U
Ethylbenzene	0.25 U
m,p-Xylenes	0.52 U
Methylene chloride	0.48 U
o-Xylene	0.24 U
Tetrachloroethene	0.32 U
Toluene	0.36 U
trans-1,2-Dichloroethene	14
trans-1,3-Dichloropropene	0.24 U
Trichloroethene	0.26 U
Trichlorofluoromethane	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U
Vinyl chloride	6.4
Analytical Method	8260B
Laboratory	DMA

AMA	=	American Analytics of Chatsworth, California.
DMA	=	Del Mar Analytical of Irvine, California.
()	=	Analysis not performed.
Primary	=	Primary sample.
Dup	=	Sample duplicate.
Split	=	Sample split.
ug/l	=	Micrograms per liter.
С	=	Possible carry-over contaminant.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
рН	=	pH of preserved sample did not meet the method preservation requirements.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range (see Appendix D for details).
L	=	Laboratory Contaminant.

Notes:

Low-level 1,4-dioxane analyses were performed on primary samples by Ceimic Corporation and on split samples by Del Mar Analytical using modified EPA method 8260 SIM.

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-01	RD-02	RD-02	RD-02	RD-02	RD-02	RD-02
FLUTe Sample Port							
Sample Date	05/07/03	02/04/03	05/05/03	08/11/03	08/11/03	11/19/03	11/19/03
Sample Type	Primary	Primary	Primary	Primary	Dup	Primary	Dup
Sample Qualifier							
Compound (ug/l)			·	· · · · · · · · · · · · · · · · · · ·		······································	
1,1,1-Trichloroethane	3 U	0.6 U	1.5 U	3 U		0.3 U	1.5 U
1,1,2,2-Tetrachloroethane	2.9 U	0.58 U	1.4 U	2.4 U		0.24 U	1.2 U
1,1,2-Trichloroethane	3 U	0.6 U	1.5 U	3 U		0.3 U	1.5 U
1,1-Dichloroethane	2.7 U	0.54 U	1.4 U	2.7 U		0.27 U	1.4 U
1,1-Dichloroethene	3.2 U	1.4 J	1.6 U	3.2 U		1.5	1.8 J
1,2-Dichlorobenzene	3.2 U	0.64 U	1.6 U	3.2 U		0.32 U	1.6 U
1,2-Dichloroethane	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U
1,2-Dichloropropane	3.5 U	0.33 U	1.8 U	3.5 U		0.35 U	1.8 U
1,3-Dichlorobenzene	3.5 U	0.7 U	1.8 U	3.5 U	***	0.35 U	1.8 U
1,4-Dichlorobenzene	3.7 U	0.74 U	1.8 U	3.7 U		0.37 U	1.8 U
1,4-Dioxane	2.67	1.82 J	2.32	1.52	1.64	1.8 U	
2-Butanone	38 U	7.6 U	19 U	38 U		3.8 U	19 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	25 U	5 U	12 U	26 U		2.6 U	13 U
4-Methyl-2-pentanone (MIBK)	25 U	5 U	12 U	25 U		2.5 U	12 U
Acetone	45 U	9 U	22 U	45 U		4.5 U	22 U
Benzene	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U
Bromodichloromethane	3 U	0.6 U	1.5 U	3 U		0.3 U	1.5 U
Bromoform	2.5 U	0.5 U	1.2 U	3.2 U		0.32 U	1.6 U
Bromomethane	2 U	0.4 U	1 U	9.9 U		0.34 U	1.7 U
Carbon disulfide	3.3 U	0.66 U	1.6 U	4.8 U		0.48 U	2.4 U
Carbon tetrachloride	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U
Chlorobenzene	3.6 U	0.72 U	1.8 U	3.6 U		0.36 U	1.8 U
Chloroethane	3.3 U	0.66 U	1.6 U	9.1 U		0.33 U	1.6 U
Chloroform	3.3 U	0.66 U	1.6 U	3.3 U		0.33 U	1.6 U
Chloromethane	1.4 U	0.28 U	0.7 U	2.7 U		0.3 U	1.5 U
cis-1,2-Dichloroethene	690	360	390	490		440	450
cis-1,3-Dichloropropene	2.2 U	0.44 U	1.1 U	2.2 U		0.22 U	1.1 U
Dibromochloromethane	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U
Ethylbenzene	2.5 U	0.5 U	1.2 U	2.5 U		0.25 U	1.2 U
m,p-Xylenes	3.8 U	0.76 U	1.9 U	5.2 U		0.52 U	2.6 U
Methylene chloride	5.7 J	0.66 U	1.6 U	7.6 J,L		0.48 U	2.4 U
o-Xylene	2.4 U	0.48 U	1.2 U	2.4 U		0.24 U	1.2 U
Tetrachloroethene	3.2 U	0.64 U	1.6 U	3.2 U		0.32 U	1.6 U
Toluene	4.9 U	0.98 U	2.4 U	3.6 U		0.36 U	1.8 U
trans-1,2-Dichloroethene	23	27	24	28		25	26
trans-1,3-Dichloropropene	2.4 U	0.48 U	1.2 U	2.4 U		0.24 U	1.2 U
Trichloroethene	970	330	330	350		280	290
Trichlorofluoromethane	3.4 U	0.68 U	1.7 U	3.4 U		0.34 U	1.7 U
Trichlorotrifluoroethane (Freon 113)	12 U	2.4 U	6 U	12 U		1.2 U	6 U
Vinyl chloride	6	10	7.5	6.5		7.2	6.9
Analytical Method	8260B	8260B	8260B	8260B	8260 SIM	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	Ceimic	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier ·	RD-03	RD-03	RD-03	RD-04	RD-04	RD-04	RD-04
FLUTe Sample Port							
Sample Date	02/18/03	02/18/03	08/15/03	02/03/03	05/07/03	05/07/03	08/20/03
Sample Type	Primary	Dup	Primary	Primary	Primary	Split	Primary
Sample Qualifier						***	
Compound (ug/l)			<u> </u>				
1,1,1-Trichloroethane	0.3 U		0.3 U				
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.24 U	0.29 U	0.29 U		0.24 U
1,1,2-Trichloroethane	0.3 U		0.3 U				
1,1-Dichloroethane	0.27 U	0.27 U	0.27 ป	0.27 U	0.27 U		0.27 U
1,1-Dichloroethene	0.32 U		0.32 U				
1,2-Dichlorobenzene	0.32 U	***	0.32 U				
1,2-Dichloroethane	0.28 U		0.28 U				
1,2-Dichloropropane	0.35 U		0.35 U				
1,3-Dichlorobenzene	0.35 U		0.35 U				
1,4-Dichlorobenzene	0.37 U		0.37 U				
1,4-Dioxane		***		0.265 J	0.331 U	0.45 U	0.249 U
2-Butanone	3.8 U		3.8 U				
2-Chloroethyl Vinyl Ether		**-				***	
2-Hexanone	2.5 U	2.5 U	2.6 U	2.5 U	2.5 U		2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U		2.5 U				
Acetone	4.5 U	***	4.5 U				
Benzene	0.28 U		0.28 U				
Bromodichloromethane	0.3 U		0.3 U				
Bromoform	0.25 U	0.25 U	0.32 U	0.25 U	0.25 U		0.32 U
Bromomethane	0.2 U	0.2 U	0.34 U	0.2 U	0.2 U	***	0.34 U
Carbon disulfide	0.33 U	0.33 U	0.48 U	0.33 U	0.33 U		0.48 U
Carbon tetrachloride	0.28 U		0.28 U				
Chlorobenzene	0.36 U		0.36 U				
Chloroethane	0.33 U		0.33 U				
Chloroform	0.33 U		0.33 U				
Chloromethane	0.14 U	0.14 U	0.3 U	0.14 U	0.14 U		0.3 U
cis-1,2-Dichloroethene	1	1.1	2	13	13		14
cis-1,3-Dichloropropene	0.22 U		0.22 U				
Dibromochloromethane	0.28 U		0.28 U				
Ethylbenzene	0.25 U		0.25 U				
m,p-Xylenes	0.38 U	0.38 U	0.52 U	0.38 U	0.38 U		0.52 U
Methylene chloride	0.33 U	0.33 U	0.48 U	0.33 U	0.33 U		0.48 U
o-Xylene	0.24 U		0.24 U				
Tetrachloroethene	0.32 U		0.32 U				
Toluene	0.49 U	0.49 U	0.36 U	0.49 U	0.49 U		0.36 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.4 J	0.32 J	0.28 J		0.41 J
trans-1,3-Dichloropropene	0.24 U		0.24 U				
Trichloroethene	0.26 U	0.26 U	0.26 U	62	60		71
Trichlorofluoromethane	0.34 U	The state of the s	0.34 U				
Trichlorotrifluoroethane (Freon 113)	1.2 U		1.2 U				
Vinyl chloride	0.19 U	0.19 U	0.26 U	0.19 U	0.19 U	~	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260SIM	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

: :

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-04	RD-05A	RD-05A	RD-05B	RD-05B	RD-05B	RD-05B
FLUTe Sample Port							
Sample Date	11/20/03	01/31/03	08/07/03	01/31/03	05/09/03	05/09/03	08/08/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Dup	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.29 U	0.24 U	0.29 U	0.29 U	0.29 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0.23 U	0.3 U	0.23 U	0.3 U	0.3 U	0.24 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.32 U	0.32 U	0.28 U	0.32 U	0.28 U
1,2-Dichloropropane	0.35 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.35 U 0.37 U	0.33 U 0.37 U	0.35 U	0.33 U 0.37 U	0.33 U 0.37 U	0.33 U 0.37 U
1,4-Dioxane	0.37 U		0.37 0	0.57 0			
2-Butanone	3.8 U	 3.8 U	3.8 U	3.8 U	3.8 U	 3.8 U	 3.8 U
2-Chloroethyl Vinyl Ether	3.6 0	J.0 U	J.6 U	3.6 0		J.0 U	3.6 U
2-Hexanone	2.6 U	2.5 U	2.6 U	2.5 U	2.5 U	2.5 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 J,L	4.5 U	4.5 U	4.5 U	4.5 U	2.5 U	4.5 U
Benzene	4.5 3,L 0.28 U	4.5 U 0.28 U	4.5 U	4.5 U 0.28 U	4.5 U 0.28 U	4.5 U	4.5 U
Bromodichloromethane	0.26 U	0.28 U	0.26 U	0.26 U	0.28 U	0.26 U	0.28 U
Bromoform	0.3 U	0.3 U 0.25 U	0.3 U 0.32 U	0.3 U 0.25 U	0.3 U	0.3 U 0.25 U	0.3 U 0.32 U
Bromomethane	0.32 U	0.25 U	0.32 U 0.99 U	0.25 U	0.25 U	0.25 U	0.32 U 0.99 U
Carbon disulfide	0.34 U 0.48 U			0.2 U 0.33 U			
Carbon distince Carbon tetrachloride	0.48 U 0.28 U	0.33 U	0.48 U 0.28 U		0.33 U 0.28 U	0.33 U	0.48 U
Chlorobenzene	0.26 U	0.28 U	0.26 U	0.28 U 0.36 U	0.26 U	0.28 U	0.28 U
Chloroethane	0.36 U	0.36 U 0.33 U	0.36 U 0.91 U	0.36 U 0.33 U	0.36 U 0.33 U	0.36 U	0.36 U
Chloroform	0.33 U	0.33 U 0.33 U	0.91 U 0.33 U	0.33 U	0.33 U	0.33 U	0.91 U
Chloromethane	0.33 U 0.3 U		0.33 U 0.27 U			0.33 U	0.33 U
cis-1,2-Dichloroethene	14	0.14 U	0.27 U 0.32 U	0.14 U	0.14 U 0.32 U	0.14 U	0.27 U
cis-1,3-Dichloropropene	0.22 U	0.32 U 0.22 U	0.32 U 0.22 U	0.32 U 0.22 U	0.32 U 0.22 U	0.32 U	0.32 U 0.22 U
Dibromochloromethane	0.22 U		0.22 U 0.28 U			0.22 U	
Ethylbenzene	0.25 U	0.28 U		0.28 U	0.28 U	0.28 U	0.28 U
m,p-Xylenes	0.25 U 0.52 U	0.25 U	0.25 U 0.52 U	0.25 U	0.25 U	0.25 U	0.25 U
Methylene chloride		0.38 U		0.38 U	0.38 U	0.38 U	0.52 U
o-Xylene	2.8 J,L	6 U	0.48 U	5.1 U	0.33 U	0.33 U	1.1 J,L 0.24 U
Tetrachloroethene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	
Toluene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
trans-1,2-Dichloroethene	0.36 U	0.49 U	0.36 U	0.49 U	0.49 U	0.49 U	0.36 U
	0.33 J	0.27 U					
trans-1,3-Dichloropropene Trichloroethene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichlorofluoromethane	79 0.34 !!	0.26 U	0.26 U	0.26 U	0.48 J	0.6 J	0.26 U
4	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113) Vinyl chloride	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
	0.26 U	0.19 U	0.26 U	0.19 U	0.19 U	0.19 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-05B	RD-05B	RD-05B	RD-05C	RD-05C	RD-05C	RD-05C
FLUTe Sample Port							
Sample Date	11/10/03	11/10/03	11/10/03	01/31/03	05/09/03	08/08/03	11/11/03
Sample Type	Primary	Dup	Split	Primary	Primary	Primary	Primary
Sample Qualifier			***				
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0 3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.4 U	0.29 U	0.29 U	0.24 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	7 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether			0.3 U				
2-Hexanone	2.6 U	2.6 U	0.7 U	2.5 Ų	2.5 U	2.6 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	3 U	4.5 U	4.5 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.1 U	0.28 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	0.1 U	0.3 ป	0.3 U	0.3 U	0.3 U
Bromoform	0.32 U	0.32 U	0.4 U	0.25 U	0.25 U	0.32 U	0.32 U
Bromomethane	0.34 U	0.34 U	0.5 U	0.2 U	0.2 U	0.99 U	0.34 U
Carbon disulfide	0.48 U	0.48 U	0.2 U	0.34 J	0.33 U	0.48 U	0.48 U
Carbon tetrachloride	0.28 U	0.28 U	0.3 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.1 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U	0.91 U	0.33 U
Chloroform	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.3 U	0.3 U	0.4 U	0.14 U	0.14 U	0.27 U	0.3 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.2 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.52 U	0.52 U	0.3 U	0.38 U	0.38 U	0.52 U	0.52 U
Methylene chloride	0.48 U	0.48 U	3 U	6.9 U	0.33 U	0.48 U	0.48 U
o-Xylene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0 .36 ∪	0.36 U	0.2 U	0.49 U	0.49 U	0.36 U	0.36 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0.2 U	0.26 U	0.45 J	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	0.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.26 U	0.26 U	0.2 U	0.19 U	0.19 U	0.26 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	AMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-06	RD-06	RD-06	RD-07	RD-07	RD-09	RD-10
FLUTe Sample Port				Z3	Z13		Comp
Sample Date	02/18/03	05/09/03	08/20/03	01/29/03	08/28/03	02/26/03	01/28/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)			·				
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U 🕝	0.29 U	0.24 U	0.29 U	0.24 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							0.448 J
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.5 U	2.6 U	2.5 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	4.5 U	5.8 J	4.5 U	12	4.5 U
Benzene	0.28 U	0.28 ป	0.28 U	0.67 J,F	0.54 F	0.36 J	0.28 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	0.25 U	0.25 U	0.32 U	0.25 U	0.32 U	0.25 U	0.25 U
Bromomethane	0.2 U ′	0.2 U	0.34 U	0.2 U	0.34 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.3 6 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.14 U	0.3 U	0.14 U	0.3 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	1.2	28	15	13
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.38 U	0.52 U	0.38 U	0.52 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	0.36 U	0.49 U	0.36 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.4 J	8.6	4.9	0.46 J
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0.26 U	8.4	1.6	55	6.6
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.19 U	0.26 U	0.19 U	0.26 U	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	, RD-10	RD-13	RD-13	RD-13	RD-13	RD-13	RD-14
FLUTe Sample Port	Comp						
Sample Date	04/30/03	02/07/03	02/07/03	05/13/03	11/12/03	11/12/03	02/26/03
Sample Type	Primary	Primary	Dup	Primary	Primary	Split	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U ·	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.29 U	0.29 U	0.24 U	0.4 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.2 U	0.3 U				
1,1-Dichloroethane	0.27 U	0.2 U	0.27 U				
1,1-Dichloroethene	0.32 U	0.3 U	0.32 U				
1,2-Dichlorobenzene	0.32 U	0.2 U	0.32 U				
1,2-Dichloroethane	0.28 U	0.2 U	0.28 U				
1,2-Dichloropropane	0.35 U	0.4 U	0.35 U				
1,3-Dichlorobenzene	0.35 U	0.2 U	0.35 U				
1,4-Dichlorobenzene	0.37 U	0.2 U	0.37 U				
1,4-Dioxane	0.07 U						
2-Butanone	3.8 U	7 U	3.8 U				
2-Chloroethyl Vinyl Ether		***				0.3 U	
2-Hexanone	2.5 U	2.5 U	2.5 U	2.5 U	2.6 U	0.7 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	0.2 U	2.5 U				
Acetone	9.4 J,F	4.5 U	4.5 U	7.5 J,L	4.5 U	3 U	4.5 U
Benzene	0.28 U	0.1 U	0.28 U				
Bromodichloromethane	0.3 U	0.1 U	0.3 U				
Bromoform	0.25 U	0.25 U	0.25 U	0.25 U	0.32 U	0.4 U	0.25 U
Bromomethane	0.2 U	0.2 U	0.2 U	0.2 Ų	0.34 U	0.5 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.33 U	0.33 U	0.48 U	0.2 U	0.33 U
Carbon tetrachloride	0.28 U	0.3 U	0.28 U				
Chlorobenzene	0.39 J,F	0.36 U	0.36 U	0.36 U	0.36 U	0.1 U	0.36 U
Chloroethane	0.33 U	0.3 U	0.33 U				
Chloroform	0.33 U	0.2 U	0.33 U				
Chloromethane	0.14 U	0.14 U	0.14 U	0.14 U	0.3 U	0.4 U	0.14 U
cis-1,2-Dichloroethene	12	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.2 U	0.22 U				
Dibromochloromethane	0.28 U	0.2 U	0.28 U				
Ethylbenzene	0.25 U	0.2 U	0.25 U				
m,p-Xylenes	0.38 U	0.38 U	0.38 U	0.38 U	0.52 U	0.3 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.33 U	0.33 U	0.48 U	3 U	0.33 U
o-Xylene	0.24 U	0.2 U	0.24 U				
Tetrachloroethene	0.32 U	0.2 U	0.32 U				
Toluene	0.49 U	0.49 U	0.49 U	0.49 U	1.7	1.3	0.49 U
trans-1,2-Dichloroethene	0.47 J,F	0.27 U	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.2 U	0.24 U				
Trichloroethene	4.9	1.4	1.3	0.26 U	0.66 J	0.2 U	4.3
Trichlorofluoromethane	0.34 U	0.1 U	0.34 U				
Trichlorotrifluoroethane (Freon 113)	1.2 U	0.2 U	1.2 U				
Vinyl chloride	0.19 U	0.19 U	0.19 U	0.19 U	0.26 U	0.2 U	0.19 U
Analytical Method	8260B						
Laboratory	DMA	DMA	DMA	DMA	DMA	AMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-15	RD-16	RD-16	RD-16	RD-16	RD-16	RD-17
FLUTe Sample Port							
Sample Date	02/26/03	02/26/03	05/13/03	05/13/03	08/15/03	11/10/03	02/24/03
Sample Type	Primary	Primary	Primary	Split	Primary	Primary	Primary
Sample Qualifier							pН
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.29 U	0.4 U	0.24 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							-
2-Butanone	3.8 U	3.8 U	3.8 U	7 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether				0.3 U			
2-Hexanone	2.5 U	2.5 U	2.5 U	0.7 U	2.6 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	4.5 U	3 U	4.5 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.28 U	0.1 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.1 U	0.3 U	0.3 U	0.3 U
Bromoform	0.25 U	0.25 U	0.25 U	0.4 U	0.32 U	0.32 U	0.25 U
Bromomethane	0.2 U	0.2 U	0.2 U	0.5 U	0.34 U	0.34 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.33 U	0.2 U	0.48 U	0.48 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.3 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.1 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.29 J	0.14 U	0.4 U	0.3 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.2 ป	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.2 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.38 U	0.38 U	0.3 U	0.52 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.33 U	3 U	0.48 U	0.48 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	0.49 U	0.2 U	0.36 U	0.36 U	0.49 U
rans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U
rans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0.26 U	0.2 U	0.26 U	0.26 U	1.6
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	0.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.19 U	0.19 U	0.2 U	0.26 U	0.26 U	0.19 U
Analytical Method	8260B						
Laboratory	DMA	DMA	DMA	AMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-18	RD-18	RD-18	RD-18	RD-19	RD-19	RD-19
FLUTe Sample Port							
Sample Date	02/17/03	05/13/03	08/14/03	11/19/03	02/26/03	05/06/03	05/06/03
Sample Type _	Primary	Primary	Primary	Primary	Primary	Primary	Dup
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0 3 U	0.3 U					
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.24 U	0.24 U	0.29 U	0 29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0 3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U						
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 ป	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U						
1,2-Dichloroethane	0.28 U						
1,2-Dichloropropane	0.35 U						
1,3-Dichlorobenzene	0.35 U						
1,4-Dichlorobenzene	0.37 U						
1,4-Dioxane							
2-Butanone	38U	3.8 U					
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.5 U	2.6 U	2.6 U	2.5 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U						
Acetone	8.8 J,L	5.8 J,L	4.5 U	4.5 U	4.5 U	4.8 U	5.7 U
Benzene	0.28 U						
Bromodichloromethane	0.3 U	0.3 ป	0.3 U				
Bromoform	0.25 U	0.25 U	0.32 U	0.32 U	0.25 U	0.25 U	0.25 U
Bromomethane	0.2 U	0.2 U	0.34 U	0.34 U	0.2 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.48 U	0.48 U	0.33 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U						
Chlorobenzene	0.36 U						
Chloroethane	0.33 U						
Chloroform	0.33 U						
Chloromethane	0.3 J	0.28 J	0.3 U	0.3 U	0.14 U	0.14 U	0.14 U
is-1,2-Dichloroethene	0.32 U						
cis-1,3-Dichloropropene	0.22 U						
Dibromochloromethane	0.28 U						
Ethylbenzene	0.25 U						
n,p-Xylenes	0.38 U	0.38 U	0.52 U	0.52 U	0.38 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.48 U	0.48 U	0.33 U	0.33 U	0.33 U
o-Xylene	0.24 U						
Tetrachloroethene	0.32 U						
oluene	0.49 U	0.49 U	0.36 U	0.36 U	0.49 U	0.49 U	0.49 U
rans-1,2-Dichloroethene	0.27 U						
rans-1,3-Dichloropropene	0.24 U						
richloroethene	0.26 U						
richlorofluoromethane	0.34 U						
Frichlorotrifluoroethane (Freon 113)	1.2 U						
/inyl chloride	0.19 U	0.19 U	0.26 U	0.26 U	0.19 U	0.19 U	0.19 U
Analytical Method	8260B						
aboratory	DMA						

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-19	RD-19	RD-20	RD-21	RD-21	RD-21	RD-21
FLUTe Sample Port				Z2	Z2	Z2	Z2
Sample Date	08/14/03	12/10/03	02/14/03	02/25/03	08/28/03	11/17/03	11/17/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Dup
Sample Qualifier				pН			
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U						
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.29 U	0.29 U	0.24 U	0.24 U	0.24 U
1,1,2-Trichloroethane	0.3 U						
1,1-Dichloroethane	0.27 U						
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.33 J	0.32 J	0.32 U
1,2-Dichlorobenzene	0.32 U						
1,2-Dichloroethane	0.28 U						
1,2-Dichloropropane	0.35 U						
1,3-Dichlorobenzene	0.35 U						
1,4-Dichlorobenzene	0.37 U						
1,4-Dioxane							
2-Butanone	3.8 U						
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.6 U	2.6 U	2.5 U	2.5 U	2.6 U	2.6 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U						
Acetone	4.5 U						
Benzene	0.28 U	0.28 U	0.28 U	0.63 F	0.69 F	0.28 J,F	0.28 U
Bromodichloromethane	0.3 U						
Bromoform	0.32 U	0.32 U	0.25 U	0.25 U	0.32 U	0.32 U	0.32 U
Bromomethane	0.34 U	0.34 U	0.2 U	0.2 U	0.34 U	0.34 U	0.34 U
Carbon disulfide	0.48 U	0.48 U	4.9 J	0.33 U	0.48 U	0.82 U	0.48 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	7.4	8.3	7.3	8.1
Chlorobenzene	0.36 U						
Chloroethane	0.33 U						
Chloroform	0.33 U	0.33 U	0.33 U	5.5	7.3	3.2	3
Chloromethane	0.3 U	0.3 U	0.15 J	0.14 U	0.3 U	0.3 U	0.3 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.63 J	190	170	150
cis-1,3-Dichloropropene	0.22 U						
Dibromochloromethane	0.28 U						
Ethylbenzene	0.25 U						
m,p-Xylenes	0.52 U	0.52 U	0.38 U	0.38 U	0.52 U	0.52 U	0.52 U
Methylene chloride	0.48 U	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	0.48 U
o-Xylene	0.24 U						
Tetrachloroethene	0.32 U						
Toluene	0.36 U	0.36 U	0.49 U	8.4 F	8.3 F	5 F	4.4 F
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0.85 J	4.4	0.93 J
trans-1,3-Dichloropropene	0.24 U						
Trichloroethene	0.26 U	0.26 U	0.26 U	67	84	69	70
Trichlorofluoromethane	0.34 U						
Trichlorotrifluoroethane (Freon 113)	1.2 U						
Vinyl chloride	0.26 U	0.26 U	0.19 U	0.19 U	0.26 U	0.26 U	0.26 U
Analytical Method	8260B						
Laboratory	DMA						

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

RD-21	RD-22	RD-22	RD-22	RD-22	RD-22	RD-22
Z 2	Z 2	Z2	Z2	Z2	Z 2	Z2
			04/30/03	04/30/03	08/27/03	11/17/03
						Primary
				·		
· · · · · · · · · · · · · · · · · · ·					·····	
0.2 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
						0.24 U
						0.3 U
						0.27 U
						0.32 U
						0.32 U
						0.28 U
						0.35 U
						0.35 U
						0.37 U
			3.811			3.8 U
						2.6 U
						2.5 U
						4.5 U
						0.28 U
						0.3 U
						0.32 U
						0.34 U
						0.48 U
						0.48 U
						0.36 U
						0.33 U
						0.33 U
						0.3 U
						0.32 U
						0.22 U
						0.28 U
						0.25 U
						0.52 U
						0.48 U
		•				0.24 U
						0.32 U
						0.63 J,F
						0.27 U
						0.24 U
						1.3 U
						0.34 U
						1.2 U
						0.26 U
8260B	8260B	8260B	8260B	8260B		8260B
	Z2 11/17/03 Split 0.2 U 0.4 U 0.2 U 0.1 U 0.1 U 0.5 U 0.5 U 0.2 U 0.4 U 0.5 U	Z2 Z2 11/17/03 02/24/03 Split Primary pH 0.2 U 0.3 U 0.4 U 0.29 U 0.2 U 0.3 U 0.2 U 0.32 U 0.2 U 0.32 U 0.2 U 0.35 U 0.7 U 2.5 U 0.3 U 7 U 3.8 U 0.3 U 0.2 U 2.5 U 0.2 U 2.5 U 0.2 U 0.25 U 0.2 U 0.28 U 0.1 U 0.36 U 0.3 U 0.33 U 0.4 U 0.14 U 180 0.32 U 0.2 U 0.28 U	Z2 Z2 Z2 11/17/03 02/24/03 02/24/03 Split Primary Split pH 0.2 U 0.3 U 0.2 U 0.4 U 0.29 U 0.4 U 0.2 U 0.3 U 0.2 U 0.2 U 0.3 U 0.2 U 0.3 U 0.32 U 0.2 U 0.2 U 0.32 U 0.2 U 0.2 U 0.35 U 0.2 U 0.2 U 0.35 U 0.2 U 0.2 U 0.35 U 0.2 U 0.2 U 0.37 U 0.2 U 0.2 U 0.37 U 0.2 U 0.3 U 0.7 U 0.2 U 0.3 U 0.3 U 0.7 U 0.2 U 2.5 U 0.2 U 0.1 U 0.36 U 0.1 U 0.1 U 0.30 U 0.1 U 0.4 U 0.2 U 0.5 U 0.2 U 0.2 U 0.5 U 0.2 U 0.2 U 0.2 U	Z2 Z2 Z2 Z2 Z2 11/17/03 02/24/03 02/24/03 04/30/03 Split Primary Split Primary pH 0.2 U 0.3 U 0.2 U 0.3 U 0.4 U 0.29 U 0.4 U 0.29 U 0.2 U 0.3 U 0.2 U 0.3 U 0.2 U 0.32 U 0.2 U 0.32 U 0.2 U 0.32 U 0.2 U 0.32 U 0.2 U 0.32 U 0.2 U 0.32 U 0.2 U 0.35 U 0.2 U 0.35 U 0.2 U 0.35 U 0.2 U 0.37 U 0.2 U 0.35 U 0.2 U 0.37 U 0.2 U 2.5 U 0.3 U 0.3 U	Z2 Z1/17/03 04/30/03 04/30/03 04/30/03 O4/30/03 O4/	The color of the

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-23	RD-23	RD-24	RD-24	RD-25	RD-25	RD-26
FLUTe Sample Port	Z1	Z 1					***
Sample Date	02/26/03	08/26/03	02/12/03	11/14/03	02/24/03	11/13/03	05/15/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier					pН		
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.29 U	0.24 U	0.29 ป	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.5 J	0.27 U				
1,1-Dichloroethene	0.32 U	2	0.32 U				
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.65	0.28 U				
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 ป	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.6 U	2.5 U	2.6 U	2.5 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	15 F	4.5 U	4.5 U	4.5 U	4.5 U	5.7 J,L	4.5 U
Benzene	0.91 F	0.6 L	0.28 U				
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	0.25 U	0.32 U	0.25 U	0.32 U	0.25 U	0.32 U	0.25 U
Bromomethane	0.2 U	0.34 U	0.2 U	0.34 U	0.2 U	0.34 U	0.2 U
Carbon disulfide	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.3 U	0.14 U	0.3 U	0.14 U	0.3 ป	0.14 U
cis-1,2-Dichloroethene	8	16	0.32 U	0.32 U	0.34 J	1.1	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.52 U	0.38 U	0.52 U	0.38 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.56 J	0.44 J	6.2	27	0.32 U
Toluene	1.5 F	9 F	0.49 U	0.36 U	0.49 U	0.36 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	37	48	0.26 U	0.26 U	0.8 J	1.1	3.4
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.26 U	0.19 U	0.26 U	0.19 U	0.26 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-26	RD-26	RD-27	RD-27	RD-28	RD-28	RD-29
FLUTe Sample Port	***						
Sample Date	08/21/03	08/21/03	02/21/03	11/14/03	02/24/03	11/14/03	05/13/03
Sample Type	Primary	Dup	Primary	Primary	Primary	Primary	Primary
Sample Qualifier					рН		
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.29 U	0.24 U	0.29 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 ป
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane				-			
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.6 U	2.6 U	2.5 U	2.6 U	2.5 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	7.3 U	5.6 U	4.5 U	4.5 U	4.5 U	4.5 U	8.2 J,L
Benzene	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	0.32 U	0.32 U	0.25 U	0.32 U	0.25 U	0.32 U	0.25 U
Bromomethane	0.34 U	0.34 U	0.2 U	0.34 U	0.2 U	0.34 U	0.2 U
Carbon disulfide	0.48 U	0.48 U	0.33 U	0.48 U	0.33 U	0.48 U	1.8 J
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.36 J,S	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.3 U	0.3 U	0.14 U	0.3 U	0.14 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.52 U	0.52 U	0.38 U	0.52 U	0.38 U	0.52 U	0.38 U
Methylene chloride	0.48 U	0.48 U	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U
o-Xylene	0.24 U	0.40 U	0.33 U 0.24 U	0.44 U	0.33 U 0.24 U	0.40 U	0.24 U
Tetrachloroethene	0.32 U	0.24 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.36 U	0.36 U	0.49 U	0.36 U	0.49 U	0.36 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.30 U	0.43 U	0.37 U	0.43 U	0.30 U	0.43 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.27 U	0.24 U	0.24 U
Trichloroethene	5.9	6	0.24 U	0.24 U	0.24 U	0.24 U	1.4
Trichlorofluoromethane	0.34 U	0.34 U	0.26 U	0.26 U	0.26 U	0.26 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.26 U	0.26 U	0.19 U	0.26 U	0.19 U	0.26 U	0.19 U
Analytical Method	8260B		8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	8260B DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-30	RD-30	RD-31	RD-32	RD-32	RD-33A	RD-33A
FLUTe Sample Port			Z 7			Z4	Z4
Sample Date	02/07/03	11/14/03	01/27/03	02/21/03	05/13/03	01/30/03	01/30/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Dup
Sample Qualifier						***	
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 ป	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 ប	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.6 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	4.5 U	4.5 U	5.7 J,L	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.3 J,F	0.28 U	0.28 U	1 F	1 F
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	0.25 U	0.32 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromomethane	0.2 U	0.34 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.48 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.3 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.76 J	0.55 J	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.52 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.48 U	0.33 U	0.33 U	0.33 U	3 U	12 L
o-Xylene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.36 U	0.49 U	0 .49 U	0.49 U	35 F	31 F
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0 .27 U	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	7.1	8.2	0.59 J	0.26 U	0.26 U	0.66 J	0.53 J
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.26 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-33A	RD-33B	RD-33B	RD-33B	RD-33C	RD-33C	RD-33C
FLUTe Sample Port	Z2						
Sample Date	08/27/03	02/11/03	05/14/03	11/13/03	02/10/03	05/13/03	11/13/03
Sample Type	Primary						
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.81 J	0.3 U				
1,1,2,2-Tetrachloroethane	0.24 U	0.29 U	0.29 U	0.24 U	0.29 U	0.29 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0 3 U	0.3 U				
1,1-Dichloroethane	0.27 U						
1,1-Dichloroethene	0.32 U						
1,2-Dichlorobenzene	0.32 U						
1,2-Dichloroethane	0.28 U						
1,2-Dichloropropane	0.35 U						
1,3-Dichlorobenzene	0.35 U						
1,4-Dichlorobenzene	0.37 U						
1,4-Dioxane							
2-Butanone	3.8 U						
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.6 U	2.5 U	2.5 U	2.6 U	2.5 U	2.5 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U						
Acetone	7.2 U	8.3 J,L	6.5 J,L	4.5 U	4.5 U	8.6 J,L	4.5 U
Benzene	0.63 F	0.28 U					
Bromodichloromethane	0.3 U						
Bromoform	0.32 U	0.25 U	0.25 U	0.32 U	0.25 U	0.25 U	0.32 U
Bromomethane	0.34 U	0.2 U	0.2 U	0.34 U	0.2 U	0.2 U	0.34 U
Carbon disulfide	0.48 U	0.33 U	0.33 U	1 J,S	0.33 U	0.33 U	0.48 U
Carbon tetrachloride	0.28 U						
Chlorobenzene	0.36 U						
Chloroethane	0.33 U						
Chloroform	0.33 U						
Chloromethane	0.3 U	0.14 U	0.14 U	0.3 U	0.14 U	0.14 U	0.3 U
cis-1,2-Dichloroethene	0.32 U						
cis-1,3-Dichloropropene	0.22 U						
Dibromochloromethane	0.28 U						
Ethylbenzene	0.25 U	0.25 ป	0.25 U				
m,p-Xylenes	0.52 U	0.38 U	0.38 U	0.52 U	0.38 U	0.38 U	0.52 U
Methylene chloride	0.48 U	0.33 U	0.33 U	0.48 U	0.33 U	0.33 U	0.48 U
o-Xylene	0.24 U						
Tetrachloroethene	0.32 U						
Toluene	2.6 U	0.49 U	0.49 U	0.36 U	0.49 U	0.49 U	0.36 U
trans-1,2-Dichloroethene	0.27 U	0.27 ป	0.27 U				
trans-1,3-Dichloropropene	0.24 U						
Trichloroethene	0.26 U						
Trichlorofluoromethane	0.34 U						
Trichlorotrifluoroethane (Freon 113)	1.2 U						
Vinyl chloride	0.26 U	0.19 U	0.19 U	0.26 U	0.19 U	0.19 U	0.26 U
Analytical Method	8260B						
Laboratory	DMA						

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-34A	RD-34B	RD-34B	RD-34C	RD-34C	RD-34C	RD-35A
FLUTe Sample Port							
Sample Date	05/16/03	02/06/03	11/13/03	02/06/03	11/13/03	11/13/03	02/14/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Dup	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	1.9					
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.24 U	0.29 U	0.24 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U						
1,1-Dichloroethane	0.27 U	0.41 J					
1,1-Dichloroethene	0.32 U	33					
1,2-Dichlorobenzene	0.32 U						
1,2-Dichloroethane	0.28 U						
1,2-Dichloropropane	0.35 U						
1,3-Dichlorobenzene	0.35 U						
1,4-Dichlorobenzene	0.37 U						
1,4-Dioxane							
2-Butanone	3.8 U						
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.5 U	2.6 U	2.5 U	2.6 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	6.6 J	2.5 U	2.5 U	2.5 U	2.5 Ų	2.5 U
Acetone	5 J,L	4.5 U					
Benzene	0.28 U						
Bromodichloromethane	0.3 U						
3romoform	0.25 U	0.25 U	0.32 U	0.25 U	0.32 U	0.32 U	0.25 U
3romomethane	0.2 U	0.2 U	0.34 U	0.2 U	0.34 U	0.34 U	0.2 U
Carbon disulfide	0.59 J	0.33 U	0.48 U	0.33 U	0.48 U	0.48 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 J					
Chlorobenzene	0.36 U						
Chloroethane	0.33 U						
Chloroform	0.33 U	0.56 J					
Chloromethane	0.14 U	0.14 U	0.3 U	0.14 U	0.3 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.89 J	0.32 U	0.32 U	0.32 U	0.32 U	5.2
cis-1,3-Dichloropropene	0.22 U						
Dibromochloromethane	0.28 U						
Ethylbenzene	0.25 U						
n,p-Xylenes	0.38 U	0.38 U	0.52 U	0.38 U	0.52 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.48 U	0.33 U	0.48 U	0.48 U	0.33 U
o-Xylene	0.24 U						
Tetrachloroethene	0.32 U	9.6					
Foluene	0.49 U	0.49 U	0.36 U	0.49 U	0.36 U	0.36 U	0.49 U
rans-1,2-Dichloroethene	0.27 U						
rans-1,3-Dichloropropene	0.24 U						
Frichloroethene	1.4	1.6	0.58 J	0.26 U	0.26 U	0.26 U	840
Frichlorofluoromethane	0.34 U						
Frichlorotrifluoroethane (Freon 113)	1.2 U	260					
√inyl chloride	0.19 U	0.19 U	0.26 U	0.19 U	0.26 U	0.26 U	0.19 U
Analytical Method	8260B						
aboratory	DMA						

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-35B	RD-36B	RD-36C	RD-36D	RD-37	RD-37	RD-37
FLUTe Sample Port							
Sample Date	02/19/03	02/12/03	02/13/03	02/13/03	02/14/03	02/17/03	02/17/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Split
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	7.5 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.2 U
1,1,2,2-Tetrachloroethane	7.2 U	0.29 U	0 .29 U	0.29 U	0.29 U	0.29 U	0.4 U
1,1,2-Trichloroethane	7.5 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.2 U
1,1-Dichloroethane	11 J	0.27 U	0.73 J	0.27 U	0.27 U	0.27 U	0.2 U
1,1-Dichloroethene	240	0.32 U	3.7	0.32 U	0.32 U	0.32 U	0.3 U
1,2-Dichlorobenzene	8 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U
1,2-Dichloroethane	7 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.2 U
1,2-Dichloropropane	8.8 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.4 U
1,3-Dichlorobenzene	8.8 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.2 U
1,4-Dichlorobenzene	9.2 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.2 U
1,4-Dioxane		**-				±	
2-Butanone	95 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	7 U
2-Chloroethyl Vinyl Ether							0.3 U
2-Hexanone	62 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.7 U
4-Methyl-2-pentanone (MIBK)	62 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.2 U
Acetone	110 U	4.5 U	6.9 U	4.5 U	4.5 J,L	11 U	28
Benzene	7 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.1 U
Bromodichloromethane	7.5 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.1 U
Bromoform	6.2 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.4 U
Bromomethane	5 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U
Carbon disulfide	8.2 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.2 U
Carbon tetrachloride	7 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.3 U
Chlorobenzene	9 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.1 U
Chloroethane	8.2 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.3 U
Chloroform	8.2 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.2 U
Chloromethane	3.5 U	0.14 U	0.14 U	0.14 U	0.14 U	0.29 U	0.4 U
cis-1,2-Dichloroethene	1100	0.32 U	61	0.32 _. U	0.32 U	0.32 U	0.2 U
cis-1,3-Dichloropropene	5.5 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.2 U
Dibromochloromethane	7 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.2 U
Ethylbenzene	6.2 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.2 U
m,p-Xylenes	9.5 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.3 U
Methylene chloride	8.2 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	3 U
o-Xylene	6 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.2 U
Tetrachloroethene	8 U	2.9	3	0.32 U	0.32 U	0.32 U	0.2 U
Toluene	12 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.2 U
trans-1,2-Dichloroethene	6.8 U	0.27 U	0.35 J	0.27 U	0.27 U	0.27 U	0.2 U
trans-1,3-Dichloropropene	6 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.2 U
Trichloroethene	2100	64	77	0.69 J	0.26 U	0.26 U	0.2 U
Trichlorofluoromethane	8.5 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.1 U
Trichlorotrifluoroethane (Freon 113)	30 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	0.2 U
Vinyl chloride	4.8 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.2 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-37	RD-38A	RD-38B	RD-38B	RD-39B	RD-39B	RD-40
FLUTe Sample Port		ND-30A					
Sample Date	05/06/03	02/13/03	02/13/03	05/02/03	02/13/03	05/01/03	05/08/03
			Primary				Primary
Sample Type	Primary	Primary	•	Primary	Primary	Primary	Pilitialy
Sample Qualifier							
Compound (ug/l)		11					0.011
1,1,1-Trichloroethane	0.3 U	1.5 U	0.3 U				
1,1,2,2-Tetrachloroethane	0.29 U	1.4 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	1.5 U	0.3 U	0.3 U	0.3 U	0.3 ป	0.3 U
1,1-Dichloroethane	0.27 U	6.2	0.27 U .	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	19	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	1.6 U 🕠	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	1.4 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	1.8 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	1.8 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	1.8 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane		*					
2-Butanone	3.8 U	19 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	12 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	12 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.7 J,L	22 U	4.5 U	4.5 U	4.5 U	4.5 U	8.4 J,L
Benzene	0.28 U	1.4 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	1.5 U	0.3 U				
Bromoform	0.25 U	1.2 U	0.25 U	0.25 ป	0.25 U	0.25 U	0.25 ป
Bromomethane	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	1.6 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U	1.4 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	1.8 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	1.6 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	1.6 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.7 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	33	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	1.1 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	1.4 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	1.2 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	1.9 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
Methylene chloride	0.33 U	1.6 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
o-Xylene	0.24 U	1.2 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	1.6 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	2.4 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.43 U	1.4 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
trans-1,3-Dichloropropene	0.24 U	1.4 U	0.24 U	0.27 U	0.27 U	0.27 U	0.24 U
Trichloroethene	0.24 U	690	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichlorofluoromethane	0.26 U	1.7 U	0.28 U	0.26 U	0.26 U	0.26 U	0.20 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	6 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride							0.19 U
THIS OFFICE							
Analytical Method	0.19 U 8260B	0.95 U 8260B	0.19 U 8260B	0.19 U 8260B	0.19 U 8260B	0.19 U 8260B	8260B

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-40	RD-41A	RD-41B	RD-41C	RD-41C	RD-42	RD-43A
FLUTe Sample Port							
Sample Date	05/08/03	02/06/03	02/06/03	02/06/03	02/06/03	02/07/03	02/17/03
Sample Type	Dup	Primary	Primary	Primary	Split	Primary	Primary
Sample Qualifier		· initially					
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	3 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.3 U	0.3 U 0.29 U	2.9 U	0.3 U	0.2 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.29 U	0.29 U	2.9 U	0.29 U	0.4 U	0.29 U	0.29 U
1,1-Dichloroethane	0.3 U 0.27 U	0.3 U 0.27 U	2.7 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1-Dichloroethene	0.27 U	0.27 U	3.2 U	0.27 U	0.2 U	1	0.27 U
1,2-Dichlorobenzene	0.32 U	0.32 U	3.2 U	0.32 U	0.3 U	0.32 U	0.32 U
1,2-Dichloroethane	0.32 U 0.28 U	0.32 U 0.28 U	3.2 U 2.8 U	0.32 U 0.28 U	0.2 U	0.32 U 0.28 U	0.32 U 0.28 U
1,2-Dichloropropane	0.28 U	0.26 U	2.6 U	0.26 U	0.2 U 0.4 U	0.26 U	0.26 U
• •							
1,3-Dichlorobenzene	0.35 U	0.35 U	3.5 U	0.35 U	0.2 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	3.7 U	0.37 U	0.2 U	0.37 U	0.37 U
1,4-Dioxane	2011	2011	20.11	2011	7.11	2011	2011
2-Butanone	3.8 U	3.8 U	38 U	3.8 U	7 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether					0.3 U		
2-Hexanone	2.5 U	2.5 U	25 U	2.5 U	0.7 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	25 U	2.5 U	0.2 U	2.5 U	2.5 U
Acetone	6.6 J,L	4.5 U	45 U	4.5 U	3 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	2.8 U	0.28 U	0.1 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	3 U	0.3 U	0.1 U	0.3 U	0.3 U
Bromoform	0.25 U	0.25 U	2.5 U	0.25 U	0.4 U	0.25 U	0.25 U
Bromomethane	0.2 U	0.2 U	2 U	0.2 U	0.5 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	3.3 U	0.33 U	0.2 U	0.6 J	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	2.8 U	0.28 U	0.3 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	3.6 U	0.36 U	0.1 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	3.3 U	0.33 U	0.3 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	3.3 U	0.33 U	0.2 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.14 U	1.4 U	0.14 U	0.4 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	2.5	570	0.32 U	0.2 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	2.2 U	0.22 U	0.2 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	2.8 U	0.28 U	0.2 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	2.5 U	0.25 U	0.2 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.38 U	3.8 U	0.38 U	0.3 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.33 U	3.3 U	0.33 U	3 U	0.33 U	0.33 U
o-Xylene	0.24 U	0.24 U	2.4 U	0.24 U	0.2 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	3.2 U	0.32 U	0.2 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	4.9 U	0.49 U	0.2 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.37 J	32	0.27 U	0.2 U	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	2.4 U	0.24 U	0.2 U	0.24 U	0.24 U
Trichloroethene	0.26 U	3.5	1400	0.26 U	0.2 U	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U	0.34 U	3.4 U	0.34 U	0.1 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	12 U	1.2 U	0.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.19 U	25	0.19 U	0.2 U	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	AMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-43A	RD-43B	RD-43B	RD-43B	RD-43B	RD-43C	RD-43C
FLUTe Sample Port							
Sample Date	05/02/03	02/11/03	05/01/03	08/13/03	08/13/03	02/17/03	05/02/03
Sample Type	Primary	Primary	Primary	Primary	Dup	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U					
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.29 U	0.3 U	0.3 U 0.24 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.23 U	0.23 U	0.24 U	0.24 U	0.23 U	0.3 U
1,1-Dichloroethane	0.3 U	0.3 U 0.27 U	0.3 U	0.3 U	0.3 U	0.3 U	0.27 U
1,1-Dichloroethene	0.27 U	0.27 U					
1,2-Dichlorobenzene	0.32 U	0.32 U					
1,2-Dichloroethane	0.32 U	0.32 U 0.28 U					
1,2-Dichloropropane	0.25 U	0.25 U					
1,3-Dichlorobenzene	0.35 U	0.35 U					
1,4-Dichlorobenzene	0.35 U 0.37 U	0.35 U	0.35 U 0.37 U				
1,4-Dichlorobenzene 1,4-Dioxane	U.31 U	U.31 U	0.37 0	0.37 ()	0.37 U 	0.37 U	0.57 0
2-Butanone	3.8 U	3.8 U					
2-Chloroethyl Vinyl Ether	3.6 U	3.6 0	3.0 U 		3.6 0	3.0 0	3.0 0
2-Hexanone	2.5 U	2.5 U	2.5 U	 2.6 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U					
Acetone (WIBIC)	4.5 U	2.5 U 4.5 U	4.5 U	2.5 U 4.5 U	2.5 U 4.5 U	6.2 J,L	4.5 U
Benzene	4.5 U 0.28 U	0.2 J,L 0.28 U	4.5 U 0.28 U				
Bromodichloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.26 U 0.3 U	0.28 U	
Bromoform .	0.3 U	0.3 U 0.25 U	0.3 U 0.25 U	0.3 U	0.3 U	0.3 U	0.3 U 0.25 U
Bromomethane	0.25 U	0.25 U	0.25 U	0.32 U 0.34 U	0.32 U 0.34 U	0.25 U	0.25 U
Carbon disulfide	0.2 U	0.2 U	0.2 U	0.34 U 0.48 U	0.34 U 0.48 U	0.2 U	0.2 U 0.33 U
Carbon tetrachloride	0.33 U 0.28 U	0.33 U 0.28 U	0.33 U 0.28 U	0.46 U	0.46 U	0.33 U 0.28 U	0.33 U 0.28 U
Chlorobenzene	0.26 U	0.26 U					
Chloroethane	0.36 U	0.36 U	0.38 U	0.36 U	0.36 U	0.38 U	0.38 U
Chloroform	0.33 U	0.33 U					
Chloromethane	0.33 U 0.14 U	0.33 U 0.14 U	0.33 U 0.14 U	0.33 U	0.33 U	0.33 U 0.14 U	0.33 U 0.14 U
cis-1,2-Dichloroethene	0.14 U 0.32 U	0.14 U 0.32 U	0.14 U	0.3 U	0.3 U 0.32 U	0.14 U 0.32 U	0.14 U 0.32 U
cis-1,3-Dichloropropene	0.32 U	0.32 U 0.22 U					
Dibromochloromethane	0.22 U	0.22 U 0.28 U	0.22 U			0.22 U 0.28 U	
Ethylbenzene	0.26 U	0.26 U	0.25 U	0.28 U 0.25 U	0.28 U 0.25 U	0.25 U	0.28 U 0.25 U
m,p-Xylenes	0.25 U	0.25 U 0.38 U	0.25 U	0.25 U 0.52 U	0.25 U 0.52 U	0.25 U	0.25 U 0.38 U
Methylene chloride	0.36 U	0.38 U	0.38 U	0.52 U 0.48 U	0.52 U 0.48 U	0.38 U	0.33 U
o-Xylene	0.33 U 0.24 U	0.33 U 0.24 U	0.33 U 0.24 U	0.46 U 0.24 U	0.46 U 0.24 U	0.33 U 0.24 U	0.33 U 0.24 U
Tetrachloroethene	0.24 U						0.24 U
Toluene	0.32 U 0.49 U	0.32 U 0.49 U	0.32 U 0.49 U	0.32 U 0.36 U	0.32 U 0.36 U	0.32 U 0.49 U	0.32 U 0.49 U
trans-1,2-Dichloroethene							
trans-1,3-Dichloropropene	0.27 U 0.24 U	0.27 U	0.27 U 0.24 U	0.27 U 0.24 U	0.27 U	0.27 U 0.24 U	0.27 U 0.24 U
Trichloroethene	0.24 U 0.26 U	0.24 U 0.26 U					
Trichlorofluoromethane							0.26 U 0.34 U
Trichlorotrifluoroethane (Freon 113)	0.34 U 1.2 U	0.34 U	0.34 U 1.2 U	0.34 U 1.2 U	0.34 U 1.2 U	0.34 U 1.2 U	1.2 U
Vinyl chloride	0.19 U	1.2 U	0.19 U	0.26 U	0.26 U	0.19 U	0.19 U
Analytical Method	8260B	0.19 U 8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA
Laboratory	DIVIA	DIAIL.	DIVID'	DIVIA	DIVIA		DIVIA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-43C	RD-44	RD-44	RD-44	RD-44	RD-45B	RD-45C
FLUTe Sample Port							
Sample Date	08/13/03	02/04/03	02/04/03	05/06/03	08/11/03	02/05/03	02/07/03
Sample Type	Primary	Primary	Dup	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.29 U		0.29 U	0.24 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U		0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U		0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U		0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.25 U	74-	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U		0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.33 U		0.37 U	0.33 U	0.37 U	0.33 U 0.37 U
1,4-Dioxane		0.37 U 0.07 U	0.07 U	0.37 U	0.37 U 0.07 U		
2-Butanone	3.8 U	3.8 U		3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether	5.00	J.0 U		3.00	5.0 U	J.0 U	3.0 G
2-Hexanone	2.6 U	2.5 U		2.5 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	***	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	2.5 U		4.5 U	2.5 U	4.5 U	4.5 U
Benzene	4.3 U	4.5 U		0.28 U	4.5 U	4.5 U	0.28 U
Bromodichloromethane	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U	0.28 U
Bromoform	0.32 U	0.3 U		0.3 U	0.3 U	0.3 U 0.25 U	0.3 U 0.25 U
Bromomethane	0.32 U	0.25 U		0.23 U	0.32 U 0.34 U	0.25 U	0.25 U 0.2 U
Carbon disulfide	0.48 U	0.2 U 0.33 U		0.2 U	0.34 U 0.48 U	0.2 U 0.33 U	0.2 U
Carbon tetrachloride	0.48 U			0.33 U 0.28 U	0.48 U 0.28 U		0.33 U 0.28 U
Chlorobenzene	0.26 U	0.28 U		0.26 U		0.28 U	0.26 U
Chloroethane	0.38 U	0.36 U	****	0.33 U	0.36 U	0.36 U 0.33 U	0.38 U
Chloroform	0.33 U	0.33 U 0.33 U		0.33 U	0.33 U 0.33 U	0.33 U 0.33 U	0.33 U
Chloromethane	0.33 U	0.33 U 0.14 U		0.33 U 0.14 U	0.33 U 0.3 U	0.33 U 0.14 U	0.33 U 0.14 U
cis-1,2-Dichloroethene	0.3 U	0.14 U 0.32 U		0.14 U	0.3 U 0.32 U	19	0.14 U 0.32 U
cis-1,3-Dichloropropene	0.32 U 0.22 U	0.32 U 0.22 U					0.32 U 0.22 U
Dibromochloromethane	0.22 U 0.28 U			0.22 U	0.22 U	0.22 U	
Ethylbenzene		0.28 U		0.28 U	0.28 U	0.28 U	0.28 U
m,p-Xylenes	0.25 U 0.52 U	0.25 U		0.25 U	0.25 U	0.25 U	0.25 U
Methylene chloride		0.38 U		0.38 U	0.52 U	0.38 U	0.38 U
o-Xylene	0.48 U	0.33 U		0.33 U	0.48 U	0.33 U	0.33 U
Tetrachloroethene	0.24 U	0.24 U	*	0.24 U	0.24 U	0.24 U	0.24 U
Toluene	0.32 U 0.36 U	0.32 U	*	0.32 U	0.32 U	0.32 U	0.32 U
trans-1,2-Dichloroethene	0.36 U 0.27 U	0.49 U		0.49 U 0.27 U	0.36 U	0.49 U	0.49 U
trans-1,3-Dichloropropene	0.27 U 0.24 U	0.27 U	•	0.27 U 0.24 U	0.27 U	2.1	0.27 U
Trichloroethene		0.24 U			0.24 U	0.24 U	0.24 U
Trichlorofluoromethane	0.26 U	0.26 U		0.26 U	0.26 U	1.7	0.26 U
Trichlorotrifluoroethane (Freon 113)	0.34 U	0.34 U	•	0.34 U	0.34 U	0.34 U	0.34 U
Vinyl chloride	1.2 U	1.2 U		1.2 U	1.2 U	1.2 U	1.2 U
Analytical Method	0.26 U	0.19 U	92606184	0.19 U	0.26 U	0.19 U	0.19 U
Laboratory	8260B	82608	8260SIM	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	Ceimic	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-46A	RD-46A	RD-46B	RD-46B	RD-47	RD-48B	RD-48B
FLUTe Sample Port							
Sample Date	02/18/03	08/13/03	02/18/03	08/13/03	02/06/03	02/18/03	02/18/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Dup
Sample Qualifier						***	
Compound (ug/l)		····				V	
1,1,1-Trichloroethane	30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	29 U	0.24 U	0.29 U	0.24 U	0.29 U	0.29 U	0.29 U
1,1,2-Trichloroethane	30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	32 U	1.1	0.32 U				
1,2-Dichlorobenzene	32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 ป
1,2-Dichloroethane	28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	380 U	3.8 U					
2-Chloroethyl Vinyl Ether							
2-Hexanone	250 U	2.6 U	2.5 U	2.6 U	2.5 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	250 U	2.5 U					
Acetone	450 U	4.5 U	10	4.5 U	4.5 U	5.7 J,L	5.3 J,L
Benzene	28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	25 U	0.32 U	0.25 U	0.32 U	0.25 U	0.25 U	0.25 U
Bromomethane	20 U	0.34 U	0.2 U	0.34 U	0.2 U	0.2 U	0.2 U
Carbon disulfide	33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.33 U	0.33 U
Carbon tetrachloride	28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	33 U	0.47 J,S	0.33 U				
Chloromethane	14 U	0.3 U	0.14 U	0.3 U	0.14 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	110	380	0.32 U	0.32 U	1.1	0.32 U	0.32 U
cis-1,3-Dichloropropene	22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	38 U	0.52 U	0.38 U	0.52 U	0.38 U	0.38 U	0.38 U
Methylene chloride	33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.33 U	0.33 U
o-Xylene	24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	49 U	0.36 U	0.49 U	0.36 U	0.49 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	27 U	12	0.27 U				
rans-1,3-Dichloropropene	24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	11000	3000	0.26 U				
Trichlorofluoromethane	34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	120 U	1.2 U					
Vinyl chloride	19 U	0.26 U	0.19 U	0.26 U	0.19 U	0.19 U	0.19 U
Analytical Method	8260B						
Laboratory	DMA						

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-48B	RD-48B	RD-48B	RD-48B	RD-48B	RD-48B	RD-48C
FLUTe Sample Port							
Sample Date	02/18/03	05/15/03	09/03/03	09/03/03	09/03/03	11/20/03	02/18/03
Sample Type	Split	Primary	Primary	Dup	Split	Primary	Primáry
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.4 U	0.29 U	0.24 U	0.24 U	0.4 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U
1,1-Dichloroethane	0.2 U	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U
1,1-Dichloroethene	0.3 U	0.32 U	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.2 U	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U
1,2-Dichloroethane	0.2 U	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U
1,2-Dichloropropane	0.4 U	0.35 U	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.2 U	0.35 U	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.2 U	0.37 U	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U
1,4-Dioxane						*******	
2-Butanone	7 U	3.8 U	3.8 U	3.8 U	7 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether	0.3 U	***			0.3 U		
2-Hexanone	0.7 U	2.5 U	2.6 U	2.6 U	0.7 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	0.2 U	2.5 U	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U
Acetone	3 U	11 S	4.5 U	4.5 U	3 U	7.2 J,L	4.5 U
Benzene	0.1 U	0.28 U	0.28 U	0.28 U	0.1 U	0.28 U	0.28 U
Bromodichloromethane	0.1 U	0.3 U	0.3 ป	0.3 U	0.1 U	0.3 U	0.3 U
Bromoform	0.4 U	0.25 U	0.32 U	0.32 U	0.4 U	0.32 U	0.25 U
Bromomethane	0.5 U	0.2 ป	0.34 U	0.34 U	0.5 U	0.34 U	0.2 U
Carbon disulfide	0.2 U	0.33 U	0.48 U	0.48 U	0.2 U	0.48 U	0.33 U
Carbon tetrachloride	0.3 U	0.28 U	0.28 U	0.28 U	0.3 U	0.28 U	0.28 U
Chlorobenzene	0.1 U	0.36 U	0.36 U	0.36 U	0.1 U	0.36 U	0.36 U
Chloroethane	0.3 U	0.33 U	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U
Chloroform	0.2 U	0.33 U	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U
Chloromethane	0.4 U	0.14 U	0.3 U	0.3 U	0.4 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	0.2 U	0.32 U	0.32 U	0.32 U	0.2 ป	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.2 U	0.22 U	0.22 U	0.22 U	0.2 ป	0.22 U	0.22 U
Dibromochloromethane	0.2 U	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U
Ethylbenzene	0.2 U	0.25 U	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U
n,p-Xylenes	0.3 U	0.38 U	0.52 U	0.52 U	0.3 U	0.52 U	0.38 U
Methylene chloride	3 U	0.33 U	0.48 U	0.48 U	3 U	3.4 J,L	0.34 U
o-Xylene	0.2 U	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U
Tetrachloroethene	0.2 U	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U
Toluene	0.2 U	0.49 U	0.36 U	0.36 U	0.2 U	0.36 U	0.49 U
rans-1,2-Dichloroethene	0.2 U	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U
rans-1,3-Dichloropropene	0.2 U	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U
Trichloroethene	0.2 U	0.26 U	0.26 U	0.26 U	0.2 U	0.26 U	0.26 U
Trichlorofluoromethane	0.1 U	0.34 U	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	0.2 U	1.2 U	1.2 U	1.2 U	0.2 U	1.2 U	1.2 U
√inyl chloride	0.2 U	0.19 U	0.26 U	0.26 U	0.2 U	0.26 U	0.19 U
Analytical Method	8260B						
aboratory	DMA	DMA	DMA	DMA	AMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-48C	RD-48C	RD-48C	RD-49A	RD-49A	RD-49A	RD-49A
FLUTe Sample Port							
Sample Date	05/13/03	08/20/03	11/21/03	02/04/03	02/04/03	05/07/03	05/07/03
Sample Type	Primary	Primary	Primary	Primary	Dup	Primary	Split
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	12 U	12 U	30 U	
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.24 U	12 U	12 U	29 U	
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	12 U	12 U	30 U	
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	11 U	11 U	27 U	_
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	13 U	13 U	32 U	
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	13 U	13 U	32 U	
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	11 U	11 U	28 U	
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	14 U	14 U	35 U	
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	14 U	14 U	35 U	
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	15 U	15 U	37 U	
1,4-Dioxane				0.414 J		0.65 J	0.73 U
2-Butanone	3.8 U	3.8 U	3.8 U	150 U	150 U	380 U	
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.6 U	2.6 U	100 U	100 U	250 U	
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	100 U	100 U	250 U	
Acetone	4.5 U	5.3 U	4.5 U	180 U	180 U	450 U	
Benzene	0.28 U	0.28 U	0.32 J,L	11 U	11 U	28 U	
Bromodichloromethane	0.3 U	0.3 U	0.3 U	12 U	12 U	30 U	
Bromoform	0.25 U	0.32 U	0.32 U	10 U	10 U	25 U	
Bromomethane	0.2 U	0.34 U	0.34 U	8 U	8 U	20 U	
Carbon disulfide	0.33 U	0.48 U	0.48 U	13 U	13 U	33 U	
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	11 U	11 U	28 U	
Chlorobenzene	0.36 U	0.36 U	0.36 U	14 U	14 U	36 U	
Chloroethane	0.33 U	0.33 U	0.33 U	13 U	13 U	33 U	
Chloroform	0.33 U	0.33 U	0.33 U	13 U	13 U	33 U	
Chloromethane	0.14 U	0.3 U	0.3 U	5.6 U	5.6 U	14 U	
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	2000	2200	2100	
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	8.8 U	8.8 U	22 U	
Dibromochloromethane	0.28 U	0.28 U	0.28 U	11 U	11 U	28 U	
Ethylbenzene	0.25 U	0.25 U	0.25 U	10 U	10 U	25 U	
m,p-Xylenes	0.38 U	0.52 U	0.52 U	15 U	15 U	38 U	
Methylene chloride	0.33 U	0.48 U	0.48 U	20 J,L	13 J,L	55 J,L	
o-Xylene	0.24 U	0.24 U	0.24 U	9.6 U	9.6 U	24 U	
Tetrachloroethene	0.32 U	0.32 U	0.32 U	13 U	13 U	32 U	
Toluene	0.49 U	0.36 U	0.36 U	20 U	20 U	49 U	
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	46	51	40 J	
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	9.6 U	9.6 U	24 U	
Trichloroethene	0.26 U	0.26 U	0.26 U	4100	4400	4000	
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	14 U	14 U	34 U	
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	48 U	48 U	120 U	
Vinyl chloride	0.19 U	0.26 U	0.26 U	7.6 U	7.6 U	19 U	
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260SIM
Laboratory	DMA						

TABLE IV SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

1,2-Dichloroethane	11 U	11 U	0.28 U	0.56 U		0.56 U	1.1 U
1,1-Dichloroethene 1,2-Dichlorobenzene	13 U 13 U	13 U 13 U	0.49 J 0.32 U	0.64 U 0.64 U		0.64 U 0.64 U	1.3 U 1.3 U
1,2-Dichloroethane	11 U	11 U	0.28 U	0.56 U		0.56 U	1.1 U
1,2-Dichloropropane	14 U	14 U	0.35 U	0.7 U		0.7 U	1.4 U
1,3-Dichlorobenzene	14 U	14 U	0.35 U	0.7 U		0.7 U	1.4 U
1,4-Dichlorobenzene	15 U	15 U	0.37 U	0.74 U		0.74 U	1.5 U
1,4-Dioxane	0.07 U	0.68 U	1.5 J	2.76	2.4 U	1.5	2.3
2-Butanone	150 U	150 U	3.8 U	7.6 U		7.6 U	15 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	100 U	100 U	2.5 U	5 U		5.2 U	10 U
4-Methyl-2-pentanone (MIBK)	100 U	100 U	2.5 U	5 U		5 U	10 U
Acetone	180 U	180 U	4.5 U	9 U		9 U	18 U
Benzene	11 U	11 U	0.28 U	0.56 U		0.56 U	1.1 U
Bromodichloromethane	12 U	12 U	0.3 U	0.6 U		0.6 U	1.2 U
Bromoform	13 U	13 UJ	0.25 U	0.5 U		0.64 U	1.3 U
Bromomethane	14 U	14 U	0.2 U	0.4 U		0.68 U	1.4 U
Carbon disulfide	19 U	19 U	0.33 U	0.66 U		0.96 U	1.9 U
Carbon tetrachloride	11 U	11 U	0.28 U	0.56 U		0.56 U	1.1 U
Chlorobenzene	14 U	14 U	0.36 U	0.72 U		0.72 ป	1.4 U
Chloroethane	13 U	13 U	0.33 U	0.66 U		0.66 U	1.3 U
Chloroform	13 U	13 U	0.33 U	0.66 U		0.66 U	1.3 U
Chloromethane	12 U	12 U	0.14 U	0.28 U		0.6 U	1.2 U
cis-1,2-Dichloroethene	3400	2000 J	180	220		280	260
cis-1,3-Dichloropropene	8.8 U	U 8.8	0.22 U	0.44 U		0.44 U	0.88 U
Dibromochloromethane	11 U	11 U	0.28 U	0.56 U		0.56 U	1.1 U
Ethylbenzene	10 U	10 U	0.25 U	0.5 U		0.5 ป	1 U
m,p-Xylenes	21 U	21 U	0.38 U	0.76 U		1 U	2.1 U
Methylene chloride	19 U	19 U	0.33 U	0.66 U		0.96 U	1.9 U
o-Xylene	9.6 U	9.6 U	0.24 U	0.48 U		0.48 U	0.96 U
Tetrachloroethene	13 U	13 U	0.32 U	0.64 U		0.64 U	1.3 U
Toluene	14 U	14 U	0.49 U	0.98 U	***	0.72 U	1.4 U
trans-1,2-Dichloroethene	60	42	12	11		14	14
trans-1,3-Dichloropropene	9.6 U	9.6 U	0.24 U	0.48 U		0.48 U	0.96 U
Trichloroethene	2300	3900	290	250		270	350
Trichlorofluoromethane	14 U	14 U	0.34 U	0.68 U		0.68 U	1.4 U
Trichlorotrifluoroethane (Freon 113)	48 U	48 UJ	18	2 4 U		2.4 U	4.8 U
Vinyl chloride	10 U	10 U	4.8	5.8		6	7.4
Analytical Method	8260B	8260B	8260B	8260B	8260SIM	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-49B	RD-49B	RD-49C	RD-49C	RD-49C	RD-49C	RD-49C
FLUTe Sample Port			-				
Sample Date	11/17/03	11/17/03	02/04/03	05/06/03	08/19/03	11/18/03	11/18/03
Sample Type	Dup	Split	Primary	Primary	Primary	Primary	Dup
Sample Qualifier	<u></u>						
Compound (ug/l)		·····	· · · · · · · · · · · · · · · · · · ·				
1,1,1-Trichloroethane			0.3 U	0.3 U	0.3 U	0.3 U	
1,1,2,2-Tetrachloroethane		***	0.29 U	0.29 U -	0.24 U	0.24 U	
1,1,2-Trichloroethane			0.3 U	0.3 U	0.3 U	0.3 U	
1,1-Dichloroethane			0.27 U	0.27 U	0.27 U	0.27 U	
1,1-Dichloroethene			0.32 U	0.32 U	0.32 U	0.32 U	
1,2-Dichlorobenzene			0.32 U	0.32 U	0.32 U	0.32 U	
1,2-Dichloroethane			0.28 U	0.28 U	0.28 U	0.28 U	
1,2-Dichloropropane			0.35 U	0.35 U	0.35 U	0.35 U	
1,3-Dichlorobenzene			0.35 U	0.35 U	0.35 U	0.35 U	
1,4-Dichlorobenzene	***		0.37 U	0.37 U	0.37 U	0.37 U	
1,4-Dioxane	1.8 U	0.93 J	0.815 J	1.08	0.37 U	0.57 U	0.74 U
2-Butanone		0.93 3	3.8 U	3.8 U	3.8 U	3.8 U	
2-Chloroethyl Vinyl Ether							
2-Hexanone			2.5 U	2.5 U	2.6 U	2.6 U	
4-Methyl-2-pentanone (MIBK)			2.5 U	2.5 U	2.5 U	2.5 U	
Acetone		***	4.5 U	4.5 U	4.5 U	4.5 U	
Benzene			0.28 U	0.28 U	0.28 U	0.28 U	
Bromodichloromethane			0.20 C	0.3 U	0.20 U	0.20 U	
Bromoform			0.25 U	0.25 U	0.32 U	0.32 UJ	
Bromomethane			0.2 U	0.2 U	0.34 U	0.34 U	
Carbon disulfide			0.33 U	0.33 U	0.48 U	0.48 U	
Carbon tetrachloride			0.28 U	0.28 U	0.48 U	0.48 U	
Chlorobenzene			0.36 U	0.36 U	0.26 U	0.26 U	
Chloroethane			0.33 U	0.33 U	0.33 U	0.33 U	
Chloroform			0.33 U	0.33 U	0.33 U	0.33 U	
Chloromethane			0.14 U	0.14 U	0.33 U	0.33 U	
cis-1,2-Dichloroethene			77	81	75	75 J	
cis-1,3-Dichloropropene			0.22 U	0.22 U	0.22 U	0.22 U	
Dibromochloromethane		•••	0.28 U	0.28 U	0.22 U	0.22 U	
Ethylbenzene			0.25 U	0.25 U	0.25 U	0.25 U	
m,p-Xylenes			0.23 U	0.38 U	0.23 U	0.23 U	
Methylene chloride			0.33 U	0.33 U	0.32 U	0.32 U	_
o-Xylene			0.33 U 0.24 U	0.24 U	0.40 U	0.48 U	
Tetrachloroethene			0.24 U	0.24 U	0.24 U	0.24 U	
Toluene			0.32 U 0.49 U	0.32 U 0.49 U	0.32 U 0.36 U	0.32 U 0.36 U	
trans-1,2-Dichloroethene			3.9	0.49 U 2.9	2.7	2.4	
trans-1,3-Dichloropropene			0.24 U	2. 9 0.24 U	2.7 0.24 U	2.4 0.24 U	
Trichloroethene			26	24	24	24	
Trichlorofluoromethane			26 0.34 U	24 0.34 U	24 0.34 U	24 0.34 U	
Trichlorotrifluoroethane (Freon 113)			0.34 U 5	1.2 U	1.2 U	1.2 UJ	
Vinyl chloride			2.3	2.5	1.20	1.2 UJ 2.6	
Analytical Method	8260SIM	8260SIM	8260B	8260B	8260B	8260B	8260SIM
	OZOUĐIN	DZOUĞIM	OZUVD	OZOUD	OZOUB	0ZOUD	OZOUJIN

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-49C	RD-50	RD-50	RD-51B	RD-51B	RD-51C	RD-51C
FLUTe Sample Port		Z 2	Z 2				
Sample Date	11/18/03	02/17/03	0 8/28/03	02/12/03	08/21/03	02/13/03	02/13/03
Sample Type	Split	Primary	Primary	Primary	Primary	Primary	Split
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane		0.3 U	0.3 U	0.3 U	· 0.3 U	0.3 U	0 2 U
1,1,2,2-Tetrachloroethane		0.29 U	0.24 U	0.29 U	0.24 U	0.29 U	0.4 U
1,1,2-Trichloroethane		0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.2 U
1,1-Dichloroethane		0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.2 U
1,1-Dichloroethene		0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.3 U
1,2-Dichlorobenzene		0.32 U	0.32 U	0.32 ป	0.32 U	0.32 U	0.2 U
1,2-Dichloroethane		0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.2 U
1,2-Dichloropropane		0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.4 U
1,3-Dichlorobenzène		0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.2 U
1,4-Dichlorobenzene		0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.2 U
1,4-Dioxane	0.49 U						
2-Butanone		6.9 J,F	3.8 U	3.8 U	3.8 U	3.8 U	7 U
2-Chloroethyl Vinyl Ether							0.3 U
2-Hexanone		2.5 U	2.6 U	2.5 U	2.6 U	2.5 U	0.7 U
4-Methyl-2-pentanone (MIBK)		3.6 J,F	2.5 U	2.5 U	2.5 U	2.5 U	0.2 U
Acetone		19 F	4.5 U	4.5 U	4.5 U	4.5 U	3 U
Benzene		0.5 F	1.2 F	0.28 U	0.28 U	0.28 U	0.1 U
Bromodichloromethane		0.6 J,F	0.3 U	0.3 U	0.3 U	0.3 U	0.1 U
Bromoform		0.25 U	0.32 U	0.25 U	0.32 U	0.25 U	0.4 U
Bromomethane		0.2 U	0.34 U	0.2 U	0.34 U	0.2 U	0.5 U
Carbon disulfide		0.33 U	0.48 U	0.59 J	0.48 U	0.33 U	0.2 U
Carbon tetrachloride		0.28 U	0.28 U	0.28 U	0.28 U	0.28 ป	0.3 U
Chlorobenzene		0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.1 U
Chloroethane		0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.3 U
Chloroform	***	0.38 J,F	0.33 U	0.33 U	0.33 U	0.33 U	0.2 U
Chloromethane		0.14 U	0.3 U	0.14 U	0.3 U	0.14 U	0.4 U
cis-1,2-Dichloroethene		0.32 ป	0.32 U	22	25	0.32 U	0.2 U
cis-1,3-Dichloropropene		0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.2 U
Dibromochloromethane		0.88 J,F	0.28 U	0.28 U	0.28 U	0.28 U	0.2 U
Ethylbenzene		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.2 U
m,p-Xylenes		0.38 U	0.52 U	0.38 U	0.52 U	0.38 U	0.3 U
Methylene chloride		0.33 U	0.48 U	0.33 U	0.48 U	0.33 U	3 U
o-Xylene		0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.2 U
Tetrachloroethene		0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U
Toluene		100 F	21 F	0.49 U	0.36 U	0.49 U	0.2 U
trans-1,2-Dichloroethene		0.27 U	0.27 U	2.8	2.8	0.27 U	0.2 U
trans-1,3-Dichloropropene		0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.2 U
Trichloroethene		1.3 F	0.63 J,S	6.5	5.9	0.26 U	0.2 U
Trichlorofluoromethane		0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.1 U
Trichlorotrifluoroethane (Freon 113)		1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	0.2 U
Vinyl chloride		0.19 U	0.26 U	17	17	0.19 U	0.2 U
Analytical Method	8260SIM	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-51C	RD-51C	RD-51C	RD-51C	RD-52B	RD-52B	RD-52C
FLUTe Sample Port							
Sample Date	05/08/03	08/19/03	11/07/03	11/07/03	02/11/03	08/14/03	02/17/03
Sample Type	Primary	Primary	Primary	Split	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.24 U	0.4 U	0.29 U	0.24 U	0.29 U ·
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	3.8 U	7 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether				0.3 U			
2-Hexanone	2.5 U	2.6 U	2.6 U	0.7 U	2.5 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	4.5 U	3 U	4.5 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.28 U	0.1 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.1 U	0.3 U	0.3 U	0.3 U
Bromoform	0.25 U	0.32 U	0.32 U	0.4 U	0.25 U	0.32 U	0.25 U
Bromomethane	0.2 U	0.34 U	0.34 U	0.5 U	0.2 U	0.34 U	0.23 U
Carbon disulfide	0.33 U	0.48 U	0.48 U	0.2 U	0.23 U	0.48 U	0.2 U
Carbon tetrachloride	0.28 U	0.48 U	0.48 U	0.2 U	0.33 U	0.48 U	0.33 U 0.28 U
Chlorobenzene	0.26 U	0.36 U	0.26 U	0.3 U	0.26 U	0.26 U	0.26 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.1 U	0.33 U	0.30 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.33 U 0.14 U	0.33 U	0.33 U	0.2 U	0.33 U 0.14 U	0.33 U	0.33 U 0.14 U
cis-1,2-Dichloroethene	0.14 U	0.3 U	0.3 U 0.32 U	0.4 U	9.4	9.7	0.14 U 0.32 U
cis-1,3-Dichloropropene	0.32 U	0.32 U 0.22 U	0.32 U 0.22 U	0.2 U	0.22 U	9.7 0.22 U	0.32 U 0.22 U
Dibromochloromethane	0.22 U	0.22 U 0.28 U	0.22 U 0.28 U	0.2 U	0.22 U	0.22 U 0.28 U	0.22 U 0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.2 U			0.26 U 0.25 U
n,p-Xylenes					0.25 U	0.25 U	
· · · · ·	0.38 U	0.52 U	0.52 U	0.3 U	0.38 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.48 U	0.48 U	3 U	0.33 U	0.48 U	0.33 U
o-Xylene Fotrachloroothone	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U
Fetrachloroethene	0.32 U	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U
Foluene	0.49 U	0.36 U	0.36 U	0.2 U	0.49 U	0.36 U	0.49 U
rans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.2 U	3.2	3.2	0.27 U
rans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U
Frichloroethene	0.26 U	0.26 U	0.26 U	0.2 U	4.5	3.3	0.26 U
Frichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	0.2 U	1.2 U	1.2 U	1.2 U
/inyl chloride	0.19 U	0.26 U	0.26 U	0.2 U	0.19 U	0.26 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	AMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-52C	RD-52C	RD-52C	RD-52C	RD-54A	RD-54A	RD-54B
FLUTe Sample Port					Z2	Z2	
Sample Date	05/14/03	05/14/03	08/12/03	11/19/03	02/18/03	08/26/03	02/26/03
Sample Type	Primary	Dup	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							HS
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U						
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.24 U	0.24 U	0.29 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U						
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.38 J	0.35 J	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.73 J	1	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 ป	0.32 ป				
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.28 U	0 81	0.84	0.57
1,2-Dichloropropane	0.35 U						
1,3-Dichlorobenzene	0.35 U	0.35 U	0 35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U						
1,4-Dioxane		***	***				
2-Butanone	3.8 U						
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.5 U	2.6 U	2.6 U	2.5 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U						
Acetone	4.5 U	4.5 U	7.8 U	4.5 U	5.3 J,L	4.5 U	6 J
Benzene	0.28 U	0.28 U	0.28 U	0.28 U	0.3 J,F	0.28 U	0.28 U
Bromodichloromethane	0.3 U						
Bromoform	0.25 U	0.25 U	0.32 U	0.32 U	0.25 U	0.32 U	0.25 U
Bromomethane	0.2 U	0.2 U	0.34 U	0.34 U	0.2 U	0.34 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	0.48 U	0.48 U	0.33 U	0.48 U	2.8 J
Carbon tetrachloride	0.28 U						
Chlorobenzene	0.36 U						
Chloroethane	0 33 U	0.33 U	1.2				
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	1.2	0.33 U	0.33 U
Chloromethane	0.14 U	0.14 U	0.3 U	0.3 U	0.14 U	0.3 U	0.39 J
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	2.5	38	0.32 U
cis-1,3-Dichloropropene	0.22 U						
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.36 J,F	0.28 U	0.28 U
Ethylbenzene	0.25 U						
m,p-Xylenes	0.38 U	0.38 U	0.52 U	0.52 U	0.38 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.48 U	0.48 U	0.33 U	0.48 U	0.67 J,L
o-Xylene	0.24 U						
Tetrachloroethene	0.32 U						
Toluene	0.49 U	0.49 U	0.36 U	0.36 U	1.7 F	1.4	0.58 J
trans-1,2-Dichloroethene	0.27 U	0.84 J	0.27 U				
trans-1,3-Dichloropropene	0.24 U						
Trichloroethene	0.26 U	0.26 U	0.26 U	0.26 U	7.3	5.1	0.26 U
Trichlorofluoromethane	0.34 U						
Trichlorotrifluoroethane (Freon 113)	1.2 U	2.4 J,S	1.2 U				
Vinyl chloride	0.19 U	0.19 U	0.26 U	0.26 U	0.19 U	0.26 U	0.19 J
Analytical Method	8260B						
Laboratory	DMA						

TABLE IV SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-54B	RD-54B	RD-54C	RD-54C	RD-55A	RD-55A	RD-55A
FLUTe Sample Port	***						
Sample Date	08/07/03	08/07/03	02/26/03	08/26/03	02/13/03	02/13/03	02/13/03
Sample Type	Primary	Dup	Primary	Primary	Primary	Dup	Split
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.2 U					
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.29 U	0.24 U	0.29 U	0.29 U	0.4 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 บ	0.3 U	0.3 U	0.3 ป	0.2 U
1,1-Dichloroethane	0.27 U	0.2 U					
1,1-Dichloroethene	0.32 U	0.3 U					
1,2-Dichlorobenzene	0.32 U	0.2 U					
1,2-Dichloroethane	0.28 U	0.2 U					
1,2-Dichloropropane	0.35 U	0.4 U					
1,3-Dichlorobenzene	0.35 U	0.2 U					
1,4-Dichlorobenzene	0.37 U	0.2 U					
1,4-Dioxane						-	
2-Butanone	3.8 U	7 U					
2-Chloroethyl Vinyl Ether							0.3 U
2-Hexanone	2.6 U	2.6 U	2.5 U	2.6 U	2.5 U	2.5 U	0.7 U
4-Methyl-2-pentanone (MIBK)	2.5 U	0.2 U					
Acetone	4.5 U	4.5 U	5.1 J	4.5 U	7.8 U	23 U	3 U
Benzene	0.28 U	0.1 U					
Bromodichloromethane	0.3 U	0.1 U					
Bromoform	0.32 U	0.32 U	0.25 U	0.32 U	0.25 U	0.25 U	0.4 U
3romomethane	0.34 U	0.34 U	0.2 U	0.34 U	0.2 U	0.2 U	0.5 U
Carbon disulfide	0.48 U	0.48 U	0.42 J	0.48 U	0.33 U	0.33 U	0.2 U
Carbon tetrachloride	0.28 U	0.3 U					
Chlorobenzene	0.36 U	0.1 U					
Chloroethane	0.33 U	0.3 U					
Chloroform	0.33 U	0.2 U					
Chloromethane	0.3 U	0.3 U	0.14 U	0.3 U	0.37 J	0.19 J	0.4 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	84	84	75
cis-1,3-Dichloropropene	0.22 U	0.2 U					
Dibromochloromethane	0.28 U	0.2 U					
Ethylbenzene	0.25 U	0.2 U					
n,p-Xylenes	0.52 U	0.52 U	0.38 U	0.52 U	0.38 U	0.38 U	0.3 U
Methylene chloride	0.48 U	0.48 U	0.33 U	0.48 U	0.33 U	0.33 U	3 U
o-Xylene	0.24 U	0.2 U					
Tetrachloroethene	0.32 U	0.2 U					
Toluene	0.36 U	0.36 U	0.49 U	0.36 U	0.49 U	0.49 U	0.2 U
rans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	3	2.7	1.5
rans-1,3-Dichloropropene	0.24 U	0.2 U					
Frichloroethene	0.26 U	0.26 U	0.26 U	0.5 J,C	83	82	72
Frichlorofluoromethane	0.34 U	0.1 U					
Frichlorotrifluoroethane (Freon 113)	1.2 U	0.2 U					
/inyl chloride	0.26 U	0.26 U	0.19 U	0.26 U	5.4	5.2	4
Analytical Method	8260B						
.aboratory	DMA	DMA	DMA	DMA	DMA	DMA	AMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-55A	RD-55A	RD-55A	RD-55A	RD-55A	RD-55B	RD-55B
FLUTe Sample Port							
Sample Date	05/05/03	05/05/03	08/18/03	08/18/03	08/18/03	02/19/03	05/06/03
Sample Type	Primary	Dup	Primary	Dup	Split	Primary	Primary
Sample Qualifier							
Compound (ug/l)						····	·
1,1,1-Trichloroethane	0.3 U	0.3 U	1.5 U	1.5 U	0.2 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	1.2 U	1.2 U	0.4 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	1.5 U	1.5 U	0.2 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	1.4 U	1.4 U	0.2 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	1.6 U	1.6 U	1.2	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	1.6 U	1.6 U	0.2 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	1.4 U	1.4 U	0.2 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	1.8 U	1.8 U	0.4 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	1.8 U	1.8 U	0 2 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	1.8 U	1.8 U	0.2 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	19 U	19 U	7 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether					0.3 U		
2-Hexanone	2.5 U	2.5 U	13 U	13 U	0.7 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	12 U	12 U	0.2 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	22 U	22 U	3 U	13	4.5 U
Benzene	0.28 U	0.28 U	1.4 U	1.4 U	0.1 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	1.5 U	1.5 U	0.1 U	0.3 U	0.3 U
Bromoform	0.25 U	0.25 U	1.6 U	1.6 U	0.4 U	0.25 U	0.25 U
Bromomethane	0.2 U	0.2 U	1.7 U	1.7 U	0.5 U	0.2 U	0.2 U
Carbon disulfide	0.33 U	0.33 U	2.4 U	2.4 U	0.2 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	1.4 U	1.4 U	0.3 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	1.8 U	1.8 U	0.1 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	1.6 U	1.6 U	0.3 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	1.8 J,S	2 J,S	0.2 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.14 U	1.5 U	1.5 U	0.4 U	0.25 J	0.14 U
cis-1,2-Dichloroethene	27	20	560	550	500	8.8	9.5
cis-1,3-Dichloropropene	0.22 U	0.22 U	1.1 U	1.1 U	0.2 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	1.4 U	1.4 U	0.2 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	1.2 U	1.2 U	0.2 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.38 U	2.6 U	2.6 U	0.3 U	0.38 Ų	0.38 U
Methylene chloride	0.33 U	0.33 U	14 J,L	13 J,L	3 U	0.33 U	0.33 U
o-X y lene	0.24 U	0.24 U	1.2 U	1.2 U	0.2 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	1.6 U	1.6 U	0.2 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	1.8 U	1.8 U	0.2 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	1.4	0.94 J	30	30	24	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	1.2 U	1.2 U	0.2 U	0.24 U	0.24 U
Trichloroethene	25	20	490	470	430	11	13
Trichlorofluoromethane	0.34 U	0.34 U	1.7 U	1.7 U	0.1 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	6 U	6 U	0.2 U	1.2 U	1.2 U
Vinyl chloride	6.4	4.4	73	71	68	0.19 U	0.19 U
Analytical Method	8260B						
Laboratory	DMA	DMA	DMA	DMA	AMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-55B	RD-55B	RD-55B	RD-55B	RD-56A	RD-56B	RD-56B
FLUTe Sample Port							
Sample Date	05/06/03	08/22/03	08/22/03	08/22/03	02/24/03	02/19/03	08/12/03
Sample Type	Dup	Primary	Dup	Split	Primary	Primary	Primary
Sample Qualifier					pH		
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	1.2 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.24 U	0.4 U	1.2 U	0.29 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.2 U	1.2 U	0.23 U	0.3 U
1,1-Dichloroethane	0.27 U	0.3 U	0.27 U	0.2 U	1.2 U	0.3 U	0.3 U
1,1-Dichloroethene	0.27 U	0.27 U	0.32 U	0.2 U	1.1 J	0.27 U	0.27 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.3 U	1.3 U	0.32 U	0.32 U
1,2-Dichloroethane	0.32 U	0.32 U	0.32 U	0.2 U	1.5 U	0.32 U	0.32 U
1,2-Dichloropropane	0.25 U	0.25 U	0.25 U	0.2 U 0.4 U	1.4 U	0.25 U	0.20 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.4 U	1.4 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.33 U	0.33 U	0.33 U	0.2 U	1.4 U	0.33 U	0.33 U
1,4-Dichlorobertzene	0.57 0	0.37 U	U.37 U	0.2 0	1.5 U	0.37 U 	0.37 0
2-Butanone	3.8 U	3.8 U	3.8 U	7 U	15 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether	5.0 0	5.6 0	5.0 0	7.0 0.3 U	10.0	3.0 0	3.0 0
2-Hexanone	2.5 U	2.6 U	2.6 U	0.3 U	10 U	2.5 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	0.7 U	10 U		2.5 U
Acetone		2.5 U 4.5 U	2.5 U 4.5 U			2.5 U	
Benzene	4.5 U 0.28 U	4.5 U 0.28 U	4.5 U 0.28 U	3 U 0.1 U	18 U	4.5 U	4.5 U
Bromodichloromethane			0.26 U	0.1 U	1.1 U	0.28 U	0.28 U
Bromoform	0.3 U 0.25 U	0.3 U 0.32 U	0.3 U 0.32 U	0.1 U 0.4 U	1.2 U 1 U	0.3 U	0.3 U
Bromomethane	0.25 U 0.2 U		0.32 U 0.34 U			0.25 U	0.32 U
Carbon disulfide	0.2 U	0.34 U 0.48 U	0.34 U 0.48 U	0.5 U	0.8 U	0.2 U	0.34 U
Carbon tetrachloride				0.2 U	1.7 J	0.33 U	0.48 U
Chlorobenzene	0.28 U	0.28 U	0.28 U	0.3 U	1.1 U	0.28 U	0.28 U
Chloroethane	0.36 U	0.36 U	0.36 U	0.1 U	1.4 U	0.36 U	0.36 U
Chloroform	0.33 U	0.33 U	0.33 U	0.3 U	1.3 U	0.33 U	0.33 U
Chloromethane	0.33 U	0.33 U	0.33 U	0.2 U	1.3 U	0.33 U	0.33 U
cis-1,2-Dichloroethene	0.14 U	0.3 U	0.3 U	0.4 U	0.56 U	0.14 U	0.3 U
cis-1,3-Dichloropropene	6.2	9.5	9.5	7.9	340	0.32 U	0.32 U
Dibromochloromethane	0.22 U	0.22 U	0.22 U	0.2 U	0.88 U	0.22 U	0.22 U
Ethylbenzene	0.28 U	0.28 U	0.28 U	0.2 U	1.1 U	0.28 U	0.28 U
m,p-Xylenes	0.25 U	0.25 U	0.25 U	0.2 U	10	0.25 U	0.25 U
Methylene chloride	0.38 U	0.52 U	0.52 U	0.3 U	1.5 U	0.38 U	0.52 U
o-Xylene	0.33 U	0.55 U	0.76 U	3 U	1.3 U	0.33 U	0.55 U
Tetrachloroethene	0.24 U	0.24 U	0.24 U	0.2 U	0.96 U	0.24 U	0.24 U
Toluene	0.32 U	0.32 U	0.32 U	0.2 U	1.3 U	0.32 U	0.32 U
trans-1,2-Dichloroethene	0.49 U	0.36 U	0.36 U	0.2 U	2 U	0.49 U	0.36 U
•	0.27 U	0.27 U	0.27 U	0.2 U	29	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.2 U	0.96 U	0.24 U	0.24 U
Trichloroethene	8.6	12	12	12	420	0.39 J	0.39 J
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.1 U	1.4 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	0.2 U	4.8 U	1.2 U	1.2 U
Vinyl chloride Analytical Method	0.19 U	0.26 U	0.26 U	0.2 U	10	0.19 U	0.26 U
•	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	AMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-56B	RD-56B	RD-56B	RD-57	RD-57	RD-57	RD-57
FLUTe Sample Port				Z8	Z8	Z 8	Z8
Sample Date	11/11/03	11/11/03	11/11/03	01/29/03	04/30/03	08/27/03	11/18/03
Sample Type	Primary	Dup	Split	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 ป	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.4 U	0.29 U	0.29 U	0.24 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 ป	0.35 ป	0.4 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	7 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether			0.3 U				
2-Hexanone	2.6 U	2.6 U	0.7 U	2.5 U	2.5 U	2.6 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	3 U	4.5 U	7.4 U	6.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.1 U	0.42 J,F	0.42 J,F	0.6 F	0.33 J,F
Bromodichloromethane	0.3 U	0.3 U	0.1 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	0.32 U	0.32 U	0.4 U	0.25 U	0.25 U	0.32 U	0.32 U
Bromomethane	0.34 U	0.34 U	0.5 U	0.2 U	0.2 U	0.34 U	0.34 U
Carbon disulfide	0.48 U	0.48 U	0.2 U	0.33 U	0.33 U	0.48 U	0.48 U
Carbon tetrachloride	0.28 U	0.28 U	0.3 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.1 U	0.36 U	0.55 J,F	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.3 U	0.3 U	0.4 U	0.14 U	0.14 U	0.3 U	0.3 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.2 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.52 U	0.52 U	0.3 U	0.38 U	0.38 U	0.52 U	0.52 U
Methylene chloride	0.5 U	0.54 U	3 U	0.33 U	0.33 U	0.48 U	0.48 U
o-Xylene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.36 U	0.36 U	0.2 U	0.49 U	0.49 U	0.36 U	0.36 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.35 J	0.24 J	0.2 U	0.26 U	0.24 U	0.26 U	0.24 U
Trichlorofluoromethane	0.34 U	0.34 U	0.1 U	0.26 U	0.20 U	0.23 U	0.20 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	0.1 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.26 U	0.26 U	0.2 U	0.19 U	0.19 U	0.26 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	AMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-58A	RD-58A	RD-58B	RD-58B	RD-58B	RD-58B	RD-58C
FLUTe Sample Port							
Sample Date	02/03/03	12/09/03	01/31/03	05/05/03	08/19/03	11/19/03	02/03/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)				****	······································		
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U				
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.29 U	0.29 U	0.24 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U				
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U				
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U				
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U				
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U				
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U				
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U				
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U				
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	3.8 U				
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.6 U	2.5 U	2.5 U	2.6 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U				
Acetone	4.5 U	4.5 U	4.5 U				
Benzene	0.28 U	0.28 U	0.28 U				
Bromodichloromethane	0.3 U	0.3 U	0.3 U				
Bromoform	0.25 U	0.32 U	0.25 U	0.25 U	0.32 U	0.32 U	0.25 U
Bromomethane	0.2 U	0.34 U	0.2 U	0.2 U	0.34 U	0.34 U	0.2 U
Carbon disulfide	0.33 U	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U				
Chlorobenzene	0.36 U	0.36 U	0.36 U				
Chloroethane	0.33 U	0.33 U	0.33 U				
Chloroform	0.33 U	0.33 U	0.33 U				
Chloromethane	0.14 U	0.3 U	0.14 U	0.14 U	0.3 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	1.5	1.6	0.32 U	0.32 U	0.32 U	0.32 U	0.59 J
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U				
Dibromochloromethane	0.28 U	0.28 U	0.28 U				
Ethylbenzene	0.25 U	0.25 U	0.25 U				
m,p-Xylenes	0.38 U	0.52 U	0.38 U	0.38 U	0.52 U	0.52 U	0.38 U
Methylene chloride	0.33 U	0.48 U	4.1 U	0.33 U	0.48 U	0.48 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 U				
Tetrachloroethene	0.32 U	0.32 U	0.32 U				
Toluene	0.49 U	0.36 U	0.49 U	0.49 U	0.36 U	0.36 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U				
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U				
Trichloroethene	190	180	0.26 U	0.26 U	0.26 U	0.26 U	0.5 J
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U				
Trichlorotrifluoroethane (Freon 113)	2.9 J	4.6 J	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.26 U	0.19 U	0.19 U	0.26 U	0.26 U	1.1
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-58C	RD-59A	RD-59A	RD-59A	RD-59A	RD-59B	RD-59B
FLUTe Sample Port							
Sample Date	08/18/03	01/31/03	05/15/03	08/08/03	11/14/03	01/31/03	05/15/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	03U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.29 U	0.29 U	0.24 U	0.24 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U				
1,1-Dichloroethane	0.27 U	0 27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0 32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U				
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U				
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0 35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U				
1,4-Dichlorobenzene	0 37 U	0.37 U	0.37 U	0.37 U	0 37 U	0 37 U	0.37 U
1,4-Dioxane	***						***
2-Butanone	3.8 U	3.8 U	3.8 U				
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.6 U	2.5 U	2.5 U	2.6 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U				
Acetone	4.5 U	4.5 U	4.7 J,L	4.5 U	4.5 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.28 U				
Bromodichloromethane	0.3 U	0.3 U	0.3 U				
Bromoform	0.32 U	0.25 U	0.25 U	0.32 U	0.32 U	0.25 U	0.25 U
Bromomethane	0.34 U	0.2 U	0.2 U	0.99 U	0.34 U	0.2 U	0.2 U
Carbon disulfide	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	0.33 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U				
Chlorobenzene	0.36 U	0.36 U	0.36 U				
Chloroethane	0.33 U	0.33 U	0.33 U	0.91 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U				
Chloromethane	0.3 U	0.14 U	0.14 U	0.27 U	0.3 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	0.64 J	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U				
Dibromochloromethane	0.28 U	0.28 U	0.28 U				
Ethylbenzene	0.25 U	0.25 U	0.25 U				
m,p-Xylenes	0.52 U	0.38 U	0.38 U	0.52 U	0.52 U	0.38 U	0.38 U
Methylene chloride	0.48 U	3.4 J,L	0.33 U	0.48 U	0.48 U	0.33 U	0.33 U
o-Xylene	0.24 U	0.24 U	0.24 U				
Tetrachloroethene	0.32 U	0.32 U	0.32 U				
Toluene	0.36 U	0.49 U	0.49 U	0.36 U	0.36 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U				
trans-1,3-Dichloropropene	0.24 U	0.24 U	0 24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0 26 U	0.26 U	0.26 U	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U				
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U				
Vinyl chloride	0.88	0.19 U	0.19 U	0.26 U	0.26 U	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-59B	RD-59B	RD-59C	RD-59C	RD-59C	RD-59C	RD-60
FLUTe Sample Port							
Sample Date	08/08/03	12/04/03	01/31/03	05/15/03	08/08/03	12/04/03	05/15/03
Sample Type	Primary						
Sample Qualifier							
Compound (ug/l)					•		
1,1,1-Trichloroethane	0.3 U	0.6 U					
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.29 U	0.29 U	0.24 U	0.24 U	0.58 U
1,1,2-Trichloroethane	0.3 U	0.6 U					
1,1-Dichloroethane	0.27 U	2.3					
1,1-Dichloroethene	0.32 U	2.1					
1,2-Dichlorobenzene	0.32 U	0.64 U					
1,2-Dichloroethane	0.28 U	7.2					
1,2-Dichloropropane	0.35 U	0.7 U					
1,3-Dichlorobenzene	0.35 U	0.7 U					
1,4-Dichlorobenzene	0.37 U	0.74 U					
1,4-Dioxane							
2-Butanone	3.8 U	7.6 U					
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.6 U	2.6 U	2.5 U	2.5 U	2.6 U	2.6 U	5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	5 U					
Acetone	4.5 U	9 U					
Benzene	0.28 U	0.56 U					
Bromodichloromethane	0.3 U	0.6 U					
Bromoform	0.32 U	0.32 U	0.25 U	0.25 U	0.32 U	0.32 U	0.5 U
Bromomethane	0.99 U	0.34 U	0.2 U	0.2 U	0.99 U	0.34 U	0.4 U
Carbon disulfide	0.48 U	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	0.66 U
Carbon tetrachloride	0.28 U	0.56 U					
Chlorobenzene	0.36 U	0.72 U					
Chloroethane	0.91 U	0.33 U	0.33 U	0.33 U	0.91 U	0.33 U	0.66 U
Chloroform	0.33 U	0.66 U					
Chloromethane	0.27 U	0.33 J.L	0.14 U	0.14 U	0.27 U	0.35 J,L	0.28 U
cis-1,2-Dichloroethene	0.32 U	7.7					
cis-1,3-Dichloropropene	0.22 U	0.44 U					
Dibromochloromethane	0.28 U	0.56 U					
Ethylbenzene	0.25 U	0.5 U					
m,p-Xylenes	0.52 U	0.52 U	0.38 U	,0.38 U	0.52 U	0.52 U	0.76 U
Methylene chloride	0.48 U	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	0.66 U
o-Xylene	0.24 U	0.48 U					
Tetrachloroethene	0.32 U	0.64 U					
Toluene	0.36 U	0.36 U	0.49 U	0.49 U	0.36 U	0.36 U	0.98 U
trans-1,2-Dichloroethene	0.27 U	0.54 U					
trans-1,3-Dichloropropene	0.24 U	0.48 U					
Trichloroethene	0.26 U	210					
Trichlorofluoromethane	0.34 U	0.68 U					
Trichlorotrifluoroethane (Freon 113)	1.2 U	2.4 U					
Vinyl chloride	0.26 U	0.26 U	0.19 U	0.19 U	0.26 U	0.26 U	0.38 U
Analytical Method	8260B						
Laboratory	DMA						

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-60	RD-61	RD-61	RD-61	RD-61	RD-61	RD-61
FLUTe Sample Port							
Sample Date	08/26/03	02/14/03	05/08/03	08/26/03	12/03/03	12/03/03	12/03/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Dup	Split
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	1.2 U	0.3 U	0.2 U				
1,1,2,2-Tetrachloroethane	0.96 U	0.29 U	0.29 U	0.24 U	0.24 U	0.24 U	0.4 U
1,1,2-Trichloroethane	1.2 U	0.3 U	0.2 U				
1,1-Dichloroethane	3.9 J	0.27 U	0.2 U				
1,1-Dichloroethene	3.3 J	0.32 U	0.3 U				
1,2-Dichlorobenzene	1.3 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U
1,2-Dichloroethane	8.1	0.28 U	0.2 U				
1,2-Dichloropropane	1.4 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.4 U
1,3-Dichlorobenzene	1.4 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.2 U
1,4-Dichlorobenzene	1.5 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.2 U
1,4-Dioxane							
2-Butanone	15 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	7 U
2-Chloroethyl Vinyl Ether	***	****		***			0.3 U
2-Hexanone	10 U	2.5 U	2.5 U	2.6 U	2.6 U	2.6 U	0.7 U
4-Methyl-2-pentanone (MIBK)	10 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.2 U
Acetone	34 U	5.8 J	6.2 J,L	4.5 U	4.5 U	4.5 U	3 U
Benzene	1.1 U	0.28 U	0.28 U	0.68 L	0.28 U	0.28 U	0.1 U
Bromodichloromethane	1.2 U	0.3 U	0.1 U				
Bromoform	1.3 U	0.25 U	0.25 U	0.32 U	0.32 U	0.32 U	0.4 U
Bromomethane	1.4 U	0.2 U	0.2 U	0.34 U	0.34 U	0.34 U	0.5 U
Carbon disulfide	1.9 U	0.33 U	0.33 U	0.48 U	0.48 U	0.48 U	0.2 U
Carbon tetrachloride	1.1 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.3 U
Chlorobenzene	1.4 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.1 U
Chloroethane	1.3 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.3 U
Chloroform	1.3 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.2 U
Chloromethane	1.2 U	0.32 J	0.14 U	0.3 U	0.3 U	0.3 U	0.4 U
cis-1,2-Dichloroethene	10	0.32 U	0.2 U				
cis-1,3-Dichloropropene	0.88 U	0.22 U	0.2 ป				
Dibromochloromethane	1.1 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.2 ป
Ethylbenzene	1 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.2 U
m,p-Xylenes	2.1 U	0.38 U	0.38 U	0.52 U	0.52 U	0.52 U	0.3 U
Methylene chloride	1.9 U	0.33 U	0.33 U	0.48 U	0.48 U	0.48 U	3 U
o-Xylene	0.96 U	0.24 U	0.2 U				
Tetrachloroethene	1.3 U	0.32 U	0.32 ป	0.32 ป	0.32 U	0.32 U	0.2 U
Toluene	1.4 U	0.49 U	0.49 U	0.36 U	0.36 U	0.36 U	0.2 U
trans-1,2-Dichloroethene	1.1 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.2 U
trans-1,3-Dichloropropene	0.96 U	0.24 U	0.2 U				
Trichloroethene	320	0.26 U	0.2 U				
Trichlorofluoromethane	1.4 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.1 U
Trichlorotrifluoroethane (Freon 113)	4.8 U	1.2 U	0.2 U				
Vinyl chloride	1 U	0.19 U	0.19 U	0.26 U	0.26 U	0.26 U	0.2 U
Analytical Method	8260B						
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	AMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-62	RD-62	RD-62	RD-63	RD-63	RD-64	RD-65
FLUTe Sample Port		110-02				Z6	Z4
Sample Date	02/10/03	05/02/03	11/21/03	02/05/03	08/26/03	01/29/03	01/28/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.24 U	0.3 U	0.3 U	0.3 U 0.29 U	0.29 U
1,1,2-Trichloroethane	0.23 U	0.23 U	0.24 U	0.23 U	0.24 U	0.23 U	0.29 U
1,1-Dichloroethane	0.3 U	0.3 U	0.3 U 0.27 U	0.97 J	0.3 U 0.77 J	0.3 U 0.27 U	2.7
1,1-Dichloroethene	0.27 U	0.27 U	0.27 U	0.97 J	0.77 J 0.99 J	0.27 U 0.49 J	10
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.49 J 0.32 U	0.32 U
1,2-Dichloroethane	0.32 U	0.32 U	0.32 U	0.32 U 0.28 U	0.32 U 0.28 U	0.32 U 0.28 U	0.52
1,2-Dichloropropane	0.25 U	0.25 U	0.25 U	0.28 U	0.28 U	0.25 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.33 U 0.37 U	0.37 U	0.33 U 0.37 U	0.33 U 0.37 U	0.33 U 0.37 U	0.33 U 0.37 U	0.33 U 0.37 U
1,4-Dioxane						0.37 0	
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	 3.8 U	5.3 J	 3.8 U
2-Chloroethyl Vinyl Ether	3.00	3.0 U 	3.00	J.6 U	3.0 U 	5.5 J 	3.6 U
2-Hexanone	2.5 U	2.5 U	2.6 U	2.5 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.6 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone (MIDIX)	4.5 U	2.5 U	5.3 U	2.5 U	4.5 U	2.5 U 18 F	4.5 U
Benzene	0.28 U	0.3 U	0.28 U	4.5 U	4.5 U	1.9 F	4.5 U 0.33 J,F
Bromodichloromethane	0.20 U	0.28 U	0.28 U	0.28 U	0.28 U	0.3 U	0.33 J ,F
Bromoform	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U 0.25 U	0.3 U 0.25 U
Bromomethane	0.23 U	0.23 U	0.32 U 0.34 U	0.23 U	0.32 U	0.25 U	0.23 U
Carbon disulfide	0.2 U	0.2 U	0.48 U	0.2 J	0.48 U	0.2 U	0.2 U
Carbon tetrachloride	0.28 U	0.28 U	0.48 U	0.43 0.28 U	0.48 U	0.33 U	0.28 U
Chlorobenzene	0.36 U	0.26 U	0.36 U	0.36 U	0.26 U	0.23 U 0.84 J _i F	0.36 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.33 U 0.14 U	0.33 J	0.33 U	0.33 U 0.14 U	0.33 U	0.33 U 0.14 U	0.33 U 0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	4	3.9	66	4.8
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.38 U	0.52 U	0.38 U	0.52 U	0.38 U	0.38 U
Methylene chloride	0.33 U	0.33 U	0.48 U	0.33 U	0.48 U	0.33 U	0.73 J.L
o-Xylene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	0.36 U	0.49 U	0.36 U	0.49 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.4 J	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0.26 U	3.3	6.6	130	11
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	1
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.19 U	0.26 U	0.19 U	0.26 U	0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-66	RD-66	RD-66	RD-67	RD-67	RD-68A	RD-68A
FLUTe Sample Port							
Sample Date	02/10/03	05/08/03	05/08/03	02/19/03	08/21/03	02/04/03	05/15/03
Sample Type	Primary	Primary	Dup	Primary	Primary	Primary	Primary
Sample Qualifier			•				
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	03U	0.3 U				
1,1,2,2-Tetrachloroethane	0 .29 U	0.29 U	0.29 U	0.29 U	0.24 U	0.29 U	0.29 U
1,1,2-Trichloroethane	0.3 U						
1,1-Dichloroethane	0.27 U						
1,1-Dichloroethene	0.32 U						
1,2-Dichlorobenzene	0.32 U						
1,2-Dichloroethane	0.28 U						
1,2-Dichloropropane	0.35 U						
1,3-Dichlorobenzene	0.35 U						
1,4-Dichlorobenzene	0.37 U						
1,4-Dioxane							
2-Butanone	3.8 U						
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.5 U	2.5 U	2.5 U	2.6 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U						
Acetone	4.5 U	4.5 U	4.5 U	23 U	4.5 U	4.5 U	4.5 U
Benzene	0.28 U						
Bromodichloromethane	0.20 U	0.20 U	0.20 U	0.20 U	0.3 U	0.20 U	0.3 U
Bromoform	0.25 U	0.3 U	0.3 U	0.3 U	0.32 U	0.25 U	0.25 U
Bromomethane	0.23 U	0.23 U	0.23 U	0.23 U	0.34 U	0.2 U	0.2 U
Carbon disulfide	0.2 U	0.2 U	0.2 U	0.2 U	0.48 U	0.33 U	0.23 U
Carbon tetrachloride	0.28 U	0.33 U 0.28 U	0.33 U	0.33 U	0.48 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.26 U	0.36 U				
Chloroethane	0.33 U						
Chloroform	0.33 U						
Chloromethane	0.33 U 0.14 U	0.33 U 0.14 U	0.33 U 0.14 U	0.33 U 0.14 U	0.33 U	0.14 U	0.33 U 0.14 U
cis-1,2-Dichloroethene	0.14 U	0.14 U	0.14 U	0.14 U	0.32 U	0.14 U	0.32 U
cis-1,3-Dichloropropene	0.32 U						
Dibromochloromethane	0.22 U	0.28 U	0.28 U				
Ethylbenzene	0.25 U						
m,p-Xylenes	0.23 U	0.25 U	0.23 U	0.23 U	0.52 U	0.23 U	0.23 U
Methylene chloride	0.33 U	0.33 U	0.33 U	0.33 U	0.32 U 0.48 U	0.33 U	0.33 U
o-Xylene	0.33 U 0.24 U	0.33 U 0.24 U	0.33 U 0.24 U	0.33 U 0.24 U	0.48 U	0.33 U 0.24 U	0.33 U 0.24 U
Tetrachloroethene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U 0.32 U	0.24 U 0.32 U	0.24 U
Toluene	0.32 U 0.49 U	0.32 U 0.49 U	0.32 U 0.49 U	0.32 U 0.49 U	0.32 U 0.36 U	0.32 U 0.49 U	0.32 U 0.49 U
trans-1,2-Dichloroethene	0.49 U 0.27 U	0.49 U 0.27 U	0.49 U 0.27 U	0.49 U 0.27 U	0.36 U 0.27 U	0.49 U 0.27 U	0.49 U 0.27 U
trans-1,3-Dichloropropene	0.27 U 0.24 U						
Trichloroethene	0.24 U	0.24 U 0.26 U	0.24 U 0.26 U	0.24 U	0.24 U 0.26 U	0.24 U 0.26 U	0.24 U
Trichlorofluoromethane	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U 0.34 U	0.26 U 0.34 U	0.26 U
Trichlorotrifluoroethane (Freon 113)	1.2 U		0.34 U 1.2 U	0.34 U 1.2 U	0.34 U 1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	1.2 U 0.19 U	0.19 U	0.19 U		0.19 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	0.26 U 8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA .	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-68A	RD-68A	RD-68B	RD-68B	RD-68B	RD-68B	RD-68B
FLUTe Sample Port							
Sample Date	08/07/03	12/04/03	02/04/03	05/15/03	08/07/03	12/04/03	12/04/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Split
Sample Qualifier							<u> </u>
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.2 U
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.29 U	0.29 U	0.24 U	0.24 U	0.4 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 ป	0.3 U	0.3 บ	0.3 U	0.2 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.2 U
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.3 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.2 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.4 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.2 U
1,4-Dichlorobenzene	0.37 ป	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.2 U
1,4-Dioxane		***					
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	7 U
2-Chloroethyl Vinyl Ether							0.3 U
2-Hexanone	2.6 U	2.6 U	2.5 U	2.5 U	2.6 U	2.6 U	0.7 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.2 U
Acetone	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	3 U
Benzene	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.1 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.1 U
Bromoform	0.32 U	0.32 U	0.25 U	0.25 U	0.32 U	0.32 U	0.4 U
Bromomethane	0.99 U	0.34 U	0.2 U	0.2 U	0.34 U	0.34 U	0.5 U
Carbon disulfide	0.48 U	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	0.2 U
Carbon tetrachloride	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.3 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.1 U
Chloroethane	0.91 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.3 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.2 U
Chloromethane	0.27 U	0.3 U	0.14 U	0.14 U	0.3 U	0.3 U	0.4 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.2 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.2 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.2 U
m,p-Xylenes	0.52 U	0.52 U	0.38 U	0.38 U	0.52 U	0.52 U	0.3 U
Methylene chloride	0.48 U	0.48 U	0.33 U	0.33 U	0.48 U	0.48 U	3 U
o-Xylene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.2 U
Tetrachloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.2 U
Toluene	0.36 U	0.36 U	0.49 U	0.49 U	0.36 U	0.36 U	0.2 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.2 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.2 U
Trichloroethene	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.2 U
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.1 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	0.2 U
Vinyl chloride	0.26 U	0.26 U	0.19 U	0.19 U	0.26 U	0.26 U	0.2 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	AMA _

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-69	RD-69	RD-70	RD-70	RD-71	RD-71	RD-72
FLUTe Sample Port							Z 7
Sample Date	02/11/03	08/26/03	02/05/03	05/01/03	02/10/03	05/08/03	01/27/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.29 U	0 .29 U	0.29 U	0.29 U	2.9 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	13
1,1-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	110
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	3.2 U
1,2-Dichloroethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	2.8 U
1,2-Dichloropropane	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	3.5 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	3.5 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	3.7 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	38 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.5 U	2.6 U	2.5 U	2.5 U	2.5 U	2.5 U	25 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	25 U
Acetone	4.5 U	4.5 U	4.5 U	5.2 J	4.5 U	4.5 U	45 U
Benzene	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	2.8 U
Bromodichloromethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	3 U
Bromoform	0.25 U	0.32 U	0.25 U	0.25 U	0.25 U	0.25 U	2.5 U
Bromomethane	0.2 U	0.34 U	0.2 U	0.2 U	0.2 U	0.2 U	2.0 U
Carbon disulfide	0.33 U	0.48 U	0.33 U	0.33 U	0.2 U	0.2 U	3.3 U
Carbon tetrachloride	0.28 U	0.48 U	0.28 U	0.28 U	0.28 U	0.33 U	2.8 U
Chlorobenzene	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.26 U	3.6 U
Chloroethane	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	3.3 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	3.3 U
Chloromethane	0.33 U 0.14 U	0.33 U	0.33 U 0.14 U	0.35 J	0.33 U 0.14 U	0.33 U 0.14 U	1.4 U
cis-1,2-Dichloroethene	0.14 U	0.32 U	0.14 U	0.23 U	0.14 U	0.14 U	1000
cis-1,3-Dichloropropene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.22 U	2.2 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.22 U	0.22 U	0.22 U	2.8 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	2.5 U
m,p-Xylenes	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	3.8 U
Methylene chloride	0.33 U	0.32 U 0.48 U	0.33 U	0.38 U	0.38 U	0.38 U	7.8 J,L
o-Xylene							
o-Aylene Tetrachloroethene	0.24 U 0.32 U	0.24 U	0.24 U 0.32 U	0.24 U	0.24 U	0.24 U	2.4 U
Tetrachioroethene Toluene		0.32 U		0.32 U	0.32 U	0.32 U	3.2 U
	0.49 U	0.36 U	0.49 U	0.49 U	0.49 U	0.49 U	4.9 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	2.8 J
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	2.4 U
Trichloroethene	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	1400
Trichlorofluoromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	3.4 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	12 U
Vinyl chloride	0.19 U	0.26 U	0.19 U	0.19 U	0.19 U	0.19 U	3.6 J
Analytical Method Laboratory	8260B DMA	8260B	8260B DMA	8260B DMA	8260B DMA	8260B	8260B DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-73	HAR-06	HAR-07	HAR-07	HAR-07	HAR-16	HAR-17
FLUTe Sample Port	Z9		***		***	Comp	
Sample Date	01/27/03	02/21/03	04/16/03	04/16/03	11/21/03	04/17/03	04/16/03
Sample Type	Primary	Primary	Primary	Split	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)		· · · · · · · · · · · · · · · · · · ·					
1,1,1-Trichloroethane	6.3 J	0.3 U	12 U		15 U	15 U	0.3 U
1,1,2,2-Tetrachloroethane	2.9 U	0.29 U	·12 U		12 U	14 U	0.29 U
1,1,2-Trichloroethane	3 U	0.3 U	12 U		15 U	15 U	0.3 U
1.1-Dichloroethane	16	8.9	11 U		14 U	14 U	0.49 J
1,1-Dichloroethene	340	36	13 U		16 U	16 U	1.6 J
1,2-Dichlorobenzene	3.2 U	0.32 U	13 U	***	16 U	16 U	0.32 U
1,2-Dichloroethane	11	0.28 U	11 U		14 U	14 U	0.28 U
1,2-Dichloropropane	3.5 U	0.35 U	14 U		18 U	18 U	0.35 U
1,3-Dichlorobenzene	3.5 U	0.35 U	14 U		18 U	18 U	0.35 U
1,4-Dichlorobenzene	3.7 U	0.37 U	15 U		18 U	18 U	0.37 U
1,4-Dioxane			0.07 U	0.54 U		43	5.44
2-Butanone	38 U	3.8 U	150 U		190 U	190 U	3.8 U
2-Chloroethyl Vinyl Ether		***					
2-Hexanone	25 U	2.5 U	100 U	****	130 U	120 U	2.5 U
4-Methyl-2-pentanone (MIBK)	25 U	2.5 U	100 U	***	120 U	120 U	2.5 U
Acetone	45 U	4.5 U	180 U	***	220 U	220 U	4.6 J
Benzene	140	0.28 U	11 U		18 J	14 U	0.28 U
Bromodichloromethane	3 U	0.3 U	12 U		15 U	15 U	0.3 U
Bromoform	2.5 U	0.25 U	10 U		16 U	12 U	0.25 U
Bromomethane	2 U	0.2 U	8 U		17 U	10 U	0.2 U
Carbon disulfide	3.3 U	0.33 U	13 U		24 U	16 U	0.33 U
Carbon tetrachloride	2.8 U	0.28 U	11 U		14 U	14 U	0.28 U
Chlorobenzene	3.6 U	0.36 U	14 U		18 U	18 U	0.36 U
Chloroethane	3.3 U	0.33 U	13 U		16 U	16 U	0.33 U
Chloroform	3.3 U	0.33 U	13 U		16 U	16 U	0.33 U
Chloromethane	1.4 U	0.14 U	5.6 U		15 U	7 U	0.14 U
cis-1,2-Dichloroethene	1100	6.3	2800		3200	250	20
cis-1,3-Dichloropropene	2.2 U	0.22 _. U	8.8 U		11 U	11 U	0.22 U
Dibromochloromethane	2.8 U	0.28 U	11 U		14 U	14 U	0.28 U
Ethylbenzene	4.1 J	0.25 U	10 U		12 U	12 U	0.25 U
m,p-Xylenes	7 J	0.38 U	15 U		26 U	19 U	0.38 U
Methylene chloride	6.8 J,L	0.33 U	17 U		24 U	37 U	0.62 U
o-Xylene	2.4 U	0.24 U	9.6 U		12 U	12 U	0.24 U
Tetrachloroethene	3.2 U	0.32 U	13 U		16 U	16 U	0.32 U
Toluene	4.9 U	0.49 U	20 U		18 U	24 U	0.49 U
trans-1,2-Dichloroethene	2.7 U	0.38 J	99		120	14 U	1.7 J
trans-1,3-Dichloropropene	2.4 U	0.24 U	9.6 U		12 U	12 U	0.24 U
Trichloroethene	400	1.1	3300		5600	2300	93 J
Trichlorofluoromethane	3.4 U	0.34 U	14 U		17 U	17 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	13 J	1.2 U	***		60 U		
Vinyl chloride	68	1	110 J		54	9.5 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260SIM	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	HAR-17	HAR-17	HAR-18	HAR-18	HAR-21	HAR-22	HAR-22
FLUTe Sample Port	****						
Sample Date	04/16/03	11/21/03	02/25/03	08/26/03	02/27/03	02/26/03	08/21/03
Sample Type	Dup	Primary	Primary	Primary	Primary	Primary	Primary
Sample Qualifier			•				
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	15 [.] U	4.5 J	12 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0 24 U	14 U	2.4 U	12 U	0.29 U	0 24 U
1,1,2-Trichloroethane	0.3 U	0 3 U	15 U	3 U	12 U	0.3 U	0.3 U
1,1-Dichloroethane	0.44 J	0.93 J	14 J	7.9 J	11 U	0.27 U	0.27 U
1,1-Dichloroethene	1.9 J	2.1	290	110	13 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	16 U	3.2 U	13 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	14 U	2.8 U	11 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	18 U	3.5 U	14 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	18 U	3.5 U	14 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	18 U	3.7 U	15 U	0.37 U	0.37 U
1,4-Dioxane			•••				
2-Butanone	3.8 U	3.8 U	190 U	38 U	150 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether					***		
2-Hexanone	2.5 U	2.6 U	120 U	26 U	100 U	2.5 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	120 U	25 U	100 U	2.5 U	2.5 U
Acetone	4.5 U	4.5 U	220 U	45 U	180 U	4.5 U	6.7 U
Benzene	0.28 U	0.28 U	14 U	2.8 U	11 U	0.28 U	0.28 U
Bromodichloromethane	0.3 U	0.3 U	15 U	3 U	12 U	0.3 ប	0.3 U
Bromoform	0.25 U	0.32 U	12 U	3.2 U	10 U	0.25 U	0.32 U
Bromomethane	0.2 U	0.34 U	10 U	3.4 U	8 U	0.2 U	0.34 U
Carbon disulfide	0.33 U	0.48 U	16 U	4.8 U	13 U	0.33 U	0.48 U
Carbon tetrachloride	0.28 U	0.28 U	14 U	2.8 U	11 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	18 U	3.6 U	14 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	16 U	3.3 U	13 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	16 U	3.3 U	13 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.3 U	7 U	3 U	5.6 U	0.14 U	0.3 U
cis-1,2-Dichloroethene	18	24	3900	2500	210	9.5	9.4
cis-1,3-Dichloropropene	0.22 U	0.22 U	11 U	2.2 U	8.8 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	14 U	2.8 U	11 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	12 U	2.5 U	10 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.52 U	19 U	5.2 U	15 U	0.38 U	0.52 U
Methylene chloride	0.38 UJ	0.48 U	16 U	4.8 U	13 U	0.33 U	0.48 U
o-Xylene	0.24 U	0.24 U	12 U	2.4 U	9.6 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	16 U	3.2 U	13 U	0.32 U	0.32 U
Toluene	0.49 U	0.36 U	24 U	3.6 U	20 U	0.49 U	0.36 U
trans-1,2-Dichloroethene	1.1 J	1	320	170	21 J	0.61 J	0.42 J
trans-1,3-Dichloropropene	0.24 U	0.24 U	12 U	2.4 U	9.6 U	0.24 U	0.24 U
Trichloroethene	83	100	7300	5100	10 U	2.7	2.5
Trichlorofluoromethane	0.34 U	0.34 U	17 U	3.4 U	14 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	***	6.6	740	420	48 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.26 U	85	83	54	0.66	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	HAR-23	HAR-23	HAR-25	HAR-26	HAR-26	HAR-26	HAR-26
FLUTe Sample Port							
Sample Date	02/27/03	08/26/03	02/27/03	02/26/03	05/15/03	05/15/03	08/26/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Dup	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0 3 U	0.3 U	0.3 U	0 3 U	0 3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.24 U	0.29 U	0.29 U	0.29 U	0.29 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0 3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.86 J	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloropropane	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.33 U	0.33 U	0.33 U	0.33 U 0.37 U	0.33 U
1,4-Dioxane	0.57 0	0.57 0	U.57 U	0.37 U 	0.57 0	0.37 0	0.57 0
2-Butanone	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether	3.6 0	3.6 0	3.6 U 			3.0 U	3.6 0
2-Hexanone	2.5 U	2.6 U	2.5 U	 2.5 U	 2.5 U	2.5 U	 2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone (WIDIC)	4.5 U	4.5 U	2.5 U 4.5 U	2.5 U 4.5 U	2.5 U 4.5 U	2.5 U 4.5 U	
Benzene	4.5 U 0.28 U	4.5 U 0.28 U	4.5 U 0.28 U				4.5 U
Bromodichloromethane				0.28 U	0.28 U	0.28 U	0.28 U
Bromoform	0.3 U	0.3 U	0.3 U 0.25 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromomethane	0.25 U 0.2 U	0.32 U	0.25 U 0.2 U	0.25 U	0.25 U	0.25 U	0.32 U
Carbon disulfide		0.34 U	0.2 U 0.46 J	0.2 U	0.2 U	0.2 U	0.34 U
Carbon distance Carbon tetrachloride	0.33 U	0.48 U		0.33 U	0.33 U	0.33 U	0.48 U
Chlorobenzene	0.28 U	0.28 U	0.5	0.28 U	0.28 U	0.28 U	0.28 U
Chloroethane	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroform	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
	0.33 U	0.33 U	1.5	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.3 U	0.14 U	0.14 U	0.14 U	0.14 U	0.3 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.38 U	0.52 U	0.38 U	0.38 U	0.38 U	0.38 U	0.52 U
Methylene chloride	0.33 U	0.48 U	0.33 U	0.33 U	0.33 U	0.33 U	0.48 U
o-Xylene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	6	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.36 U	0.49 U	0.49 U	0.49 U	0.49 U	0.36 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	1.9	3	91	0 26 U	0.26 U	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U	0.34 U	95	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	1.3 J	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.19 U	0.26 U	0.19 U	0.19 U	0.19 U	0.19 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	WS-04A	WS-04A	WS-04A	WS-04A	WS-04A	WS-04A	WS-04A
FLUTe Sample Port							
Sample Date	02/19/03	02/19/03	02/19/03	05/09/03	05/09/03	12/03/03	12/03/03
Sample Type	Primary	Dup	Split	Primary	Dup	Primary	Dup
Sample Qualifier						4	
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.4 U	0.29 U	0.29 U	0.24 U	0.24 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	10 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether			0.3 U				
2-Hexanone	2.5 U	2.5 U	0.7 U	2.5 U	2.5 U	2.6 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	0.7 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	6.5 J,L	4.7 J,L	3 U	4.5 U	4.5 U	4.5 U	4.5 U
Benzene	0.3 3,E 0.28 U	0.28 U	0.1 U	0.28 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.28 U	0.20 U	0.1 U	0.28 U	0.28 U	0.24 U	0.28 U
Bromoform	0.3 U	0.3 U	0.1 U	0.3 U 0.25 U	0.3 U	0.3 U	0.3 U
Bromomethane	0.25 U	0.23 U	0.4 U	0.25 U	0.25 U		
						0.34 U	0.34 U
Carbon disulfide	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U	0.48 U	0.48 U
Carbon tetrachloride Chlorobenzene	0.28 U	0.28 U	0.3 U	0.28 U	0.28 U	0.28 U	0.28 U
	0.36 U	0.36 U	0.1 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.14 U	0.14 U	0.4 U	0.14 U	0.14 U	0.3 U	0.3 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.2 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U		0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U	0.25 U	0.25 U
n,p-Xylenes	0.38 U	0.38 U	0.3 U	0.38 U	0.38 U	0.52 U	0.52 U
Methylene chloride	0.33 U	0.33 U	3 U	0.33 U	0.33 U	0.48 U	0.48 U
p-Xylene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
oluene	0.49 U	0.49 U	0.2 U	0.49 U	0.49 U	0.64 J	0.64 J
rans-1,2-Dichloroethene	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
rans-1,3-Dichloropropene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
richloroethene	0.26 U	0.26 U	0.2 U	0.26 U	0.26 U	0.26 U	0.26 U
Trichlorofluoromethane	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U	0.34 U	0.34 U
Frichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	0.2 U	1.2 U	1.2 U	1.2 U	1.2 U
/inyl chloride	0.19 U	0.19 U	0.2 U	0.19 U	0.19 U	0.26 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
aboratory	DMA	DMA	AMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	WS-04A	WS-05	WS-05	WS-05	WS-06	WS-06	WS-06
FLUTe Sample Port							
Sample Date	12/03/03	02/04/03	05/05/03	05/05/03	02/03/03	05/07/03	08/19/03
Sample Type	Split	Primary	Primary	Split	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)			·····				
1,1,1-Trichloroethane	0.2 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 Ū
1,1,2,2-Tetrachloroethane	0.4 U	0.29 U	0.29 U		0.29 U	0.29 U	0.24 U
1,1,2-Trichloroethane	0.2 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.2 U	0.27 U	0.27 U		0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.3 U	0.32 U	0.32 U		0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.2 U	0.32 U	0.32 U		0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.2 U	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.4 U	0.35 U	0.35 U		0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.2 U	0.35 U	0.35 U		0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.2 U	0.37 U	0.37 U		0.37 U	0.37 U	0.37 U
1,4-Dioxane		2.17 J	2.38	2.6 U	0.768 J	0.898 J	0.698 U
2-Butanone	7 U	3.8 U	3.8 U		3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether	0.3 U						
2-Hexanone	0.7 U	2.5 U	2.5 U		2.5 U	2.5 U	2.6 U
4-Methyl-2-pentanone (MiBK)	0.2 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U
Acetone	3 U	4.5 U	4.5 U	***	4.5 U	4.5 U	4.5 U
Benzene	0.1 U	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U
Bromodichloromethane	0.1 U	0.3 U	0.3 ป		0.3 U	0.3 U	0.3 U
Bromoform	0.4 U	0.25 U	0.25 U		0.25 U	0.25 U	0.32 U
Bromomethane	0.5 ป	0.2 U	0.2 U		0.2 U	0.2 U	0.34 U
Carbon disulfide	0.2 U	0.33 U	0.33 U		0.33 U	0.33 U	0.48 U
Carbon tetrachloride	0.3 U	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U
Chlorobenzene	0.1 U	0.36 U	0.36 U		0.36 U	0.36 U	0.36 U
Chloroethane	0.3 U	0.33 U	0.33 U		0.33 U	0.33 U	0.33 U
Chloroform	0.2 U	0.33 U	0.33 U		0.33 U	0.33 U	0.33 U
Chloromethane	0.4 U	0.14 U	0.14 U		0.14 U	0.14 U	0.3 U
cis-1,2-Dichloroethene	0.2 U	2.9	2.6		38	36	47
cis-1,3-Dichloropropene	0.2 U	0.22 U	0.22 U		0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.2 U	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U
Ethylbenzene	0.2 U	0.25 U	0.25 U		0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.3 U	0.38 U	0.38 U		0.38 U	0.38 U	0.52 U
Methylene chloride	3 U	0.33 U	0.33 U		0.33 U	0.33 U	0.48 U
o-Xylene	0.2 U	0.24 U	0.24 U		0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.2 U	0.32 U	0.32 U		0.32 U	0.32 U	0.32 U
Toluene	0.46 J	0.49 U	0.49 U		0.49 U	0.49 U	0.36 U
trans-1,2-Dichloroethene	0.2 U	0.27 U	0.27 U		6	6.1	8.1
trans-1,3-Dichloropropene	0.2 U	0.24 U	0.24 U		0.24 U	0.24 U	0.24 U
Trichloroethene	0.2 U	1.5	1.3		7	2.8	4.6
Trichlorofluoromethane	0.1 U	0.34 U	0.34 U		0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	0.2 U	1.2 U	1.2 U		1.2 U	1.2 U	1.2 U
Vinyl chloride	0.2 U	0.19 U	0.19 U		1.8	1.5	2.1
Analytical Method	8260B	8260B	8260B	8260SIM	8260B	8260B	8260B
Laboratory	AMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	WS-06	WS-09	WS-09	WS-09A	WS-09A	WS-09A	WS-09A
FLUTe Sample Port	***						
Sample Date	11/19/03	02/03/03	05/07/03	02/12/03	05/01/03	08/26/03	12/03/03
Sample Type	Primary						
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	12 U	12 U	0.3 U	0.3 U	0.3 U	6U .
1,1,2,2-Tetrachloroethane	0.24 U	12 U	12 U	0.29 U	0.29 U	0.24 U	4.8 U
1,1,2-Trichloroethane	0.3 U	12 U	12 U	0.3 U	0.3 U	0.3 U	6 U
1,1-Dichloroethane	0.27 U	11 U	11 U	0.27 U	0.27 U	0.27 U	5.4 U
1,1-Dichloroethene	0.32 U	13 U	13 U	0.32 U	0.32 U	2.2	6.4 U
1,2-Dichlorobenzene	0.32 U	13 U	13 U	0.32 U	0.32 U	0.32 U	6.4 U
1,2-Dichloroethane	0.28 U	11 U	11 U	0.28 U	0.28 U	0.28 U	5.6 U
1,2-Dichloropropane	0.35 U	14 U	14 U	0.35 U	0.35 U	0.35 U	7 U
1,3-Dichlorobenzene	0.35 U	14 U	14 U	0.35 U	0.35 U	0.35 U	7 U
1,4-Dichlorobenzene	0.37 U	15 U	15 U	0.37 U	0.37 U	0.37 U	7.4 U
1,4-Dioxane	0.79 U	1.93 J	3.71		***		
2-Butanone	3.8 U	150 U	150 U	3.8 U	3.8 U	3.8 U	76 U
2-Chloroethyl Vinyl Ether							
2-Hexanone	2.6 U	100 U	100 U	2.5 U	2.5 U	2.6 U	52 U
4-Methyl-2-pentanone (MIBK)	2.5 U	100 U	100 U	2.5 U	2.5 U	2.5 U	50 U
Acetone	4.5 U	180 U	180 U	39	4.5 U	4.5 U	90 U
Benzene	0.28 U	11 U	11 U	0.28 U	0.28 U	0.28 U	5.6 U
Bromodichloromethane	0.3 U	12 U	12 U	0.3 U	0.3 U	0.3 U	6 U
Bromoform	0.32 U	10 U	10 U	0.25 U	0.25 U	0.32 U	6.4 U
Bromomethane	0.34 U	8 U	8 U	0.2 U	0.2 U	0.34 U	6.8 U
Carbon disulfide	0.48 U	13 U	13 U	0.33 U	0.33 U	0.48 U	9.6 U
Carbon tetrachloride	0.28 U	11 U	11 U	0.28 U	0.28 U	0.28 U	5.6 U
Chlorobenzene	0.36 U	14 U	14 U	0.36 U	0.36 U	0.36 U	7.2 U
Chloroethane	0.33 U	13 U	13 U	0.33 U	0.33 U	0.33 U	6.6 U
Chloroform	0.33 U	13 U	13 U	0.33 U	0.33 U	0.33 U	6.6 U
Chloromethane	0.3 U	5.6 U	5.6 U	0.29 J	0.14 U	0.3 U	6 U
cis-1,2-Dichloroethene	52	430	410	1.6	4.4	1100	690
cis-1,3-Dichloropropene	0.22 U	8.8 U	8.8 U	0.22 U	0.22 U	0.22 U	4.4 U
Dibromochloromethane	0.28 U	11 U	11 U	0.28 U	0.28 U	0.28 U	5.6 U
Ethylbenzene	0.25 U	10 U	10 U	0.25 U	0.25 U	0.25 U	5 U
m,p-Xylenes	0.52 U	15 U	15 U	0.38 U	0.38 U	0.52 U	10 U
Methylene chloride	0.88 J,L	13 U	13 U	0.33 U	0.33 U	0.48 U	9.6 U
o-Xylene	0.24 U	9.6 U	9.6 U	0.24 U	0.24 U	0.24 U	4.8 U
Tetrachloroethene	0.32 U	13 U	13 U	0.32 U	0.32 U	0.32 U	6.4 U
Toluene	0.36 U	20 U	20 U	0.49 U	0.49 U	0.36 U	7.2 U
trans-1,2-Dichloroethene	7.6	11 U	11 U	0.27 U	0.27 U	13	18 J
trans-1,3-Dichloropropene	0.24 U	9.6 U	9.6 U	0.24 U	0.24 U	0.24 U	4.8 U
Trichloroethene	4.4	7600	7300	0.29 J	12	47	2000
Trichlorofluoromethane	0.34 U	14 U	14 U	0.34 U	0.34 U	0.34 U	6.8 U
Trichlorotrifluoroethane (Freon 113)	1 2 U	48 U	48 U	1.2 U	1.2 U	1.2 U	24 U
Vinyl chloride	2.6	7.6 U	7.6 U	0.19 U	0 19 U	2.9	5.2 U
Analytical Method	8260B						
Laboratory	DMA						

TABLE IV SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier	WS-09A	WS-09A	WS-12	WS-13	OS-02	OS-04	OS-08
FLUTe Sample Port							
Sample Date	12/03/03	12/03/03	08/13/03	08/20/03	01/31/03	08/08/03	01/31/03
Sample Type	Dup	Split	Primary	Primary	Primary	Primary	Primary
Sample Qualifier							
Compound (ug/l)							
1,1,1-Trichloroethane	6 U	0.2 U	0.3 U				
1,1,2,2-Tetrachloroethane	4.8 U	0.4 U	0.24 U	0.24 U	0.29 U	0.24 U	0.29 U
1,1,2-Trichloroethane	6 U	0.2 U	0.3 U				
1,1-Dichloroethane	5.4 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	6.4 U	0.3 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	6.4 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	5.6 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	7 U	0.4 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	7 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	7.4 U	0.2 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane			0.336 U	0.297 U			
2-Butanone	76 U	7 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether		0.3 U					
2-Hexanone	52 U	0.7 U	2.6 U	2.6 U	2.5 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	50 U	0.2 U	2.5 U				
Acetone	90 U	3 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U
Benzene	5.6 U	0.1 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Bromodichloromethane	6 U	0.1 U	0.3 U				
Bromoform	6.4 U	0.4 U	0.32 U	0.32 U	0.25 U	0.32 U	0.25 U
3romomethane	6.8 U	0.5 U	0.34 U	0.34 U	0.2 U	0.99 U	0.2 U
Carbon disulfide	9.6 U	0.2 U	0.48 U	0.48 U	0.33 U	0.48 U	0.33 U
Carbon tetrachloride	5.6 U	0.3 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	7.2 U	0.1 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	6.6 U	0.3 U	0.33 U	0.33 U	0.33 U	0.91 U	0.33 U
Chloroform	6.6 U	0.2 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	6 U	0.4 U	0.3 U	0.3 U	0.14 U	0.27 U	0.14 U
cis-1,2-Dichloroethene	700	530	14	0.32 U	0.32 U	0.32 U	0.32 U
cis-1,3-Dichloropropene	4.4 U	0.2 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	5.6 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	5 U	0.2 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
n,p-Xylenes	10 U	0.3 U	0.52 U	0.52 U	0.38 U	0.52 U	0.38 U
Methylene chloride	9.6 U	3 U	0.62 U	0.48 U	6.8 J,L	0.48 U	7 U
o-Xylene	4.8 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	6.4 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Foluene	7.2 U	0.2 U	0.36 U	0.36 U	0.49 U	0.36 U	0.49 U
rans-1,2-Dichloroethene	18 J	12	1.1	0.27 U	0.27 U	0.27 U	0.27 U
rans-1,3-Dichloropropene	4.8 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Frichloroethene	2000	1300	16	0.26 U	0.26 U	0.26 U	0.26 U
Trichlorofluoromethane	6.8 U	0.1 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	24 U	0.2 U	1.2 U				
/inyl chloride	5.2 U	0.2 U	0.26 U	0.26 U ,	0.19 U	0.26 U	0.19 U
Analytical Method	8260B						
_aboratory	DMA	AMA	DMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	OS-09	OS-09	OS-09	OS-16	OS-17	OS-21	OS-24
FLUTe Sample Port							Z15
Sample Date	11/06/03	11/06/03	11/06/03	01/30/03	02/25/03	09/03/03	01/28/03
Sample Type	Primary	Dup	Split	Primary	Primary	Primary	Primary
Sample Qualifier			+-+		pН		
Compound (ug/l)							
1,1,1-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1,2,2-Tetrachloroethane	0.24 U	0.24 U	0.4 U	0.29 U	0.29 U	0.24 U	0.29 U
1,1,2-Trichloroethane	0.3 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.3 U
1,1-Dichloroethane	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1-Dichloroethene	0.32 U	0.32 U	0.3 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichloroethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
1,2-Dichloropropane	0.35 U	0.35 U	0.4 U	0.35 U	0.35 U	0.35 U	0.35 U
1,3-Dichlorobenzene	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U
1,4-Dichlorobenzene	0.37 U	0.37 U	0.2 U	0.37 U	0.37 U	0.37 U	0.37 U
1,4-Dioxane							
2-Butanone	3.8 U	3.8 U	7 U	3.8 U	3.8 U	3.8 U	3.8 U
2-Chloroethyl Vinyl Ether			0.3 U				
2-Hexanone	2.6 U	2.6 U	0.7 U	2.5 U	2.5 U	2.6 U	2.5 U
4-Methyl-2-pentanone (MIBK)	2.5 U	2.5 U	0.2 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	7.9 J,L	4.5 U	3 U	4.5 U	4.5 U	4.5 U	4.5 U
Benzene	0.28 U	0.28 U	0.1 U	0.28 U	0.28 U	0.28 U	1.8
Bromodichloromethane	0.3 U	0.3 U	0.1 U	0.3 U	0.3 U	0.3 U	0.3 U
Bromoform	0.32 U	0.32 U	0.4 U	0.25 U	0.25 U	0.32 U	0.25 U
Bromomethane	0.34 U	0.34 U	0.5 U	0.2 U	0.2 U	0.34 U	0.2 U
Carbon disulfide	0.48 U	0.48 U	0.2 U	0.33 U	0.33 U	0.48 U	0.33 U
Carbon tetrachloride	0.28 U	0.28 U	0.3 U	0.28 U	0.28 U	0.28 U	0.28 U
Chlorobenzene	0.36 U	0.36 U	0.1 U	0.36 U	0.36 U	0.36 U	0.36 U
Chloroethane	0.33 U	0.33 U	0.3 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloroform	0.33 U	0.33 U	0.2 U	0.33 U	0.33 U	0.33 U	0.33 U
Chloromethane	0.3 U	0.3 U	0.4 U	0.14 U	0.14 U	0.3 U	0.14 U
cis-1,2-Dichloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	2.2
cis-1,3-Dichloropropene	0.22 U	0.22 U	0.2 U	0.22 U	0.22 U	0.22 U	0.22 U
Dibromochloromethane	0.28 U	0.28 U	0.2 U	0.28 U	0.28 U	0.28 U	0.28 U
Ethylbenzene	0.25 U	0.25 U	0.2 U	0.25 U	0.25 U	0.25 U	0.25 U
m,p-Xylenes	0.52 U	0.52 ป	0.3 U	0.38 U	0.38 U	0.52 U	0.38 U
Methylene chloride	0.48 U	0.48 U	3 U	0.64 U	0.33 U	0.48 U	0.47 J,L
o-Xylene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Tetrachloroethene	0.32 U	0.32 U	0.2 U	0.32 U	0.32 U	0.32 U	0.32 U
Toluene	0.36 U	0.36 U	0.2 U	0.49 U	0.49 U	0.36 U	0.49 U
trans-1,2-Dichloroethene	0.27 U	0.27 U	0.2 U	0.27 U	0.27 U	0.27 ป	0.27 U
trans-1,3-Dichloropropene	0.24 U	0.24 U	0.2 U	0.24 U	0.24 U	0.24 U	0.24 U
Trichloroethene	0.26 U	0.26 U	0.2 U	0.26 U	0.26 U	0.26 U	3.6
Trichlorofluoromethane	0.34 U	0.34 U	0.1 U	0.34 U	0.34 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	1.2 U	1.2 U	0.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.26 U	0.26 U	0.2 U	0.19 U	0.19 U	0.26 U	0.19 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	AMA	DMA	DMA	DMA	DMA

TABLE IV
SUMMARY OF RESULTS FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	OS-26	OS-26	OS-26	OS-28	OS-28	OS-28
FLUTe Sample Port		700				
Sample Date	02/04/03	02/04/03	12/02/03	08/22/03	08/22/03	09/18/03
Sample Type	Primary	Dup	Primary	Primary	Dup	Primary
Sample Qualifier						
Compound (ug/l)			-			
1,1,1-Trichloroethane	0.3 U					
1,1,2,2-Tetrachloroethane	0.29 U	0.29 U	0.24 U	0.24 U	0.24 U	0.24 U
1,1,2-Trichloroethane	0.3 U					
1,1-Dichloroethane	0.27 U					
1,1-Dichloroethene	0.32 U	0 32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-Dichlorobenzene	0.32 U					
1,2-Dichloroethane	0.28 U					
1,2-Dichloropropane	0.35 U					
1,3-Dichlorobenzene	0.35 U	0.35 ป				
1,4-Dichlorobenzene	0.37 U					
1,4-Dioxane				0.07 U	0.07 U	0.07 U
2-Butanone	3.8 U					
2-Chloroethyl Vinyl Ether						
2-Hexanone	2.5 U	2.5 U	2.6 U	2.6 U	2.6 U	2.6 U
4-Methyl-2-pentanone (MIBK)	2.5 U					
Acetone	4.5 U					
Benzene	0.28 U					
Bromodichloromethane	0.3 U					
Bromoform	0.25 U	0.25 U	0.32 U	0.32 U	0.32 U	0.32 U
Bromomethane	0.2 U	0.2 U	0.34 U	0.34 U	0.34 U	0.34 U
Carbon disulfide	0.33 U	0.33 U	0.48 U	0.48 U	0.48 U	0.48 U
Carbon tetrachloride	0.28 U					
Chlorobenzene	0.36 U					
Chloroethane	0.33 U					
Chloroform	0.33 U					
Chloromethane	0.14 U	0.14 U	0.3 U	0.3 U	0.3 U	0.3 U
cis-1,2-Dichloroethene	0.32 U					
cis-1,3-Dichloropropene	0.22 U					
Dibromochloromethane	0.28 U					
Ethylbenzene	0.25 U					
m,p-Xylenes	0.38 U	0.38 U	0.52 U	0.52 U	0.52 U	0.52 U
Methylene chloride	0.33 U	0.66 U	0.48 U	0.9 U	0.89 U	0.48 U
o-Xylene	0.24 U					
Tetrachloroethene	0.32 U	0.32 U	0.32 ป	0.32 U	0.32 U	0.32 U
Toluene	0.49 U	0.49 U	0.36 U	0.36 U	0.36 U	0.36 U
trans-1,2-Dichloroethene	0.27 U					
trans-1,3-Dichloropropene	0.24 U					
Trichloroethene	0.26 U					
Trichlorofluoromethane	0.34 U					
Trichlorotrifluoroethane (Freon 113)	1.2 U					
Vinyl chloride	0.19 U	0.19 U	0.26 U	0.26 U	0.26 U	0.26 U
Analytical Method	8260B	8260B	8260B	8260B	8260B	8260B
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA

AMA	=	American Analytics of Chatsworth, California.
Ceimic	=	Ceimic Corporation of Narragansett, Rhode Island.
DMA	=	Del Mar Analytical of Irvine, California.
()	=	Analysis not performed.
Primary	=	Primary sample.
Dup	=	Sample duplicate.
Split	=	Sample split.
ug/l	=	Micrograms per liter.
С	=	Possible carry-over contaminant.
F	=	Sampled through multi-level FLUTe ports. Footnoted results are not representative of historic groundwater samples, and may have been introduced in the FLUTe samples by compressed nitrogen gas, electrical tape and/or FLUTe components.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
L	=	Laboratory contaminant.
S	=	Suspect result.
Ü	=	Not detected; numerical value represents the Method Detection Limit for that compound.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range (see Appendix D for details).
Comp	=	Composite sample. The HAR-16 sample was composited at the laboratory from FLUTe ports 7 through 12. The RD-10 sample was composited at the laboratory from FLUTe ports 3, 6, and 9.
рН	=	pH of preserved sample did not meet the method preservation requirements.
HS	=	VOA vial contained headspace which may have resulted in the loss of volatile analytes.

Notes:

^{*} Low-level 1,4-dioxane analyses were performed on primary samples by Ceimic Corporation and on split samples by Del Mar Analytical using modified EPA method 8260 SIM.

Page 1 of 1

Well Identifier	Well Identifier Sample Date		Gasoline Range Organics (C6-C12) (micrograms per liter)	Laboratory
SHALLOW WELLS	3			
HAR-11	02/27/03	8015	13 U	DMA
RS-30	05/01/03	8015	470	DMA
RS-31	05/01/03	8015	37 U	DMA
RS-32	02/25/03	8015	26 U	DMA
CHATSWORTH FO	DRMATION WELLS			
RD-32	02/21/03	8015	8.8 U	DMA
RD-36B	02/12/03	8015	35 U	DMA
RD-36C	02/13/03	8015	14 U	DMA
RD-36D	02/13/03	8015	8.8 U	DMA
RD-37	02/14/03	8015	17 U	DMA
RD-38A	02/13/03	8015	39 U	DMA
RD-38B	02/13/03	8015	8.8 ป	DMA
RD-50(Z2)	02/17/03	8015	150 F	DMA

FOOTNOTES AND EXPLANATIONS:

U = Not detected; numerical value represents the Method Detection Limit for that compound.

DMA = Del Mar Analytical of Irvine, California.

Z = FLUTe sample port number.

F = Sampled through multi-level FLUTe ports. Footnoted results are not representative of historic groundwater samples, and may have been introduced in the FLUTe samples by compressed nitrogen gas, electrical tape and/or FLUTe components.

TABLE VI SUMMARY OF ANALYSES FOR TRACE METAL CONSTITUENTS AND CYANIDE, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier			RS-18	RD-15	RD-21	RD-21	RD-22	RD-22	RD-23	RD-23
FLUTe Sample Port					Z2	Z2	Z2	Z2	Z1	Z1
Sample Date			05/02/03	02/26/03	02/25/03	08/28/03	02/24/03	06/02/03	02/26/03	08/26/03
Sample Type			Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	MCL								
Antimony	ug/l	6	5.4	0.42 U	2.3	0.89 J	3.1	*	0.5 U	0.63 J
Arsenic	ug/l	50	0.75 U	0.29 U	33	4.3	320	35	25	5.2
Barium	ug/i	1000	85	49	52	47	49		33	28
Beryllium	ug/i	4	0.11 U	0.11 U	0.11 U	0.095 U	0.11 U	~~	0.11 U	0.095 U
Cadmium	ug/l	5	0.087 J	0.03 U	0.03 U	0.018 U	0.03 U	~~*	0.046 J	0.018 U
Chromium	ug/l	50	0.41 J	0.98 U	0.26 U	0.13 U	0.21 U	***	0.84 U	0.68 U
Cobalt	ug/l	NA	8.8	1.9	0.38 J	0.28 J	0.78 J	~~	0.33 J	0.3 J
Copper	ug/l	1000 SMCL	1.8 J	2	0.93 J	0.78 J	2.2	~~~	9.6	0.35 U
Iron	ug/l	300 SMCL	4 U	540	8 J	7.4 J	27		47 U	30 U
Lead	ug/l	15 ECAL	0.13 J	1.4	1.3	0.62 J	0.67 J	***	1.8	0.26 J
Manganese	ug/l	50 SMCL	0.81 J	110	33	14	57		15	73
Mercury	mg/l	0.002	0.000063 U	***	0.000063 U	0.000063 U				
Molybdenum	ug/l	NA	3.1	1	1.9	1.9	2		2.1	1.9
Nickel	ug/l	100	60	3.8	0.4 J	0.13 U	4.4		3.1	0.6 J
Selenium	ug/l	50	1.5 J	0.61 J	3.4	2.5	1.3 J		0.59 U	0.43 J
Silver	ug/l	100 SMCL	0.054 U	0.054 U	0.054 U	0.08 U	0.054 U	***	0.054 U	0.08 U
Thallium	ug/l	2	0.092 U	0.092 U	0.092 U	0.13 U	0.12 J		0.092 U	0.13 U
Total Cyanide	ug/l	200		***		***	0.0042 U	***		
Vanadium	ug/l	50 ACAL	2.3	0.39 U	2	1.1	1.4		0.39 U	0.45 J
Zinc	ug/l	5000 SMCL	3.7 J	1900	48	30	470		110	11 J
Laboratory			DMA	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE VI SUMMARY OF ANALYSES FOR TRACE METAL CONSTITUENTS AND CYANIDE, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier			RD-33A	RD-33B	RD-33C	RD-34A	RD-34B	RD-34C	RD-54A	RD-54A
FLUTe Sample Port			Z4					700	Z2	Z2
Sample Date			01/30/03	02/11/03	02/10/03	05/16/03	02/06/03	02/06/03	02/18/03	08/26/03
Sample Type			Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	MCL								
Antimony	ug/l	6	3	0.74 J	0.11 J	0.54 U	0.29 J	0.032 U	0.57 J	0.4 J
Arsenic	ug/l	50	210	0.29 U	0.29 U	0.7 U	0.29 U	0.29 U	43	7.7
Barium	ug/l	1000	48	56	89	42	87	64	43	42
Beryllium	ug/l	4	0.11 U	0.11 U	0.11 U	0.078 U	0.11 U	0.11 U	0.11 U	0.095 U
Cadmium	ug/l	5	0.048 J	0.03 U	0.03 U	0.13 U	0.03 U	0.03 U	0.037 J	0.018 U
Chromium	ug/l	50	0.14 U	0.14 U	0.14 U	0.35 U	0.68 U	0.56 U	0.14 U	0.59 U
Cobalt	ug/l	NA	0.56 J	0.69 J	0.12 J	0.94 J	0.28 J	0.093 J	0.21 J	0.19 J
Copper	ug/l	1000 SMCL	3.8	0.38 U	0.52 J	3.7	0.57 J	0.51 J	3.3	0.35 U
Iron	ug/l	300 SMCL	4.7 J	1700	140	490	250	170	41 U	22 U
Lead	ug/l	15 ECAL	2.1	0.24 J	0.28 J	0.65 J	0.35 J	0.18 J	3	0.55 J
Manganese	ug/l	50 SMCL	15	140	32	35	47	12	16	230
Mercury	mg/l	0.002	0.00005 U	0.00005 U	0.00005 U	0.000063 U	0.00005 U	0.00005 U	0.000063 U	0.000063 U
Molybdenum	ug/l	NA	1.4	2.1	1.8	0.66 J	1	1.3	1.1	1.5
Nickel	ug/l	100	1.4	0.27 J	0.1 U	1.6	0.43 J	0.1 U	2.1	1.9
Selenium	ug/l	50	1 J	0.59 U	0.59 U	2.2	0.59 U	0.59 U	0.59 U	1.1 J
Silver	ug/l	100 SMCL	0.054 U	0.054 U	0.054 U	0.13 U	0.054 U	0.054 U	0.054 U	0.08 U
Thallium	ug/i	2	0.18 J	0.14 J	0.24 J	0.083 U	0.092 U	0.1 J	0.092 U	0.13 U
Total Cyanide	ug/l	200	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U		
Vanadium	ug/l	50 ACAL	1.2	0.77 U	0.83 U	0.7 U	0.39 U	0.39 U	0.39 U	0.53 J
Zinc	ug/l	5000 SMCL	630	910	210	2400	910	81	93	71
Laboratory			DMA	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE VI SUMMARY OF ANALYSES FOR TRACE METAL CONSTITUENTS AND CYANIDE, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier			RD-54B	RD-54B	RD-54C	RD-54C	RD-56B	RD-57	RD-57	RD-59A
FLUTe Sample Port						***		Z8	Z8	
Sample Date			02/26/03	08/07/03	02/26/03	08/26/03	08/12/03	01/29/03	04/30/03	01/31/03
Sample Type			Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	MCL								
Antimony	ug/l	6	0.45 U	0.52 U	0.92 U	0.2 U	0.3 J	0.84 J	1.1 J	4.1
Arsenic	ug/l	50	0.29 U	0.53 U	0.29 U	0.99 J	0.53 U	1.5	1.1 U	0.3 J
Barium	ug/l	1000	63	55	75	68	72	48	46	44
Beryllium	ug/l	4	0.11 U	0.095 U	0.11 U	0.095 U	0.095 U	0.11 U	0.11 U	0.11 U
Cadmium	ug/l	5	0.03 U	0.018 U	0.03 J	0.018 U	0.018 U	0.03 U	0.03 U	0.03 U
Chromium	ug/l	50	0.74 U	0.74 U	0.52 U	0.75 U	0.06 U	0.14 U	0.22 J	0.18 U
Cobalt	ug/l	NA	0.26 J	0.14 J	0.34 J	0.24 J	0.13 J	0.31 J	0.23 J	0.14 J
Copper	ug/l	1000 SMCL	0.73 J	0.37 J	0.76 J	1.3 J	0.85 J	0.38 U	0.38 J	3.1
Iron	ug/l	300 SMCL	1400	1300	1500	1400	200	110	79	18
Lead	ug/l	15 ECAL	1.1	1	9.8	4.1	1.7	0.13 U	0.13 U	0.71 J
Manganese	ug/l	50 SMCL	67	66	430	410	33	170	150	10
Mercury	mg/l	0.002	0.000063 U	0.00005 U	0.000063 U	0.00005 U				
Molybdenum	ug/l	NA	1.8	1.6	7	6.8	1.5	1.3	1.5	1.6
Nickel	ug/i	100	1.3	0.13 U	3.1	0.84 J	0.13 U	0.21 J	0.1 U	0.48 J
Selenium	ug/l	50	0.81 J	0.43 J	0.59 U	0.72 J	0.65 J	0.59 U	0.59 U	0.59 U
Silver	ug/l	100 SMCL	0.054 U	U 80.0	0.054 U	0.08 U	0.08 U	0.054 U	0.054 U	0.054 U
Thallium	ug/l	2	0.092 U	0.13 U	0.14 J	0.13 U	0.13 U	0.096 J	0.092 U	0.092 U
Total Cyanide	ug/l	200								
Vanadium	ug/l	50 ACAL	0.39 U	0.43 U	0.39 U	0.43 U	0.43 U	0.72 J	0.39 U	0.92 J
Zinc	ug/l	5000 SMCL	4400	1400	1700	1500	520	3.1 J	2.2 J	28
Laboratory			DMA	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE VI SUMMARY OF ANALYSES FOR TRACE METAL CONSTITUENTS AND CYANIDE, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier			RD-59A	RD-59B	RD-59B	RD-59C	RD-59C	OS-28
FLUTe Sample Port			 					
Sample Date			08/08/03	01/31/03	08/08/03	01/31/03	08/08/03	08/22/03
Sample Type			Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	MCL						
Antimony	ug/l	6	0.49 U	0.22 U	0.49 U	0.032 U	0.44 U	0.31 J
Arsenic	ug/l	50	0.53 U	0.29 U	0.53 U	0.29 U	0.53 U	0.53 U
Barium	ug/l	1000	54	42	48	49	55	27
Beryllium	ug/l	4	0.095 U	0.11 U	0.095 U	0.11 U	0.095 U	0.095 U
Cadmium	ug/i	5	0.027 J	0.03 U	0.018 U	0.03 U	0.018 U	0.018 U
Chromium	ug/l	50	0.92 U	0.14 U	0.82 U	0.14 U	0.75 U	0.2 U
Cobalt	ug/l	NA	0.18 J	0.079 J	0.074 J	0.056 J	0.058 J	0.18 J
Copper	ug/l	1000 SMCL	3.2	1.5 J	0.81 J	1.2 J	0.83 J	0.44 U
Iron	ug/l	300 SMCL	43	56	69	14	14	100
Lead	ug/l	15 ECAL	1.1	1.2	0.41 J	1.2	0.6 J	0.13 U
Manganese	ug/l	50 SMCL	47	23	27	16	20	58
Mercury	mg/l	0.002	0.000063 U	0.00005 U	0.000063 U	0.00005 U	0.000063 U	0.000063 U
Molybdenum	ug/l	NA	1.4	1.4	1.6	1.2	1.4	1.2
Nickel	ug/l	100	0.16 J	0.1 U	0.13 U	0.1 U	0.13 U	0.13 U
Selenium	ug/i	50	0.42 J	0.59 U	0.34 U	0.59 U	0.34 U	0.4 J
Silver	ug/i	100 SMCL	0.08 U	0.054 U	0.08 U	0.054 U	0.08 U	0.08 U
Thallium	ug/l	2	0.17 J	0.092 U	0.13 U	0.092 U	0.13 U	0.13 U
Total Cyanide	ug/l	200						
Vanadium	ug/l	50 ACAL	0.43 U	0.39 U	0.43 U	0.39 U	0.43 U	0.43 U
Zinc	ug/l	5000 SMCL	49	6.8 J	8.4 J	9.3 J	7.1 J	2.8 J
Laboratory			DMA	DMA	DMA	DMA	DMA	DMA

FOOTNOTES AND EXPLANATIONS

DMA :	=	Del Mar Analytical of Irvine, California.	

(---) = Analysis not performed.

Primary = Primary sample.

mg/l = Milligrams per liter.

ug/l = Micrograms per liter.

MCL = Maximum Contaminant Level, California primary drinking water standard (California Department of Health Services, 2003.

http://www.dhs.ca.gov/ps/ddwem/publications/regulations/MCLrevisions6-12-03.pdf).

NA = Not available; no MCL promulgated.

J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).

U = Not detected; numerical value represents the Method Detection Limit for that compound.

SMCL = Secondary drinking water MCL.

ECAL = Enforceable California Action Level to be met at a customer tap.

ACAL = Advisory California Action Level for unregulated chemical contaminants.

Z = FLUTe sample port number.

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	SH-04	RS-08	HAR-14	HAR-15	RD-01	RD-02	RD-02
FLUTe Sample Port		0.444.400					
Sample Date	04/14/03	04/14/03	04/15/03	04/15/03	05/07/03	02/04/03	05/05/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound (ug/l)							
1,2,4-Trichlorobenzene	3.4 U	3.4 U	3.3 U	3.4 U	7.9 U	7.9 U	7.9 U
1,2-Dichlorobenzene	0.64 U	3.3 U	0.32 U	0.32 U	3.2 U	7 U	1,6 U
1,2-Diphenylhydrazine/Azobenzene					8.8 U	8.8 U	8.8 U
1,3-Dichlorobenzene	0.7 U	3 U	0.35 U	0.35 U	3.5 U	6.8 U	1.8 U
1,3-Dinitrobenzene	20 U	20 U	19 U	20 U	8.4 U	8.4 U	8.4 U
1,4-Dichlorobenzene	0.74 U	3.1 U	0.37 U	0.37 U	3.7 U	7.8 U	1.8 U
2,4,6-Trichlorophenol	4.5 U	4.4 U	4.4 U	4.5 U	6.5 U	6.5 U	6.5 U
2,4-Dichlorophenol	4.8 U	4.7 U	4.6 U	4.8 U	7.6 U	7.6 U	7.6 U
2,4-Dimethylphenol	6 U	5.9 U	5.8 U	6 U	7.5 U	7.5 U	7.5 U
2,4-Dinitrophenol	1.3 U	1.3 U	1.2 U	1.3 U	4.4 Ú	4.4 U	4.4 U
2,4-Dinitrotoluene	1.3 U	1.3 U	1.2 U	1.3 U	9.7 U	9.7 U	9.7 U
2,6-Dinitrotoluene	1.9 U	1.9 U	1.9 U	1.9 U	9.3 U	9.3 U	9.3 U
2-Chloronaphthalene	3 U	3 U	2.9 U	3 U	7.4 U	7.4 U	7.4 U
2-Chlorophenol	4.9 U	4.8 U	4.8 U	4.9 U	7.7 U	7.7 U	7.7 U
2-Methylnaphthalene	3.5 U	3.4 U	3.4 U	3.5 U			
2-Methylphenol	5.3 U	5.2 U	5.1 U	5.3 U			
2-Nitrophenol	4.8 U	4.7 U	4.6 U	4.8 U	9.5 U	9.5 U	9.5 U
3,3-Dichlorobenzidine	5 U	4.9 U	4.9 U	5 U	8.3 U	8.3 U	8.3 U
4,6-Dinitro-2-methylphenol	2.2 U	2.2 U	2.1 U	2.2 U	12 U	12 U	12 U
4-Bromophenyl phenyl ether	2.1 U	2 U	2 U	2.1 U	8.7 U	8.7 U	8.7 U
4-Chloro-3-methylphenol	4 U	4 U	3.9 U	4 U	6.8 U	6.8 U	6.8 U
4-Chlorophenyl phenyl ether	2.6 U	2.6 U	2.6 U	2.6 U	7.2 U	7.2 U	7.2 U
4-Methylphenol	4.5 U	4.4 U	4.4 U	4.5 U			
4-Nitrophenol	1.7 U	1.7 U	1.6 U	1.7 U	9.9 U	9.9 U	9.9 U
Acenaphthene	2.6 U	2.6 U	2.6 U	2.6 U	7.1 U	7.1 U	7.1 U
Acenaphthylene	2.5 U	2.4 U	2.4 U	2.5 U	8.1 U	8.1 U	8.1 U
Anthracene	0.8 U	0.78 U	0.78 U	0.8 U	9 U	9 U	9 U
Benzidine					6.1 U	6.1 U	6.1 U
Benzo(b+k)fluoranthene(total)	1.8 U	1.7 U	1.7 U	1.8 U			
Benzo(a)anthracene	0.53 U	0.52 U	0.51 U	0.53 U	9.7 U	9.7 U	9.7 U
Benzo(a)pyrene	0.97 U	0.95 U	0.94 U	0.97 U	7.7 U	7.7 U	7.7 U
Benzo(b)fluoranthene					6.2 U	6.2 U	6.2 U
Benzo(g,h,i)perylene	0.98 U	0.96 ป	0.95 U	0.98 U	9 U	9 U	9 U
Benzo(k)fluoranthene					9.2 U	9.2 U	9.2 U
Bis(2-chloroethoxy)methane	3.6 U	3.6 U	3.5 U	3.6 U	8.1 U	8.1 U	8.1 U
Bis(2-chloroethyl)ether	3.6 U	3.5 U	3.5 U	3.6 U	7.9 U	7.9 U	7.9 U
Bis(2-chloroisopropyl)ether	4 U	4 U	3.9 U	4 U	8.2 U	8.2 U	8.2 U
Bis(2-ethylhexyl)phthalate	3.6 U	3.6 U	3.5 U	3.6 U	30 U	30 U	30 U
Butyl benzyl phthalate	0.91 U	0.89 U	0.88 U	0.91 U	9.2 U	9.2 U	9.2 U
Chrysene	0.96 U	0.94 U	0.93 U	0.96 U	7.6 U	7.6 U	7.6 U
Di-n-butyl phthalate	0.92 U	0.9 U	0.89 U	0.92 U	12 U	12 U	12 U
Di-n-octyl phthalate	0.93 U	0.91 U	0.9 U	0.93 U	11 U	11 U	11 U
Dibenz(a,h)anthracene	0.89 U	0.87 U	0.86 U	0.89 U	7.8 U	7.8 U	7.8 U
Diethyl phthalate	1.2 U	1.2 U	1.2 U	1.2 U	7.5 U	7.5 U	7.5 UJ
Dimethyl phthalate	1.9 U	1.8 U	1.8 U	1.9 U	7 U	7 U	7 U

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	SH-04	RS-08	HAR-14	HAR-15	RD-01	RD-02	RD-02
FLUTe Sample Port							
Sample Date	04/14/03	04/14/03	04/15/03	04/15/03	05/07/03	02/04/03	05/05/03
Sample Type	Primary						
Compound (ug/l)							
Fluoranthene	0.78 U	0.76 U	0.76 U	0.78 U	7.8 U	7.8 U	7.8 U
Fluorene	2.6 U	2.6 U	2.6 U	2.6 U	6.9 U	6.9 U	6.9 U
Hexachlorobenzene	1.7 U	1.7 U	1.7 U	1.7 U	8.8 U	8.8 U	8.8 U
Hexachlorobutadiene	3.1 U	3.1 U	3 U	3.1 U	5.7 U	5.7 U	5.7 U
Hexachloroethane	2.4 U	2.3 U	2.3 U	2.4 U	8.7 U	8.7 U	8.7 U
Indeno(1,2,3-cd)pyrene	0.78 U	0.76 U	0.76 U	0.78 U	9 U	9 U	9 U
Isophorone	3.2 U	3.2 U	3.1 U	3.2 U	7.9 U	7.9 U	7.9 U
N-Nitroso-di-n-propylamine	3.7 U	3.6 U	3.6 U	3.7 U	9 U	. 9 U	9 U
N-Nitrosodimethylamine	2.4 U	2.4 U	2.3 U	2.4 U	2.3 U	9.4 U	9.4 U
N-Nitrosodiphenylamine	2.8 U	2.7 U	2.7 U	2.8 U	4.4 U	4.4 U	4.4 U
Naphthalene	3.8 U	3.7 U	3.7 U	3.8 U	7.3 U	7.3 U	7.3 U
Nitrobenzene	3.3 U	3.2 U	3.2 U	3.3 U	9.6 U	9.6 U	9.6 U
Pentachlorophenol	0.165 U	0.165 U	0.165 U	0.165 U	19 U	19 U	19 U
Phenanthrene	1.4 U	1.4 U	1.4 U	1.4 U	9 U	9 U	9 U
Phenol	4 U	3.9 U	3.9 U	4 U	7.6 U	7.6 U	7.6 U
Laboratory	DMA						
Method	8270C						

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-02	RD-02	RD-04	RD-04	RD-04	RD-04	RD-10 Comp
FLUTe Sample Port Sample Date	08/11/03	11/19/03	02/03/03	05/07/03	08/20/03	11/20/03	01/28/03
•							
Sample Type Compound (ug/l)	Primary	Primary	Primary	Primary	Primary	Primary	Primary
1,2,4-Trichlorobenzene	2.9 U	2.9 U	7.9 U	7.9 U	2.9 U	2.9 U	7.9 U
1,2-Dichlorobenzene	3.1 U	3.1 U	7.9 U	0.32 U	3.1 U	2.9 U 3.1 U	7.9 U
1,2-Dichlorobertzerie 1,2-Diphenylhydrazine/Azobenzene	2.6 U	2.6 U	8.8 U	8.8 U	2.6 U	2.6 U	8.8 U
1,3-Dichlorobenzene	3.1 U	3.1 U	6.8 U	0.35 U			6.8 U
1,3-Dinitrobenzene	3.1 U 8.4 U	3.1 U 8.4 U	8.4 U	8.4 U	3.1 U 8.4 U	3.1 U 8.4 U	8.4 U
1,4-Dichlorobenzene	2.8 U	2.8 U	7.8 U	0.4 U 0.37 U	2.8 U		7.8 U
2,4,6-Trichlorophenol	2.6 U	2.4 U	6.5 U	6.5 U		2.8 U	
•	2.4 U 1.9 U	2. 4 U 1.9 U	7.6 U		2.4 U	2.4 U	6.5 U
2,4-Dichlorophenol				7.6 U	1.9 U	1.9 U	7.6 U
2,4-Dimethylphenol	3.3 U	3.3 U	7.5 U	7.5 U	3.3 U	3.3 U	7.5 U
2,4-Dinitrophenol	5.3 U	5.3 U	4.4 U	4.4 U	5.3 U	5.3 U	4.4 U
2,4-Dinitrotoluene	3.8 U	3.8 U	9.7 U	9.7 U	3.8 U	3.8 U	9.7 U
2,6-Dinitrotoluene	2.5 U	2.5 U	9.3 U	9.3 U	2.5 U	2.5 U	9.3 U
2-Chloronaphthalene	2 U	2 U	7.4 U	7.4 U	2 U	2 U	7.4 U
2-Chlorophenol	2.5 U	2.5 U	7.7 U	7.7 U	2.5 U	2.5 U	7.7 U
2-Methylnaphthalene							
2-Methylphenol							
2-Nitrophenol	3.6 U	3.6 U	9.5 U	9.5 U	3.6 U	3.6 U	9.5 U
3,3-Dichlorobenzidine	11 U	11 U	8.3 U	8.3 U	11 U	11 U	8.3 U
4,6-Dinitro-2-methylphenol	5.1 U	5.1 U	12 U	12 U	5.1 U	5.1 U	12 U
4-Bromophenyl phenyl ether	2.5 U	2.5 U	8.7 U	8.7 U	2.5 U	2.5 U	8.7 U
4-Chloro-3-methylphenol	3.5 U	3.5 U	6.8 U	6.8 U	3.5 U	3.5 U	6.8 U
4-Chlorophenyl phenyl ether	3 U	3 U	7.2 U	7.2 U	3 U	3 U	7.2 U
4-Methylphenol							
4-Nitrophenol	5.1 U	5.1 U	9.9 U	9.9 U	5.1 U	5.1 U	9.9 U
Acenaphthene	2.2 U	2.2 U	7.1 U	7.1 U	2.2 U	2.2 U	7.1 U
Acenaphthylene	2.2 U	2.2 U	8.1 U	8.1 U	2.2 U	2.2 U	8.1 U
Anthracene	1.8 U	1.8 U	9 U	9 U	1.8 U	1.8 U	9 U
Benzidine	5.2 R	5.2 U	6.1 U	6.1 U	5.2 R	5.2 U	6.1 U
Benzo(b+k)fluoranthene(total)							
Benzo(a)anthracene	2.1 U	2.1 U	9.7 U	9.7 U	2.1 U	2.1 U	9.7 U
Benzo(a)pyrene	1.9 U	1.9 U	7.7 U	7.7 U	1.9 U	1.9 U	7.7 U
Benzo(b)fluoranthene	2.7 U	2.7 U	6.2 U	6.2 U	2.7 U	2.7 U	6.2 U
Benzo(g,h,i)perylene	5.3 U	5.3 U	9 U	9 U	5.3 U	5.3 U	9 U
Benzo(k)fluoranthene	3.4 U	3.4 U	9.2 U	9.2 U	3.4 U	3.4 U	9.2 U
Bis(2-chloroethoxy)methane	2.2 U	2.2 U	8.1 U	8.1 U	2.2 U	2.2 U	8.1 U
Bis(2-chloroethyl)ether	2.1 U	2.1 U	7.9 U	7.9 U	2.1 U	2.1 U	7.9 U
Bis(2-chloroisopropyl)ether	2.5 U	2.5 UJ	8.2 U	8.2 U	2.5 U	2.5 UJ	8.2 U
Bis(2-ethylhexyl)phthalate	5.2 U	5.2 U	30 U	30 U	5.2 U	5.2 U	30 U
Butyl benzyl phthalate	3.3 U	3.3 U	9.2 U	9.2 U	3.3 U	3.3 U	9.2 U
Chrysene	2.5 U	2.5 U	7.6 U	7.6 U	2.5 U	2.5 U	7.6 U
Di-n-butyl phthalate	2.8 U	2.8 U	12 U	12 U	2.8 U	2.8 U	12 U
Di-n-octyl phthalate	4.7 U	4.7 U	11 U	11 U	4.7 U	4.7 U	11 U
Dibenz(a,h)anthracene	4.7 U	4.7 U	7.8 U	7.8 U	4.7 U	4.7 U	7.8 U
Diethyl phthalate	3.1 U	3.1 U	7.5 U	7.5 U	3.1 U	3.1 U	7.5 U
Dimethyl phthalate	2.4 U	2.4 U	7 U	7 U	2.4 U	2.4 U	7 U

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-02	RD-02	RD-04	RD-04	RD-04	RD-04	RD-10
FLUTe Sample Port							Comp
Sample Date	08/11/03	11/19/03	02/03/03	05/07/03	08/20/03	11/20/03	01/28/03
Sample Type	Primary						
Compound (ug/l)							
Fluoranthene	3.1 U	3.1 U	7.8 U	7.8 U	3.1 U	3.1 U	7.8 U
Fluorene	2.5 U	2.5 U	6.9 U	6.9 U	2.5 U	2.5 U	6.9 U
Hexachlorobenzene	2.5 U	2.5 U	8.8 U	8.8 U	2.5 U	2.5 U	8.8 U
Hexachlorobutadiene	3.9 U	3.9 U	5.7 U	5.7 U	3.9 U	3.9 U	5.7 U
Hexachloroethane	3.9 U	3.9 U	8.7 U	8.7 U	3.9 U	3.9 U	8.7 U
Indeno(1,2,3-cd)pyrene	√ 5.4 U	5.4 U	9 U	9 U	5.4 U	5.4 U	9 U
Isophorone	3.4 U	3.4 U	7.9 U	7.9 U	3.4 U	3.4 U	7.9 U
N-Nitroso-di-n-propylamine	2.9 U	2.9 U	9 U	9 U	2.9 U	2.9 U	9 U
N-Nitrosodimethylamine	3 U	3 U	9.4 U	9.4 U	3 U	3 U	9.4 U
N-Nitrosodiphenylamine	2.3 U	2.3 U	4.4 U	4.4 U	2.3 U	2.3 U	4.4 U
Naphthalene	1.8 U	1.8 U	7.3 U	7.3 U	1.8 U	1.8 U	7.3 U
Nitrobenzene	2.7 U	2.7 U	9.6 U	9.6 U	2.7 U	2.7 U	9.6 U
Pentachlorophenol	3.2 U	3.2 U	19 U	19 U	3.2 U	3.2 U	19 U
Phenanthrene	1.8 U	1.8 U	9 U	9 U	1.8 U	1.8 U	9 U
Phenol	3 U	3 U	7.6 U	7.6 U	3 U	3 U	7.6 U
Laboratory	DMA						
Method	8270C						

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-10	RD-44	RD-44	RD-44	RD-49A	RD-49A	RD-49A
FLUTe Sample Port	Comp						
Sample Date	04/30/03	02/04/03	05/06/03	08/11/03	02/04/03	05/07/03	08/11/03
Sample Type	Primary						
Compound (ug/l)							
1,2,4-Trichlorobenzene	7.9 U	7.9 U	7.9 U	2.9 U	7.9 U	7.9 U	2.9 U
1,2-Dichlorobenzene	7 U	7 U	0.32 U	3.1 U	7 U	7 U	3.1 U
1,2-Diphenylhydrazine/Azobenzene	8.8 U	8.8 U	8.8 U	2.6 U	8.8 U	8.8 U	2.6 U
1,3-Dichlorobenzene	6.8 U	6.8 U	0.35 U	3.1 U	6.8 U	6.8 U	3.1 U
1,3-Dinitrobenzene	8.4 U						
1,4-Dichlorobenzene	7.8 U	7.8 U	0.37 U	2.8 U	7.8 U	7.8 U	2.8 U
2,4,6-Trichlorophenol	6.5 U	6.5 U	6.5 U	2.4 U	6.5 U	6.5 U	2.4 U
2,4-Dichlorophenol	7.6 U	7.6 U	7.6 U	1.9 U	7.6 U	7.6 U	1.9 U
2,4-Dimethylphenol	7.5 U	7.5 U	7.5 U	3.3 U	7.5 U	7.5 U	3.3 U
2,4-Dinitrophenol	4.4 U	4.4 U	4.4 U	5.3 U	4.4 U	4.4 U	5.3 U
2,4-Dinitrotoluene	9.7 U	9.7 U	9.7 U	3.8 U	9.7 U	9.7 U	3.8 U
2,6-Dinitrotoluene	9.3 U	9.3 U	9.3 U	2.5 U	9.3 U	9.3 U	2.5 U
2-Chioronaphthalene	7.4 U	7.4 U	7.4 U	2 U	7.4 U	7.4 U	2 U
2-Chlorophenol	7.7 U	7.7 U	7.7 U	2.5 U	7.7 U	7.7 U	2.5 U
2-Methylnaphthalene							
2-Methylphenol							
2-Nitrophenol	9.5 U	9.5 U	9.5 U	3.6 U	9.5 U	9.5 U	3.6 U
3,3-Dichlorobenzidine	8.3 U	8.3 U	8.3 U	11 U	8.3 U	8.3 U	11 U
4,6-Dinitro-2-methylphenol	12 U	12 U	12 U	5.1 U	12 U	12 U	5.1 U
4-Bromophenyl phenyl ether	8.7 U	8.7 U	8.7 U	2.5 U	8.7 U	8.7 U	2.5 U
4-Chloro-3-methylphenol	6.8 U	6.8 U	6.8 U	3.5 U	6.8 U	6.8 U	3.5 U
4-Chlorophenyl phenyl ether	7.2 U	7.2 U	7.2 U	3 U	7.2 U	7.2 U	3 U
4-Methylphenol	***						
4-Nitrophenol	9.9 U	9.9 U	9.9 U	5.1 U	9.9 U	9.9 U	5.1 U
Acenaphthene	7.1 U	7.1 U	7.1 U	2.2 U	7.1 U	7.1 U	2.2 U
Acenaphthylene	8.1 U	8.1 U	8.1 U	2.2 U	8.1 U	8.1 U	2.2 U
Anthracene	9 U	9 U	9 U	1.8 U	9 U	9 U	1.8 U
Benzidine	6.1 R	6.1 U	6.1 U	5.2 R	6.1 U	6.1 U	5.2 R
Benzo(b+k)fluoranthene(total)							
Benzo(a)anthracene	9.7 U	9.7 U	9.7 U	2.1 U	9.7 U	9.7 U	2.1 U
Benzo(a)pyrene	7.7 U	7.7 U	7.7 U	1.9 U	7.7 U	7.7 U	1.9 U
Benzo(b)fluoranthene	6.2 U	6.2 U	6.2 U	2.7 U	6.2 U	6.2 U	2.7 U
Benzo(g,h,i)perylene	9 U	9 U	9 U	5.3 U	9 U	9 U	5.3 U
Benzo(k)fluoranthene	9.2 U	9.2 U	9.2 U	3.4 U	9.2 U	9.2 U	3.4 U
Bis(2-chloroethoxy)methane	8.1 U	8.1 U	8.1 U	2.2 U	8.1 U	8.1 U	2.2 U
Bis(2-chloroethyl)ether	7.9 U	7.9 U	7.9 U	2.1 U	7.9 U	7.9 U	2.1 U
Bis(2-chloroisopropyl)ether	8.2 U	8.2 U	8.2 U	2.5 U	8.2 U	8.2 U	2.5 U
Bis(2-ethylhexyl)phthalate	30 U	30 U	30 U	5.2 U	30 U	30 U	7.8 J,L
Butyl benzyl phthalate	9.2 U	9.2 U	9.2 U	3.3 U	9.2 U	9.2 U	3.3 U
Chrysene	7.6 U	7.6 U	7.6 U	2.5 U	7.6 U	7.6 U	2.5 U
Di-n-butyl phthalate	12 U	12 U	12 U	2.8 U	12 U	12 U	2.8 U
Di-n-octyl phthalate	11 U	11 U	11 U	4.7 U	11 U	11 U	4.7 U
Dibenz(a,h)anthracene	7.8 U	7.8 U	7.8 U	4.7 U	7.8 U	7.8 U	4.7 U
Diethyl phthalate	7.5 UJ	7.5 U	7.5 UJ	3.1 U	7.5 U	7.5 U	3.1 U
Dimethyl phthalate .	7 U	7 U	7 U	2.4 U	7 U	7 U	2.4 U

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-10	RD-44	RD-44	RD-44	RD-49A	RD-49A	RD-49A
FLUTe Sample Port	Comp						
Sample Date	04/30/03	02/04/03	05/06/03	08/11/03	02/04/03	05/07/03	08/11/03
Sample Type	Primary						
Compound (ug/l)							
Fluoranthene	7.8 U	7.8 U	7.8 U	3.1 U	7.8 U	7.8 U	3.1 U
Fluorene	6.9 U	6.9 U	6.9 U	2.5 U	6.9 U	6.9 U	2.5 U
Hexachlorobenzene	8.8 U	8.8 U	8.8 U	2.5 U	8.8 U	8.8 U ·	2.5 U
Hexachlorobutadiene	5.7 U	5.7 U	5.7 U	3.9 U	5.7 U	5.7 U	3.9 U
Hexachloroethane	8.7 U	8.7 U	8.7 U	3.9 U	8.7 U	8.7 U	3.9 U
Indeno(1,2,3-cd)pyrene	9 U	9 U	9 U	5.4 U	9 U	9 U	5.4 U
Isophorone	7.9 U	7.9 U	7.9 U	3.4 U	7.9 U	7.9 U	3.4 U
N-Nitroso-di-n-propylamine	9 U	9 U	9 U	2.9 U	9 U	9 U	2.9 U
N-Nitrosodimethylamine	9.4 U	9.4 U	9.4 U	3 U	9.4 U	9.4 U	3 U
N-Nitrosodiphenylamine	4.4 U	4.4 U	4.4 U	2.3 U	4.4 U	4.4 U	2.3 U
Naphthalene	7.3 U	7.3 U	7.3 U	1.8 U	7.3 U	7.3 U	1.8 U
Nitrobenzene	9.6 U	9.6 U	9.6 U	2.7 U	9.6 U	9.6 U	2.7 U
Pentachlorophenol	19 U	19 U	19 U	3.2 U	19 U	19 U	3.2 U
Phenanthrene	9 U	9 U	9 U	1.8 U	9 U	9 U	1.8 U
Phenol	7.6 U	7.6 U	7.6 U	3 U	7.6 U	7.6 U	3 U
Laboratory	DMA						
Method	8270C						

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-49A	RD-49B	RD-49B	RD-49B	RD-49B	RD-49C	RD-49C
FLUTe Sample Port	11/10/02	00/00/00		00/44/02	44147100	00/04/00	05/00/00
Sample Date	11/18/03	02/03/03	05/06/03	08/11/03	11/17/03	02/04/03	05/06/03
Sample Type	Primary						
Compound (ug/l) 1,2,4-Trichlorobenzene	2.9 U	7.9 U	7.9 U	2.9 U	2.9 U	7.9 U	7.9 U
1,2-Dichlorobenzene	3.1 U	7.9 U	0.64 U	3.1 U	3.1 U	7.9 U	0.32 U
	2.6 U	8.8 U	8.8 U	2.6 U	2.6 U	8.8 U	
1,2-Diphenylhydrazine/Azobenzene							8.8 U
1,3-Dichlorobenzene	3.1 U	6.8 U	0.7 U	3.1 U	3.1 U	6.8 U	0.35 U
1,3-Dinitrobenzene	8.4 U						
1,4-Dichlorobenzene	2.8 U	7.8 U	0.74 U	2.8 U	2.8 U	7.8 U	0.37 U
2,4,6-Trichlorophenol	2.4 U	6.5 U	6.5 U	2.4 U	2.4 U	6.5 U	6.5 U
2,4-Dichlorophenol	1.9 U	7.6 U	7.6 U	1.9 U	1.9 U	7.6 U	7.6 U
2,4-Dimethylphenol	3.3 U	7.5 U	7.5 U	3.3 U	3.3 U	7.5 U	7.5 U
2,4-Dinitrophenol	5.3 U	4.4 U	4.4 U	5.3 U	5.3 U	4.4 U	4.4 U
2,4-Dinitrotoluene	3.8 U	9.7 U	9.7 U	3.8 U	3.8 U	9.7 U	9.7 U
2,6-Dinitrotoluene	2.5 U	9.3 U	9.3 U	2.5 U	2.5 U	9.3 U	9.3 U
2-Chloronaphthalene	2 U	7.4 U	7.4 U	2 U	2 U	7.4 U	7.4 U
2-Chlorophenol	2.5 U	7.7 U	7.7 U	2.5 U	2.5 U	7.7 U	7.7 U
2-Methylnaphthalene							
2-Methylphenol							
2-Nitrophenol	3.6 U	9.5 U	9.5 U	3.6 U	3.6 U	9.5 U	9.5 U
3,3-Dichlorobenzidine	11 U	8.3 U	8.3 U	11 U	11 U	8.3 U	8.3 U
4,6-Dinitro-2-methylphenol	5.1 U	12 U	12 U	5.1 U	5.1 U	12 U	12 U
4-Bromophenyl phenyl ether	2.5 U	8.7 U	8.7 U	2.5 U	2.5 U	8.7 U	8.7 U
4-Chloro-3-methylphenol	3.5 U	6.8 U	6.8 U	3.5 U	3.5 U	6.8 U	6.8 U
4-Chlorophenyl phenyl ether	3 U	7.2 U	7.2 U	3 U	3 U	7.2 U	7.2 U
4-Methylphenol							
4-Nitrophenol	5.1 U	9.9 U	9.9 U	5.1 U	5.1 U	9.9 U	9.9 U
Acenaphthene	2.2 U	7.1 U	7.1 U	2.2 U	2.2 U	7.1 U	7.1 U
Acenaphthylene	2.2 U	8.1 U	8.1 U	2.2 U	2.2 U	8.1 U	8.1 U
Anthracene	1.8 U	9 U	9 U	1.8 U	1.8 U	9 U	9 U
Benzidine	5.2 U	6.1 U	6.1 U	5.2 R	5.2 R	6.1 U	6.1 U
Benzo(b+k)fluoranthene(total)							
Benzo(a)anthracene	2.1 U	9.7 U	9.7 U	2.1 U	2.1 U	9.7 U	9.7 U
Benzo(a)pyrene	1.9 U	7.7 U	7.7 U	1.9 U	1.9 U	7.7 U	7.7 U
Benzo(b)fluoranthene	2.7 U	6.2 U	6.2 U	2.7 U	2.7 U	6.2 U	6.2 U
Benzo(g,h,i)perylene	5.3 U	9 U	9 U	5.3 U	5.3 U	9 U	9 U
Benzo(k)fluoranthene	3.4 U	9.2 U	9.2 U	3.4 U	3.4 U	9.2 U	9.2 U
Bis(2-chloroethoxy)methane	2.2 U	8.1 U	8.1 U	2.2 U	2.2 U	8.1 U	8.1 U
Bis(2-chloroethyl)ether	2.1 U	7.9 U	7.9 U	2.1 U	2.1 U	7.9 U	7.9 U
Bis(2-chloroisopropyl)ether	2.5 UJ	8.2 U	8.2 U	2.5 U	2.5 U	8.2 U	8.2 U
Bis(2-ethylhexyl)phthalate	5.2 U	30 U	30 U	5.2 U	5.2 U	30 U	30 U
Butyl benzyl phthalate	3.3 U	9.2 U	9.2 U	3.3 U	3.3 U	9.2 U	9.2 U
Chrysene	2.5 U	7.6 U	7.6 U	2.5 U	2.5 U	7.6 U	7.6 U
Di-n-butyl phthalate	2.8 U	12 U	12 U	2.8 U	2.8 U	12 U	12 U
Di-n-octyl phthalate	4.7 U	11 U	11 U	4.7 U	4.7 U	11 U	11 U
Dibenz(a,h)anthracene	4.7 U	7.8 U	7.8 U	4.7 U	4.7 U	7.8 U	7.8 U
Diethyl phthalate	3.1 U	7.5 U	7.5 UJ	3.1 U	3.1 U	7.5 U	7.5 U
Dimethyl phthalate	2.4 U	7 U	7 U	2.4 U	2.4 U	7 U	7 U

TABLE VII
SUMMARY OF ANALYSES FOR

SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-49A	RD-49B	RD-49B	RD-49B	RD-49B	RD-49C	RD-49C
FLUTe Sample Port							
Sample Date	11/18/03	02/03/03	05/06/03	08/11/03	11/17/03	02/04/03	05/06/03
Sample Type	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound (ug/l)							
Fluoranthene	3.1 U	7.8 U	7.8 U	3.1 U	3.1 U	7.8 U	7.8 U
Fluorene	2.5 U	6.9 U	6.9 U	2.5 U	2.5 U	6.9 U	6.9 U
Hexachlorobenzene	2.5 U	8.8 U	8.8 U	2.5 U	2.5 U	8.8 U	8.8 U
Hexachlorobutadiene	3.9 U	5.7 U	5.7 U	3.9 U	3.9 U	5.7 U	5.7 U
Hexachloroethane	3.9 U	8.7 U	8.7 U	3.9 U	3.9 U	8.7 U	8.7 U
Indeno(1,2,3-cd)pyrene	5.4 U	9 U	9 U	5.4 U	5.4 U	9 U	9 U
Isophorone	3.4 U	7.9 U	7.9 U	3.4 U	3.4 U	7.9 U	7.9 U
N-Nitroso-di-n-propylamine	2.9 U	9 U	9 U	2.9 U	2.9 U	9 U	9 U
N-Nitrosodimethylamine	3 U	9.4 U	9.4 U	3 U	3 U	9.4 U	9.4 U
N-Nitrosodiphenylamine	2.3 U	4.4 U	4.4 U	2.3 U	2.3 U	4.4 U	4.4 U
Naphthalene	1.8 U	7.3 U	7.3 U	1.8 U	1.8 U	7.3 U	7.3 U
Nitrobenzene	2.7 U	9.6 U	9.6 U	2.7 U	2.7 U	9.6 U	9.6 U
Pentachlorophenol	3.2 U	19 U	19 U	3.2 U	3.2 U	19 U	19 U
Phenanthrene	1.8 U	9 U	9 U	1.8 U	1.8 U	9 U	9 U
Phenol	3 U	7.6 U	7.6 ∪	3 U	3 U	7.6 U	7.6 U
Laboratory	DMA	DMA	DMA	DMA	DMA	DMA	DMA
Method	8270C	8270C	8270C	8270C	8270C	8270C	8270C

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-49C	RD-49C	HAR-07	HAR-16	HAR-17	WS-05	WS-05
FLUTe Sample Port				Comp			
Sample Date	08/19/03	11/18/03	04/16/03	04/17/03	04/16/03	02/04/03	05/05/03
Sample Type	Primary						
Compound (ug/l)							
1,2,4-Trichlorobenzene	2.9 U	2.9 U	3.3 U	3.3 U	3.3 U	7.9 U	7.9 U ·
1,2-Dichlorobenzene	3.1 U	3.1 U	3.3 U	3.3 U	0.32 U	7 U	0.32 U
1,2-Diphenylhydrazine/Azobenzene	2.6 U	2.6 U				8.8 U	8.8 U
1,3-Dichlorobenzene	3.1 U	3.1 U	3 U	3 U	0.35 U	6.8 U	0.35 U
1,3-Dinitrobenzene	8.4 U	8.4 U	19 U	19 U	19 U	8.4 U	8.4 U
1,4-Dichlorobenzene	2.8 U	2.8 U	3.1 U	3.1 U	0.37 U	7.8 U	0.37 U
2,4,6-Trichlorophenol	2.4 U	2.4 U	4.3 U	4.4 U	4.4 U	6.5 U	6.5 U
2,4-Dichlorophenol	1.9 U	1.9 U	4.6 U	4.6 U	4.6 U	7.6 U	7.6 U
2,4-Dimethylphenol	3.3 U	3.3 U	5.8 U	5.8 U	5.8 U	7.5 U	7.5 U
2,4-Dinitrophenol	5.3 U	5.3 U	1.2 U	1.2 U	1.2 U	4.4 U	4.4 U
2,4-Dinitrotoluene	3.8 U	3.8 U	1.2 U	1.2 U	1.2 U	9.7 U	9.7 U
2,6-Dinitrotoluene	2.5 U	2.5 U	1.8 U	1.9 U	1.9 U	9.3 U	9.3 U
2-Chloronaphthalene	2 U	2 U	2.9 U	2.9 U	2.9 U	7.4 U	7.4 U
2-Chlorophenol	2.5 U	2.5 U	4.7 U	4.8 U	4.8 U	7.7 U	7.7 U
2-Methylnaphthalene			3.4 U	3.4 U	3.4 U		
2-Methylphenol			5.1 U	5.1 U	5.1 U		
2-Nitrophenol	3.6 U	3.6 U	4.6 U	4.6 U	4.6 U	9.5 U	9.5 U
3,3-Dichlorobenzidine	11 U	11 U	4.8 U	4.9 U	4.9 U	8.3 U	8.3 U
4,6-Dinitro-2-methylphenol	5.1 U	5.1 U	2.1 U	2.1 U	2.1 U	12 U	12 U
4-Bromophenyl phenyl ether	2.5 U	2.5 U	2 U	2 U	2 U	8.7 U	8.7 U
4-Chloro-3-methylphenol	3.5 U	3.5 U	3.9 U	3.9 U	3.9 U	6.8 U	6.8 U
4-Chlorophenyl phenyl ether	3 U	3 U	2.5 U	2.6 U	2.6 U	7.2 U	7.2 U
4-Methylphenol			4.3 U	4.4 U	4.4 U		
4-Nitrophenol	5.1 U	5.1 U	1.6 U	1.6 U	1.6 U	9.9 U	9.9 U
Acenaphthene	2.2 U	2.2 U	2.5 U	2.6 U	2.6 U	7.1 U	7.1 U
Acenaphthylene	2.2 U	2.2 U	2.4 U	2.4 U	2.4 U	8.1 U	8.1 U
Anthracene	1.8 U	1.8 U	0.77 U	0.78 U	0.78 U	9 U	9 U
Benzidine	5.2 U	5.2 U				6.1 U	6.1 U
Benzo(b+k)fluoranthene(total)			1.7 UJ	1.7 U	1.7 U		
Benzo(a)anthracene	2.1 U	2.1 U	0.51 U	0.51 U	0.51 U	9.7 U	9.7 U
Benzo(a)pyrene	1.9 U	1.9 U	0.93 U	0.94 U	0.94 U	7.7 U	7.7 U
Benzo(b)fluoranthene	2.7 U	2.7 U				6.2 U	6.2 U
Benzo(g,h,i)perylene	5.3 U	5.3 U	0.94 U	0.95 U	0.95 U	9 U	9 U
Benzo(k)fluoranthene	3.4 U	3.4 U				9.2 U	9.2 U
Bis(2-chloroethoxy)methane	2.2 U	2.2 U	3.5 U	3.5 U	3.5 U	8.1 U	8.1 U
Bis(2-chloroethyl)ether	2.1 U	2.1 U	3.5 UJ	3.5 U	3.5 UJ	7.9 U	7.9 U
Bis(2-chloroisopropyl)ether	2.5 U	2.5 UJ	3.9 U	3.9 U	3.9 U	8.2 U	8.2 U
Bis(2-ethylhexyl)phthalate	5.2 U	5.2 U	3.5 U	3.5 U	3.5 UJ	30 U	30 U
Butyl benzyl phthalate	3.3 U	3.3 U	U 88.0	U 88.0	0.88 U	9.2 U	9.2 U
Chrysene	2.5 U	2.5 U	0.92 U	0.93 U	0.93 U	7.6 U	7.6 U
Di-n-butyl phthalate	2.8 U	2.8 U	U 88.0	0.89 U	0.89 U	12 U	12 U
Di-n-octyl phthalate	4.7 U	4.7 U	0.89 UJ	0.9 U	0.9 UJ	11 U	11 U
Dibenz(a,h)anthracene	4.7 U	4.7 U	0.86 U	0.86 U	0.86 U	7.8 U	7.8 U
Diethyl phthalate	3.1 U	3.1 U	1.2 U	1.2 U	1.2 U	7.5 U	7.5 UJ
Dimethyl phthalate	2.4 U	2.4 U	1.8 U	1.8 U	1.8 U	7 U	7 U

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-49C	RD-49C	HAR-07	HAR-16	HAR-17	WS-05	WS-05
FLUTe Sample Port				Comp			
Sample Date	08/19/03	11/18/03	04/16/03	04/17/03	04/16/03	02/04/03	05/05/03
Sample Type	Primary						
Compound (ug/l)							
Fluoranthene	3.1 U	3.1 U	0.75 U	0.76 U	0.76 U	7.8 U	7.8 U
Fluorene	2.5 U	2.5 U	2.5 U	2.6 U	2.6 U	6.9 U	6.9 U
Hexachlorobenzene	2.5 U	2.5 U	1.7 U	1.7 U	1.7 U	8.8 U	8.8 U
Hexachlorobutadiene	3.9 U	3.9 U	3 U	3 U	3 U	5.7 U	5.7 U
Hexachloroethane	3.9 U	3.9 U	2.3 U	2.3 U	2.3 U	8.7 U	8.7 U
Indeno(1,2,3-cd)pyrene	5.4 U	5.4 U	0.75 U	0.76 U	0.76 U	9 U	9 U
Isophorone	3.4 U	3.4 U	3.1 U	3.1 U	3.1 U	7.9 U	7.9 U
N-Nitroso-di-n-propylamine	2.9 U	2.9 U	3.5 U	3.6 U	3.6 U	9 U	9 U
N-Nitrosodimethylamine	3 U	3 U	2.3 U	26	2.3 U	9.4 U	9.4 U
N-Nitrosodiphenylamine	2.3 U	2.3 U	2.6 U	2.7 U	2.7 U	4.4 U	4.4 U
Naphthalene	1.8 U	1.8 U	3.7 U	3.7 U	3.7 U	7.3 U	7.3 U
Nitrobenzene	2.7 U	2.7 U	3.2 U	3.2 U	3.2 U	9.6 U	9.6 U
Pentachlorophenol	3.2 U	3.2 U	0.165 U	2.0 U	0.165 U	19 U	19 U
Phenanthrene	1.8 U	1.8 U	1.4 U	1.4 U	1.4 U	9 U	9 U
Phenol	3 U	3 U	3.8 U	3.9 U	3.9 U	7.6 U	7.6 U
Laboratory	DMA						
Method	8270C	8270C	8270C	8270C	8270C	8270C	8270C_

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	WS-06	WS-06	WS-06	WS-06	WS-09	WS-09	WS-12
FLUTe Sample Port							
Sample Date	02/03/03	05/07/03	08/19/03	11/19/03	02/03/03	05/07/03	08/13/03
Sample Type	Primary						
Compound (ug/l)							
1,2,4-Trichlorobenzene	7.9 U	7.9 U	2.9 U	2.9 U	7.9 U	7.9 U	2.9 U
1,2-Dichlorobenzene	7 U	0.32 U	3.1 U	3.1 U	7 U	7 U	3.1 U
1,2-Diphenylhydrazine/Azobenzene	8.8 U	8.8 U	2.6 U	2.6 U	8.8 U	8.8 U	2.6 U
1,3-Dichlorobenzene	6.8 U	0.35 U	3.1 U	3.1 U	6.8 U	6.8 U	3.1 U
1,3-Dinitrobenzene	8.4 U						
1,4-Dichlorobenzene	7.8 U	0.37 U	2.8 U	2.8 U	7.8 U	7.8 U	2.8 U
2,4,6-Trichlorophenol	6.5 U	6.5 U	2.4 U	2.4 U	6.5 U	6.5 U	2.4 U
2,4-Dichlorophenol	7.6 U	7.6 U	1.9 U	1.9 U	7.6 U	7.6 U	1.9 U
2,4-Dimethylphenol	7.5 U	7.5 U	3.3 U	3.3 U	7.5 U	7.5 U	3.3 U
2,4-Dinitrophenol	4.4 U	4.4 U	5.3 U	5.3 U	4.4 U	4.4 U	5.3 U
2,4-Dinitrotoluene	9.7 U	9.7 U	3.8 U	3.8 U	9.7 U	9.7 U	3.8 U
2,6-Dinitrotoluene	9.3 U	9.3 U	2.5 U	2.5 U	9.3 U	9.3 U	2.5 U
2-Chloronaphthalene	7.4 U	7.4 U	2 U	2 U	7.4 U	7.4 U	2 U
2-Chlorophenol	7.7 U	7.7 U	2.5 U	2.5 U	7.7 U	7.7 U	2.5 U
2-Methylnaphthalene							
2-Methylphenol							
2-Nitrophenol	9.5 ∪	9.5 U	3.6 U	3.6 U	9.5 U	9.5 U	3.6 U
3,3-Dichlorobenzidine	8.3 U	8.3 U	11 U	11 U	8.3 U	8.3 U	11 U
4,6-Dinitro-2-methylphenol	12 U	12 U	5.1 U	5.1 U	12 U	12 U	5.1 U
4-Bromophenyl phenyl ether	8.7 U	8.7 U	2.5 U	2.5 U	8.7 U	8.7 U	2.5 U
4-Chloro-3-methylphenol	6.8 U	6.8 U	3.5 U	3.5 U	6.8 U	6.8 U	3.5 U
4-Chlorophenyl phenyl ether	7.2 U	7.2 U	3 U	3 U	7.2 U	7.2 U	3 U
4-Methylphenol							
4-Nitrophenol	9.9 U	9.9 U	5.1 U	5.1 U	9.9 U	9.9 U	5.1 U
Acenaphthene	7.1 U	7.1 U	2.2 U	2.2 U	7.1 U	7.1 U	2.2 U
Acenaphthylene	8.1 U	8.1 U	2.2 U	2.2 U	8.1 U	8.1 U	2.2 U
Anthracene	9 U	9 U	1.8 U	1.8 U	9 U	9 U	1.8 U
Benzidine	6.1 U	6.1 U	5.2 R	5.2 U	6.1 U	6.1 U	5.2 U
Benzo(b+k)fluoranthene(total)							***
Benzo(a)anthracene	9.7 U	9.7 U	2.1 U	2.1 U	9.7 U	9.7 U	2.1 U
Benzo(a)pyrene	7.7 U	7.7 U	1.9 U	1.9 U	7.7 U	7.7 U	1.9 U
Benzo(b)fluoranthene	6.2 U	6.2 U	2.7 U	2.7 U	6.2 U	6.2 U	2.7 U
Benzo(g,h,i)perylene	9 U	9 U	5.3 U	5.3 U	9 U	9 U	5.3 U
Benzo(k)fluoranthene	9.2 U	9.2 U	3.4 U	3.4 U	9.2 U	9.2 U	3.4 U
Bis(2-chloroethoxy)methane	8.1 U	8.1 U	2.2 U	2.2 U	8.1 U	8.1 U	2.2 U
Bis(2-chloroethyl)ether	7.9 U	7.9 U	2.1 U	2.1 U	7.9 U	7.9 U	2.1 U
Bis(2-chloroisopropyl)ether	8.2 U	8.2 U	2.5 U	2.5 UJ	8.2 U	8.2 U	2.5 U
Bis(2-ethylhexyl)phthalate	30 U	30 U	5.2 U	5.2 U	30 U	30 U	5.2 U
Butyl benzyl phthalate	9.2 U	9.2 U	3.3 U	3.3 U	9.2 U	9.2 U	3.3 U
Chrysene	7.6 U	7.6 U	2.5 U	2.5 U	7.6 U	7.6 U	2.5 U
Di-n-butyl phthalate	12 U	12 U	2.8 U	2.8 U	12 U	12 U	2.8 U
Di-n-octyl phthalate	11 U	11 U	4.7 U	4.7 Ü	11 U	11 U	4.7 U
Dibenz(a,h)anthracene	7.8 U	7.8 U	4.7 U	4.7 U	7.8 U	7.8 U	4.7 U
Diethyl phthalate	7.5 U	7.5 U	3.1 U	3.1 U	7.5 U	7.5 U	3.1 U
Dimethyl phthalate	7 U	7 U	2.4 U	2.4 U	7 U	7 U	2.4 U

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	WS-06	WS-06	WS-06	WS-06	WS-09	WS-09	WS-12
FLUTe Sample Port	***						
Sample Date	02/03/03	05/07/03	08/19/03	11/19/03	02/03/03	05/07/03	08/13/03
Sample Type	Primary						
Compound (ug/l)							
Fluoranthene	7.8 U	7.8 U	3.1 U	3.1 U	7.8 U	7.8 U	3.1 U
Fluorene	6.9 U	6.9 U	2.5 U	2.5 U	6.9 U	6.9 U	2.5 U
Hexachlorobenzene	8.8 U	8.8 U	2.5 U	2.5 U	8.8 U	8.8 U	2.5 U
Hexachlorobutadiene	5.7 U	5.7 U	3.9 U	3.9 U	5.7 U	5.7 U	3.9 U
Hexachloroethane	8.7 U	8.7 U	3.9 U	3.9 U	8.7 U	8.7 U	3.9 U
Indeno(1,2,3-cd)pyrene	9 U	9 U	5.4 U	5.4 U	9 U	9 U	5.4 U
Isophorone	7.9 U	7.9 U	3.4 U	3.4 U	7.9 U	7.9 U	3.4 U
N-Nitroso-di-n-propylamine	9 U	9 U	2.9 U	2.9 U	9 ប	9 U	2.9 U
N-Nitrosodimethylamine	9.4 U	9.4 U	3 U	3 U	9.4 U	9.4 U	3 U
N-Nitrosodiphenylamine	4.4 U	4.4 U	2.3 U	2.3 U	4.4 U	4.4 U	2.3 U
Naphthalene	7.3 U	7.3 U	1.8 U	1.8 U	7.3 U	7.3 U	1.8 U
Nitrobenzene	9.6 U	9.6 U	2.7 U	2.7 U	9.6 U	9.6 U	2.7 U
Pentachlorophenol	19 U	19 U	3.2 U	3.2 U	19 U	19 U	3.2 U
Phenanthrene	9 U	9 U	1.8 U	1.8 U	9 U	9 U	1.8 U
Phenol	7.6 U	7.6 U	3 U	3 U	7.6 U	7.6 U	3 U
Laboratory	DMA						
Method	8270C						

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

OS-28
09/18/03
Primary
2.9 U
3.1 U
2.6 U
3.1 U
8.4 U
2.8 U
2.4 U
1.9 U
3.3 U
5.3 U
3.8 U
2.5 U
2 U
2.5 U
3.6 U
11 U
5.1 U
2.5 U
3.5 U
3 U
5.1 U
2.2 U
2.2 U
1.8 U
5.2 U
2.1 U
1.9 U
2.7 U
5.3 U
3.4 U
2.2 U
2.1 U
2.5 U
5.2 U
3.3 U
2.5 U
2.8 U
4.7 U
4.7 U
3.1 U
2.4 U

TABLE VII
SUMMARY OF ANALYSES FOR
SEMI-VOLATILE ORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

	14/0 40		
Well Identifier	WS-13	OS-28	OS-28
FLUTe Sample Port			
Sample Date	08/20/03	08/22/03	09/18/03
Sample Type	Primary	Primary	Primary
Compound (ug/l)			
Fluoranthene	3.1 U	3.1 U	3.1 U
Fluorene	2.5 U	2.5 U	2.5 U
Hexachlorobenzene	2.5 U	2.5 U	2.5 U
Hexachlorobutadiene	3.9 U	3.9 U	3.9 U
Hexachloroethane	3.9 U	3.9 U	3.9 U
Indeno(1,2,3-cd)pyrene	5.4 U	5.4 U	5.4 U
Isophorone	3.4 U	3.4 U	3.4 U
N-Nitroso-di-n-propylamine	2.9 U	2.9 U	2.9 U
N-Nitrosodimethylamine	3 U	3 U	3 U
N-Nitrosodiphenylamine	2.3 U	2.3 U	2.3 U
Naphthalene	1.8 U	1.8 U	1.8 U
Nitrobenzene	2.7 U	2.7 U	2.7 U
Pentachlorophenol	3.2 U	3.2 U	3.2 U
Phenanthrene	1.8 U	1.8 U	1.8 U
Phenol	3 U	3 U	3 U
Laboratory	DMA	DMA	DMA
Method	8270C	8270C	8270C

DMA	æ	Del Mar Analytical of Irvine, California.
()	=	Analysis not performed.
Comp	=	Composite sample. RD-10 samples were composited from FLUTe ports 3, 6, and 9. HAR-16 samples were composited from FLUTe ports 7 through 12.
Primary	=	Primary sample.
ug/l	=	Micrograms per liter.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
L	=	Laboratory contaminant.
R	=	The analyte result was rejected; presence or absence of the analyte cannot be verified.
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range (see Appendix D for details).

TABLE VIII
SUMMARY OF ANALYSES FOR PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Area	Sample Type	Sample Port	Sample Interval (feet below land surface)	Sample Date	Perchlorate (ug/l)	Laboratory
Shallow Wells							
SH-11	111	Primary			02/21/03	0.8 U	DMA
RS-07	1	Primary			02/21/03	U 8.0	DMA
RS-10	IJ	Primary			02/26/03	0.8 U	DMA
RS-11	IV	Primary			05/01/03	0.8 U	DMA
RS-13	II	Primary			02/21/03	08U	DMA
RS-15	HI	Primary			02/26/03	0.8 U	DMA
RS-17	111	Primary			02/26/03	0.8 U	DMA
RS-18	IV	Primary			05/02/03	0.8 U	DMA
RS-19	1	Primary			05/01/03	2.3 J	DMA
RS-25	IV	Primary			02/25/03	2.1 J	DMA
RS-25	IV	Primary			03/28/03	0.8 U	DMA
RS-25	IV	Dup			03/28/03	0.8 U	DMA
RS-25	IV	Split			03/28/03	1.546	Ceimic
RS-25	IV	Primary			05/01/03	0.8 U	DMA
RS-25	IV	Dup			05/01/03	0.8 U	DMA
RS-25	IV	Split			05/01/03	2 U	AMA
RS-30	1	Primary			05/01/03	0.8 U	DMA
ES-09	1	Primary			05/01/03	0.8 U	DMA
ES-10	Ì	Primary			05/01/03	0.8 U	DMA
ES-12	ĺ	Primary			02/27/03	1.3 J	DMA
ES-31	IV	Primary			02/19/03	0.8 U	DMA
	Groundwater Piezor						
PZ-012		Primary	E	26.75 - 27.25	12/09/03	0.8 U	DMA
PZ-012	1	Primary	F	34.75 - 35.25	12/09/03	0.8 U	DMA
Chatsworth Fo	rmation Wells						
RD-01	1	Primary			05/07/03	0.8 U	DMA
RD-02	1	Primary			02/04/03	0.8 U	DMA
RD-02	1	Primary			05/05/03	0.8 U	DMA
RD-02	l	Primary			08/11/03	0.8 U	DMA
RD-02	1	Primary			11/19/03	U 8.0	DMA
RD-03	1	Primary			02/18/03	0.8 U	DMA
RD-04	II.	Primary			02/03/03	0.8 U	DMA
RD-04	H	Primary		***	05/07/03	0.8 U	DMA
RD-04	11	Primary			08/20/03	0.8 U	DMA
RD-04	11	Primary			11/20/03	U 8.0	DMA
RD-10	l .	Primary	3,6,9	Comp	01/28/03	160	DMA
RD-10	I	Primary	3,6,9	Comp	04/30/03	220	DMA
RD-14	IV	Primary			02/26/03	0.8 U	DMA
RD-15	IV	Primary			02/26/03	0.8 U	DMA
RD-17	IV	Primary			02/24/03	0.8 U	DMA
RD-18	IV	Primary			02/17/03	0.8 U	DMA
RD-19	IV	Primary			02/26/03	0.8 U	DMA
RD-20	IV	Primary			02/14/03	0.8 U	DMA
RD-24	IV	Primary		***	02/12/03	0.8 U	DMA
RD-25	IV	Primary			02/24/03	0.8 U	DMA
RD-26	II .	Primary	-		05/15/03	0.8 U	DMA

See last page of Table VIII for footnotes and explanations. Haley & Aldrich, Inc.

TABLE VIII
SUMMARY OF ANALYSES FOR PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Area	Sample Type	Sample Port	Sample Interval (feet below land surface)	Sample Date	Perchlorate (ug/l)	Laboratory
RD-27	IV	Primary			02/21/03	0.8 U	DMA
RD-28	IV	Primary			02/24/03	0.8 U	DMA
RD-29	IV	Primary			05/13/03	0.8 U	DMA
RD-30	IV	Primary			02/07/03	U 8.0	DMA
RD-31	1	Primary	5	128-138	01/27/03	3.7 J	DMA
RD-31	1	Primary	6	148-158	01/27/03	0.8 U	DMA
RD-31	1	Primary	7	168-178	01/27/03	3.8 J	DMA
RD-32	Off-site, NE of Area I	Primary			02/21/03	0.8 U	DMA
RD-36B	Off-site, NE of Area I	Primary		+	02/12/03	0.8 U	DMA
RD-36C	Off-site, NE of Area I	Primary			02/13/03	0.8 U	DMA
RD-36D	Off-site, NE of Area I	Primary			02/13/03	0.8 U	DMA
RD-37	Off-site, NE of Area I	Primary			02/14/03	0.8 U	DMA
RD-38A	Off-site, NE of Area I	Primary			02/13/03	0.8 U	DMA
RD-38B	Off-site, NE of Area I	Primary	•		02/13/03	0.8 U	DMA
RD-39B	Off-site, NE of Area I	Primary			02/13/03	0.8 U	DMA
RD-40	[]	Primary			05/08/03	0.8 U	DMA
RD-41A	ii	Primary			02/06/03	0.8 U	DMA
RD-41B	11	Primary		***	02/06/03	0.8 U	DMA
RD-41C	;; []	Primary	4		02/06/03	0.8 U	DMA
RD-410	11	Primary			02/07/03	0.8 U	DMA
RD-43A	Off-site, Near Area I	Primary			02/07/03	0.8 U	DMA
RD-43B	Off-site, Near Area I	Primary			02/11/03	0.8 U 0.8 U	DMA
RD-43C	Off-site, Near Area I	*				0.8 U	
RD-43C RD-44	i	Primary			02/17/03 02/04/03		DMA
RD-44	1	Primary				0.8 U	DMA
	i	Primary			05/06/03	0.8 U	DMA
RD-44 RD-46A	1	Primary			08/11/03	0.8 U	DMA
	1	Primary			02/18/03	0.8 U	DMA
RD-47	1	Primary			02/06/03	U 8.0	DMA
RD-49A	11	Primary			02/04/03	0.8 U	DMA
RD-49A	II	Primary			05/07/03	0.8 U	DMA
RD-49A	 	Primary			08/11/03	0.8 U	DMA
RD-49A	II 	Primary			11/18/03	0.8 U	DMA
RD-49B	II	Primary		***	02/03/03	0.8 U	DMA
RD-49B	11	Primary		***	05/06/03	0.8 U	DMA
RD-49B	li 	Primary			08/11/03	U 8.0	DMA
RD-49B	11	Primary			11/17/03	0.8 U	DMA
RD-49C	11	Primary			02/04/03	0.8 U	DMA
RD-49C	II	Primary	****		05/06/03	U 8.0	DMA
RD-49C	II	Primary			08/19/03	0.8 U	DMA
RD-49C	ll	Primary			11/18/03	U 8.0	DMA
RD-51B	11	Primary			02/12/03	0.8 U	DMA
RD-51B	II .	Primary		*	11/06/03	U 8.0	DMA
RD-51B	11	Split			11/06/03	0.35 U	Ceimic
RD-51C	!!	Primary			11/07/03	U 8.0	DMA
RD-51C	11	Split			11/07/03	0.35 U	Ceimic
RD- 52B	1	Primary			02/11/03	U 8.0	DMA
RD-52B	ı	Primary			11/18/03	U 8.0	DMA

See last page of Table VIII for footnotes and explanations.

Haley & Aldrich, Inc.

G:\Projects\26472 - ROC\Reports\M-442 Annual\Tables\M442.T08.Perch.xls

TABLE VIII
SUMMARY OF ANALYSES FOR PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Area	Sample Type	Sample Port	Sample Interval (feet below land surface)	Sample Date	Perchlorate (ug/l)	Laboratory
RD-52C	I	Primary	#		11/19/03	0.8 U	DMA
RD-55A	III	Primary '			02/13/03	0.8 U	DMA
RD-55B	111	Primary		***	02/19/03	0.8 U	DMA
RD-59A	Off-site, W of Area IV	Primary			01/31/03	1 U	DMA
RD-59A	Off-site, W of Area IV	Primary		=	05/15/03	0.8 U	DMA
RD-59A	Off-site, W of Area IV	•			08/08/03	0.8 U	DMA
RD-59A	Off-site, W of Area IV	•		***	11/14/03	0.8 U	DMA
RD-59B	Off-site, W of Area IV	· ·			01/31/03	1 U	DMA
RD-59B	Off-site, W of Area IV	•			08/08/03	0.8 U	DMA
RD-59B	Off-site, W of Area IV	•			12/04/03	0.8 U	DMA
RD-59C	Off-site, W of Area IV	•			01/31/03	1 U	DMA
RD-59C	Off-site, W of Area IV	•			08/08/03	0.8 U	DMA
RD-59C	Off-site, W of Area IV	Primary	***	***	12/04/03	0.8 U	DMA
RD-66	Off-site, NE of Area I	Primary			02/10/03	0.8 U	DMA
RD-68A	Off-site, N of Area III	Primary			02/04/03	0.8 U	DMA
RD-68A	Off-site, N of Area III	Primary	***	***	12/04/03	0.8 U	DMA
RD-68B	Off-site, N of Area III	Primary			02/04/03	0.8 U	DMA
RD-68B	Off-site, N of Area III	Primary			12/04/03	0.8 U	DMA
RD-71	Off-site, NE of Area I	-			02/10/03	0.8 U	DMA
	Un-site, NE OI Alea I	Primary	10	103-108			DMA
HAR-01	, 11	Primary			01/27/03	63 0.8 U	
HAR-05		Primary			02/21/03		DMA
HAR-06	II	Primary			02/21/03	U 8.0	DMA
HAR-07	II	Primary			04/16/03	0.8 U	DMA
HAR-17		Primary			04/16/03	0.8 U	DMA
HAR-18	 	Primary			05/16/03	0.8 U	DMA
HAR-21	11	Primary		***	02/27/03	0.8 U	DMA
HAR-22		Primary			02/26/03	0.8 U	DMA
HAR-23	(11	Primary			02/27/03	0.8 U	DMA
HAR-25		Primary			02/27/03	150	DMA
HAR-26	III	Primary			05/15/03	0.8 U	DMA
WS-04A		Primary			12/03/03	0.8 U	DMA
WS-05	1	Primary			02/04/03	0.8 U	DMA
WS-05	1	Primary			05/05/03	0.8 U	DMA
WS-06		Primary			02/03/03	0.8 U	DMA
WS-06		Primary			05/07/03	0.8 U	DMA
WS-06		Primary			08/19/03	0.8 U	DMA
WS-06	l _.	Primary			11/19/03	U 8.0	DMA
WS-09	11	Primary			02/03/03	U 8.0	DMA
WS-09	IJ	Primary			05/07/03	0.8 U	DMA
WS-09B	11	Primary			11/06/03	U 8.0	DMA
WS-12	1	Primary			08/13/03	U 8.0	DMA
WS-13	II	Primary			08/20/03	0.8 U	DMA
OS-02	Off-site	Primary			01/31/03	1 U	DMA
OS-02	Off-site	Primary			12/09/03	บ 8.0	DMA
OS-03	Off-site	Primary			01/31/03	1 U	DMA
OS-03	Off-site	Primary			12/09/03	0.8 U	DMA
OS-04	Off-site	Primary			08/08/03	0.8 U	DMA

See last page of Table VIII for footnotes and explanations.

Haley & Aldrich, Inc.

G:\Projects\26472 - ROC\Reports\M-442 Annual\Tables\M442.T08.Perch.xls

TABLE VIII
SUMMARY OF ANALYSES FOR PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Area	Sample Type	Sample Port	Sample Interval (feet below land surface)	Sample Date	Perchlorate (ug/l)	Laboratory
OS-04	Off-site	Primary			12/09/03	0.8 U	DMA
OS-05	Off-site	Primary			01/31/03	1 U	DMA
OS-05	Off-site	Primary			12/09/03	0.8 U	DMA
OS-08	Off-site	Primary		***	01/31/03	1 U	DMA
OS-08	Off-site	Primary			12/09/03	0.8 U	DMA
OS-08	Off-site	Split		·	12/09/03	0.35 U	Ceimic
OS-09	Off-site	Primary			07/02/03	0.8 U	DMA
OS-09	Off-site	Split			07/02/03	0.35 U	Ceimic
OS-09	Off-site	Primary			07/10/03	0.8 U	DMA
OS-09	Off-site	Dup			07/10/03	0.8 U	DMA
OS-09	Off-site	Split			07/10/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			07/10/03	0.35 U	Ceimic
OS-09	Off-site	Primary		***	07/17/03	0.8 UJ	DMA
OS-09	Off-site	Dup			07/17/03	0.8 UJ	DMA
OS-09	Off-site	Split			07/17/03	0.8 U	Ceimic
OS-09	Off-site	Split Sample Dup			07/17/03	0.35 U	Ceimic
OS-09	Off-site	Primary			07/24/03	0.33 U 0.8 U	DMA
OS-09	Off-site	Dup			07/24/03	0.8 UJ	DMA
OS-09	Off-site						
	Off-site	Split			07/24/03	0.35 U	Ceimic
OS-09		Split Sample Dup			07/24/03	0.35 U	Ceimic
OS-09	Off-site	Primary			07/31/03	U 8.0	DMA
OS-09	Off-site	Dup			07/31/03	0.8 U	DMA
OS-09	Off-site	Split			07/31/03	0.35 U	Ceimic
OS-09	Off-site	Split			07/31/03	2 UJ	AMA
OS-09	Off-site	Split Sample Dup			07/31/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			07/31/03	2 UJ	AMA
OS-09	Off-site	Primary			08/07/03	0.8 UJ	DMA
OS-09	Off-site	Dup	***		08/07/03	0.8 UJ	DMA
OS-09	Off-site	Split			08/07/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			08/07/03	0.35 U	Ceimic
OS-09	Off-site	Primary			08/12/03	0.8 U	DMA
OS-09	Off-site	Dup		***	08/12/03	0.8 U	DMA
OS-09	Off-site	Split			08/12/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			08/12/03	0.35 U	Ceimic
OS-09	Off-site	Primary			08/21/03	0.8 U	DMA
OS-09	Off-site	Dup			08/21/03	0.8 U	DMA
OS-09	Off-site	Split			08/21/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			08/21/03	0.35 U	Ceimic
OS-09	Off-site	Primary			08/28/03	0.8 U	DMA
OS-09	Off-site	Dup			08/28/03	0.8 U	DMA
OS-09	Off-site	Split			08/28/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			08/28/03	0.35 U	Ceimic
OS-09	Off-site	Primary		***	09/04/03	0.8 U	DMA
OS-09	Off-site	Dup			09/04/03	0.8 U	DMA
OS-09	Off-site	Split			09/04/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup		***	09/04/03	0.35 U	Ceimic
OS-09	Off-site	Primary			09/11/03	0.8 U	DMA

See last page of Table VIII for footnotes and explanations.
Haley & Aldrich, Inc.
G:\Projects\26472 - ROC\Reports\M-442 Annual\Tables\M442.T08.Perch.xls

TABLE VIII
SUMMARY OF ANALYSES FOR PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Area	Sample Type	Sample Port	Sample Interval (feet below land surface)	Sample Date	Perchlorate (ug/l)	Laboratory
OS-09	Off-site	Dup		+	09/11/03	0.8 U	DMA
OS-09	Off-site	Split			09/11/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			09/11/03	0.35 U	Ceimic
OS-09	Off-site	Primary		, 	09/18/03	0.8 U	DMA
OS-09	Off-site	Dup			09/18/03	0.8 U	DMA
OS-09	Off-site	Split			09/18/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			09/18/03	0.35 U	Ceimic
OS-09	Off-site	Primary			09/25/03	U 8.0	DMA
OS-09	Off-site	Dup			09/25/03	U 8.0	DMA
OS-09	Off-site	Split		****	09/25/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			09/25/03	0.35 U	Ceimic
OS-09	Off-site	Primary			10/02/03	0.8 U	DMA
OS-09	Off-site	Dup			10/02/03	0.8 U	DMA
OS-09	Off-site	Split			10/02/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			10/02/03	0.35 U	Ceimic
OS-09	Off-site	Primary			11/06/03	0.8 U	DMA
OS-09	Off-site	Dup			11/06/03	0.8 U	DMA
OS-09	Off-site	Split			11/06/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			11/06/03	0.35 U	Ceimic
OS-09	Off-site	Primary			11/13/03	0.8 U	DMA
OS-09	Off-site	Dup			11/13/03	0.8 U	DMA
OS-09	Off-site	Split			11/13/03	0.35 U	Ceimic
OS-09	Off-site	Split Sample Dup			11/13/03	0.35 U	Ceimic
OS-09	Off-site	Primary			11/20/03	0.8 U	DMA
OS-09	Off-site	Primary			11/24/03	0.8 U	DMA
OS-09	Off-site	Primary			12/04/03	0.8 U	DMA
OS-09	Off-site	Split			12/04/03	0.35 U	Ceimic
OS-09	Off-site	Primary			12/11/03	0.8 U	DMA
OS-09	Off-site	Primary			12/18/03	0.8 U	DMA
OS-09	Off-site	Primary			12/23/03	0.8 UJ	DMA
OS-09	Off-site	Primary			12/30/03	0.8 U	DMA
OS-10	Off-site	Primary			01/31/03	1 U	DMA
OS-10	Off-site	Primary			12/09/03	0.8 U	DMA
OS-10	Off-site	Split			12/09/03	0.35 U	Ceimic ,
OS-16	Off-site	Primary			01/30/03	1 U	DMA
OS-17	Off-site	Primary			02/25/03	0.8 U	DMA
OS-21	Off-site	Primary			09/03/03	0.8 U	DMA
OS-21	Off-site	Primary		***	12/02/03	0.8 U	DMA
OS-21	Off-site	Split	windows.		12/02/03	0.35 U	Ceimic
OS-26	Off-site	Primary			02/04/03	0.8 U	DMA
OS-26	Off-site	Primary			12/02/03	U 8.0	DMA
OS-28	Off-site	Primary			08/22/03	0.8 U	DMA
OS-28	Off-site	Primary			09/18/03	0.8 U	DMA

AMA	=	American Analytics of Chatsworth, California.
Ceimic	=	Ceimic Corporation of Narragansett, Rhode Island.
DMA	=	Del Mar Analytical of Irvine, California.
ug/l	=	micrograms per liter.
J .	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
U	=	Not detected; numerical value is the Detection Limit.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range (see Appendix D for details).
Primary	=	Primary sample.
Dup	=	Sample duplicate.
Split	=	Sample split.
Split Sample Dup	=	Sample duplicate analyzed by the split laboratory.
Comp	=	Composite sample. RD-10 sample was composited at the laboratory from FLUTe ports 3, 6, and 9.
		FLUTe Sample Interval Sample (feet below land Port surface) 3 211-221 6 271-281 9 331-341

NOTE: Perchlorate analyzed by EPA method 314.0.

TABLE IX
SUMMARY OF ANALYSES FOR GROSS ALPHA, GROSS BETA, RADIUM ISOTOPES, AND TRITIUM ACTIVITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	FLUTe	Sample	Sample	EPA Method		Result (pCi/	1)	
Identifier	Sample Port	Туре	Date	Number	Radionuclide	Activity	Error	MDA
Shallow Wells								
RS-11	-	Primary	05/01/03	900.0	Gross Alpha	1.65 U	1.8	2.83
		Primary	05/01/03	900.0	Gross Beta	0.692 U	2.3	3.89
		Primary	05/01/03	906.0	Tritium	17.6 U	100	172
RS-18		Primary	05/02/03	900.0	Gross Alpha	29.1	9,1	4.92
		Primary	05/02/03	900.0	Gross Beta	17.8	6.0	6.32
		Primary	05/02/03	906.0	Tritium	68.7 U	110	177
RS-25		Primary	02/25/03	900.0	Gross Alpha	2.18 J	1.3	1.62
		Primary	02/25/03	900.0	Gross Beta	8.98	2.2	3.19
		Primary	02/25/03	906.0	Tritium	45.9 U	110	186
ES-31		Primary	02/19/03	900.0	Gross Alpha	2.33 U	2.2	2.73
		Primary	02/19/03	900.0	Gross Beta	3.64 J	1,9	2.80
	***	Primary	02/19/03	906.0	Tritium	21.1 U	110	191
Chatsworth For	mation Wells					<u></u>		
RD-07	3	Primary	01/29/03	900.0	Gross Alpha	14.4	3.5	2.34
	3	Primary	01/29/03	900.0	Gross Beta	15.5	3.1	4.07
	3	Primary	01/29/03	906.0	Tritium	0 U	110	182
RD-07	13	Primary	08/28/03	900.0	Gross Alpha	6.82	2.9	2.19
,,,,	13	Primary	08/28/03	900.0	Gross Beta	9.29	3.2	3.72
	13	Primary	08/28/03	906.0	Tritium	-37.4 U	110	188
	13	Primary	08/28/03	903.1	Radium-226	0.289 J	0.035	0.016
	13	Primary	08/28/03	904.0	Radium-228	1.17	0.25	0.57
RD-15		Primary	02/26/03	900.0	Gross Alpha	5.24	3.1	3.69
· · · · ·		Primary	02/26/03	900.0	Gross Beta	14.4	4.6	6.44
		Primary	02/26/03	906.0	Tritium	68.7 U	120	194
RD-17		Primary	02/24/03	900.0	Gross Alpha	2.73 J	2.3	2.62
		Primary	02/24/03	900.0	Gross Beta	7.25	3.6	5.20
		Primary	02/24/03	906.0	Tritium	-52.5 U	110	188
RD-21	2	Primary	02/25/03	900.0	Gross Alpha	2.78 U	2.5	3.04
, , , , , , , , , , , , , , , , , , ,	2	Primary	02/25/03	900.0	Gross Beta	7.72	3.6	5.25
	2	Primary	02/25/03	906.0	Tritium	86.9	120	192
RD-22	2	Primary	02/24/03	900.0	Gross Alpha	2.97 J	1.4	1.55
\w-&&	2	Primary	02/24/03	900.0	Gross Beta	9.22	1.9	2.55
	2	Primary	02/24/03	906.0	Tritium	16.5 U	110	192

See last page of Table IX for footnotes and explanations. Haley & Aldrich, Inc.

TABLE IX
SUMMARY OF ANALYSES FOR GROSS ALPHA, GROSS BETA, RADIUM ISOTOPES, AND TRITIUM ACTIVITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	FLUTe	Sample	Sample	EPA Method		Result (pCi/	l)	
Identifier	Sample Port	Туре	Date	Number	Radionuclide	Activity	Error	MDA
RD-23	1	Primary	02/26/03	900.0	Gross Alpha	4.42	1.3	0.960
	1	Primary	02/26/03	900.0	Gross Beta	6.18	1.8	2.61
	1	Primary	02/26/03	906.0	Tritium	116 U	120	188
RD-24		Primary	02/12/03	900.0	Gross Alpha	2.83 J	1.4	1.51
		Primary	02/12/03	900.0	Gross Beta	6.67	1.3	1.80
		Primary	02/12/03	906.0	Tritium	257	120	193
RD-24		Primary	11/14/03	900.0	Gross Alpha	5.06	3.4	2.92
		Split	11/14/03	900.0	Gross Alpha	11.6	4.56	3.11
		Primary	11/14/03	900.0	Gross Beta	9.29	3.4	3.66
		Split	11/14/03	900.0	Gross Beta	13.3	4.16	5.91
		Primary	11/14/03	906.0	Tritium	185 U	120	194
	***	Split	11/14/03	906.0	Tritium	237	65	82.4
		Primary	11/14/03	903.1	Radium-226	0.654 J	0.075	0.029
		Split	11/14/03	903.1	Radium-226	1.15	0.338	0.255
		Primary	11/14/03	904.0	Radium-228	1.61	0.27	0.522
	****	Split	11/14/03	904.0	Radium-228	2.93 J	0.884	0.778
RD-25		Primary	02/24/03	900.0	Gross Alpha	3.92	1.4	1.39
		Primary	02/24/03	900.0	Gross Beta	9.12	1.9	2.69
		Primary	02/24/03	906.0	Tritium	-31.8 U	110	197
RD-25		Primary	11/13/03	900.0	Gross Alpha	7.21	4.2	3.51
	***	Primary	11/13/03	900.0	Gross Beta	7.19	2.6	2.92
		Primary	11/13/03	906.0	Tritium	9.52 U	120	197
		Primary	11/13/03	903.1	Radium-226	0.630 J	0.073	0.029
		Primary	11/13/03	904.0	Radium-228	0.971 J	0.21	0.440
RD-27		Primary	02/21/03	906.0	Tritium	29.8 U	110	193
RD-27		Primary	05/14/03	900.0	Gross Alpha	4.43	2.5	2.45
		Primary	05/14/03	900.0	Gross Beta	7.41	3.0	3.88
RD-27		Primary	11/14/03	900.0	Gross Alpha	1.68 U	1.7	2.12
		Split	11/14/03	900.0	Gross Alpha	4.91	2.29	1.95
		Primary	11/14/03	900.0	Gross Beta	6.79	2.3	2.56
		Split	11/14/03	900.0	Gross Beta	7.05	2.35	3.70
		Primary	11/14/03	906.0	Tritium	-11.2 U	110	194
		Split	11/14/03	906.0	Tritium	9.54 U	48.9	85.0

TABLE IX
SUMMARY OF ANALYSES FOR GROSS ALPHA, GROSS BETA, RADIUM ISOTOPES, AND TRITIUM ACTIVITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	FLUTe	Sample	Sample	EPA Method		Result (pCi/	l)	
Identifier	Sample Port	Туре	Date	Number	Radionuclide	Activity	Error	MDA
RD-28		Primary	02/24/03	900.0	Gross Alpha	11.9	4.7	4.57
		Primary	02/24/03	900.0	Gross Beta	12.0	3.9	5.33
		Primary	02/24/03	906.0	Tritium	756	130	184
RD-28		Primary	11/14/03	900.0	Gross Alpha	11.1	6.5	5.96
		Primary	11/14/03	900.0	Gross Beta	15.4	6.7	8.98
		Primary	11/14/03	906.0	Tritium	1430	210	197
		Primary	11/14/03	903.1	Radium-226	0.659 J	0.076	0.029
		Primary	11/14/03	904.0	Radium-228	1.32	0.27	0.560
RD-29		Primary	05/13/03 ·	900.0	Gross Alpha	16.1	5.5	3.04
	***	Primary	05/13/03	900.0	Gross Beta	9.76	4.1	5.16
		Primary	05/13/03	906.0	Tritium	-12.4 U	100	174
RD-30		Primary	02/07/03	900.0	Gross Alpha	3.27	1.6	1.72 ·
		Primary	02/07/03	900.0	Gross Beta	7.00	1.9	2.74
		Primary	02/07/03	906.0	Tritium	83.8 U	110	190
RD-30		Primary	11/14/03	900.0	Gross Alpha	8.30	4.4	3.19
		Primary	11/14/03	900.0	Gross Beta	13.9	4.2	3.81
	***	Primary	11/14/03	906.0	Tritium	-76.9 U	110	194
		Primary	11/14/03	903.1	Radium-226	0.235 J	0.045	0.025
		Primary	11/14/03	904.0	Radium-228	0.261 U	0.20	0.515
RD-33A	4	Primary	01/30/03	900.0	Gross Alpha	3.42	2.1	2.24
	4	Primary	01/30/03	900.0	Gross Beta	5.38	2.3	3.32
	4	Primary	01/30/03	906.0	Tritium	8.31 U	120	196
RD-33B		Primary	02/11/03	900.0	Gross Alpha	0.527 U	0.75	1.07
		Primary	02/11/03	900.0	Gross Beta	4.94	1.1	1.66
		Primary	02/11/03	906.0	Tritium	87.7 U	120	194
RD-33B	***	Primary	11/13/03	906.0	Tritium	52.0 U	120	199
RD-33C	***	Primary	02/10/03	900.0	Gross Alpha	0.201 U	1.5	2.63
		Primary	02/10/03	900.0	Gross Beta	5.34	2.0	2.78
		Primary	02/10/03	906.0	Tritium	73.1 U	120	201
RD-33C		Primary	11/13/03	906.0	Tritium	107 U	110	188
		Split	11/13/03	906.0	Tritium	-23.3 U	46.7	82.2
RD-34A		Primary	05/16/03	900.0	Gross Alpha	18.5	7.0	5.31
		Primary	05/16/03	900.0	Gross Beta	12.1	5.1	6.32
		Primary	05/16/03	906.0	Tritium	2420	300	175

See last page of Table IX for footnotes and explanations. Haley & Aldrich, Inc.

TABLE IX
SUMMARY OF ANALYSES FOR GROSS ALPHA, GROSS BETA, RADIUM ISOTOPES, AND TRITIUM ACTIVITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	FLUTe	Sample	Sample	EPA Method		Result (pCi	/I)	
Identifier	Sample Port	Type	Date	Number	Radionuclide	Activity	Error	MDA
RD-34B		Primary	02/06/03	900.0	Gross Alpha	2.37	2.0	2.75
		Primary	02/06/03	900.0	Gross Beta	6.78	2.3	3.32
		Primary	02/06/03	906.0	Tritium	171 U	110	182
RD-34B	***	Primary	11/13/03	906.0	Tritium	254	120	196
RD-34C		Primary	02/06/03	900.0	Gross Alpha	1.84 J	1.2	1.48
		Primary	02/06/03	900.0	Gross Beta	3.28 J	1.7	2.70
		Primary	02/06/03	906.0	Tritium	-78.4 U	110	184
RD-34C		Primary	11/13/03	906.0	Tritium	-33.1 U	110	190
RD-54A	2	Primary	02/18/03	900.0	Gross Alpha	5.39	1.8	2.06
	2	Primary	02/18/03	900.0	Gross Beta	9.08	2.6	4.04
	2	Primary	02/18/03	906.0	Tritium	10.7 U	110	194
RD-54A		Primary	08/26/03	906.0	Tritium	25.3 U	110	190
RD-54B		Primary	02/26/03	900.0	Gross Alpha	5.38	1.8	1.80
		Primary	02/26/03	900.0	Gross Beta	7.36	2.2	3.34
		Primary	02/26/03	906.0	Tritium	24.2 U	110	187
RD-54B		Primary	08/07/03	906.0	Tritium	-31.7 U	110	190
RD-54C		Primary	02/26/03	900.0	Gross Alpha	1.90 J	1.1	1.30
		Primary	02/26/03	900.0	Gross Beta	5.32	1.8	2.82
	***	Primary	02/26/03	906.0	Tritium	-79.1 U	110	188
RD-54C		Primary	08/26/03	906.0	Tritium	-12.4 U	110	186
RD-57	8	Primary	01/29/03	900.0	Gross Alpha	2.68 J	1.7	2.02
	8	Primary	01/29/03	900.0	Gross Beta	4.31	2.6	4.01
	8	Primary	01/29/03	906.0	Tritium	-57.7 U	110	187
RD-57	8	Primary	04/30/03	900.0	Gross Alpha	3.06	1.9	2.18
	8	Primary	04/30/03	900.0	Gross Beta	6.07	2.2	2.63
	8	Primary	04/30/03	906.0	Tritium	18.8 U	99	167
RD-57	8	Primary	08/27/03	906.0	Tritium	-24.8 U	110	186
RD-59A	***	Primary	01/31/03	900.0	Gross Alpha	1.81 U	1.8	2.12
		Primary	01/31/03	900.0	Gross Beta	4.95	2.4	3.56
		Primary	01/31/03	906.0	Tritium	23.9 U	110	187

TABLE IX
SUMMARY OF ANALYSES FOR GROSS ALPHA, GROSS BETA, RADIUM ISOTOPES, AND TRITIUM ACTIVITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	FLUTe	Sample	Sample	EPA Method		Result (pCi	(1)	
Identifier	Sample Port	Type	Date	Number	Radionuclide	Activity	Error	MDA
RD-59A		Primary	05/15/03	900.0	Gross Alpha	3.55	2.0	2,54
		Split	05/15/03	900.0	Gross Alpha	3.53	1.94	2.54
	***	Primary	05/15/03	900.0	Gross Beta	7.58	2.8	3,36
		Split	05/15/03	900.0	Gross Beta	14.0	3.88	5,48
		Primary	05/15/03	906.0	Tritium	29.7 U	100	171
		Split	05/15/03	906.0	Tritium	-12.3 U	51.5	110
RD-59A		Primary	08/08/03	906.0	Tritium	-33.7 U	110	190
		Split	08/08/03	906.0	Tritium	17.1 U	49	86.9
RD-59A		Primary	11/14/03	906.0	Tritium	-82.5 U	110	199
		Split	11/14/03	906.0	Tritium	-8.74 U	46.3	83.2
RD-59B		Primary	01/31/03	900.0	Gross Alpha	1.52 U	1.8	2.45
		Primary	01/31/03	900.0	Gross Beta	3.58 J	2.2	3,41
		Primary	01/31/03	906.0	Tritium	-31.1 U	110	183
RD-59B		Primary	08/08/03	906.0	Tritium	-21.2 U	110	192
RD-59C		Primary	01/31/03	900.0	Gross Alpha	2.04 J	1.8	2.00
		Primary	01/31/03	900.0	Gross Beta	3.54 J	1.9	2.80
		Primary	01/31/03	906.0	Tritium	1.97 U	110	185
RD-59C		Primary	08/08/03	906.0	Tritium	50.7 U	110	190
RD-63		Primary	02/05/03	900.0	Gross Alpha	6.08	1.7	1.94
		Primary	02/05/03	900.0	Gross Beta	9.06	1.3	1.72
		Primary	02/05/03	906.0	Tritium	152 U	120	194
RD-64	6	Primary	01/29/03	900.0	Gross Alpha	3.90	2.2	2.28
	6	Primary	01/29/03	900.0	Gross Beta	6.68	2.1	2.81
	6	Primary	01/29/03	906.0	Tritium	21.3 U	110	182

TABLE IX FOOTNOTES AND EXPLANATIONS

MDA = Minimum detectable activity.

J = Result is less than contract-required MDA and greater than or equal to the MDA.

pCi/l = PicoCuries per liter.

Primary = Primary sample.

Split = Sample split.

U = The result is less than the MDA.

Primary sample analyses were performed by Eberline Services of Richmond, California. Split sample analyses were performed by Severn Trent Laboratories of Richland, Washington.

Results are presented as the activity plus or minus the error. Any activity is reported by the laboratory. Analytical results that are less than the procedure background value are shown as negative values. Samples are filtered and acidified in the field with the exception of tritium.

TABLE X
SUMMARY OF ANALYSES FOR GAMMA-EMITTING RADIONUCLIDES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RS-1	1	RS-18		RS-25		ES-3	1	RD-07		RD-15	
FLUTe Port									Z3			
Sample Type	Prima	ry	Primary		Primary	,	Prima	ıry	Primary		Primary	,
Sample Date	05/01/	03	05/02/03		02/25/0	3	02/19/	03	01/29/03	3	02/26/03	
Radionuclides (pCi/l)	Result	MDA	Result	_MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting												
Actinium-228	ND	5.61	ND ND	7.57	ND	7.20	ND	8.96	ND .	6.45	ND	3.4
Bismuth-212	ND	8.51	ND	11.9	ND	12.2	ND	14.5	ND	9.40	ND	4.94
Bismuth-214	ND	2.49	ND	3.53	ND	3.1	ND	3.89	ND	2.78	ND	1.44
Cobalt-57	ND	0.84	ND	0.978	ND	1.31	ND	1.35	ND	0.797	ND	0.525
Cobalt-60	ND	1.48	ND	1.84	ND	1.66	ND	1.96	ND	1.38	ND	0.684
Cesium-134	ND	1.58	ND	1.97	ND	1.88	ND .	2.16	ND	2.48	ND	0.661
Cesium-137	ND	1.17	ND	1.76	ND	1.64	ND	1.94	ND	1.47	ND	0.633
Potassium-40	ND	30.4	ND	44.9) ND	34.7	ND	41.3	ND	37.7	ND	14.4
Lead-210	ND	261	ND	90.1	ND	366	ND	429	ND	99.1	ND	177
Lead-212	ND	1.78	ND	2.33	ND	2.46	ND	2.68	ND	1.77	ND	0.888
Lead-214	ND	2.36	ND	3.09	ND	3.23	ND	3.77	ND	2.60	ND	1.35
Radium-226	ND	17.1	ND	32.5	ND	25.5	ND	29.8	ND	19.1	ND	11.1
Thorium-234	ND	34.7	ND	25.4	ND	51.0	ND	60.4	ND	20.9	ND	26.6
Thallium-208	ND	1.24	ND	1.66	ND	1.66	ND	2.01	ND	1.33	ND	0.677
Uranium-235	ND	6.58	ND_	8.43	ND	9.81	ND	11.4	ND	6.09	ND	4.99
Isotopic Uranium												
and Thorium												
Thorium-228			-0.009U +/- 0.037	0.074					0.058 +/- 0.020	0.018		
Thorium-230			0.018U +/- 0.046	0.104					0.029 +/- 0.047	0.108		
Thorium-232			0.005U +/- 0.009	0.035					0.004 +/- 0.008	0.013		
Uranium-233/234			20.3 +/- 1.2	0.076	1.98 +/- 0.16	0.038			14.7 +/- 0.51	0.064	2.86 +/- 0.20	0.043
Uranium-235			1.05 +/- 0.12	0.021	0.090 +/- 0.035	0.026			0.551 +/- 0.084	0.024	0.122 +/- 0.043	0.027
Uranium-238			19.3 +/- 1.1	0.073	2.02 +/- 0.16	0.035			11.8 +/- 0.44	0.060	2.71 +/- 0.19	0.036

TABLE X
SUMMARY OF ANALYSES FOR GAMMA-EMITTING RADIONUCLIDES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-1	7	RD-2	1	RD-2	22	RD-2	23	RD-2	24	RD-2	24
FLUTe Port	***		Z2		Z2		Z1					
Sample Type	Prima	ıry	Prima	ıry	Prima	iry	Prima	ary	Prima	ary	Prima	ary
Sample Date	02/24		02/25	03	02/24	/ó3	02/26		02/12		11/14/03	
Radionuclides (pCi/l)	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting												
Actinium-228	ИD	7.50	ND	10.2	ND	5.70	ND	12.4	ND	24.1	ND	33.3
Bismuth-212	ND	12.4	ND	14.4	ND	10.0	ND	20.9	ND	33.6	ND	50.0
Bismuth-214	ND	3.55	ND	4.60	ND	2.67	ND	5.48	ND	10.2	ND	23.2
Cobalt-57	ND	1.08	ND	1.34	ND	0.756	ND	1.74	ND	3.02	ND	3.93
Cobalt-60	ND	1.99	ND	2.21	ND	1.35	ND	2.97	ND	5.52	ND	7.69
Cesium-134	ND	3.27	ND	4.68	ND	1.60	ND	3.19	ND	8.20	ND	9.20
Cesium-137	ND	1.65	ND	2.24	ND	1.26	ND	2.80	ND	5.61	ND	6.76
Potassium-40	ND	40.9	ND	62.2	ND	16.5	ND	116	ND	137	ND	145
Lead-210	ND	335	ND	182	ND	249	ND	197	ND	353	ND	473
Lead-212	ND	2.43	ND	2.94	ND	1.83	ND	4.05	ND	6.48	ND	- 10.9
Lead-214	ND	3.30	ND	4.22	ND	2.41	ND	5.26	ND	9.65	ND	26.7
Radium-226	ND	24.1	ND	31.1	ND	19.5	ND	41.6	ND	71.1	ND	106
Thorium-234	ND	47.8	ND	33.9	ND	36.4	ND	61.6	ND	78.3	ND	189
Thallium-208	ND	1.74	ND	2.15	ND	2.88	ND	2.85	ND	4.85	ND	7.55
Uranium-235	ND	9.44	ND	10.3	ND	5.73	ND	15.5	ND	23.1	_ND	35.3
Isotopic Uranium												
and Thorium												
Thorium-228										***		
Thorium-230												
Thorium-232			***									
Uranium-233/234										444		
Uranium-235	***											
Uranium-238												

TABLE X
SUMMARY OF ANALYSES FOR GAMMA-EMITTING RADIONUCLIDES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-2	4	RD-2	:5	RD-2	25	RD-2	27	RD-2	27	RD-2	27
FLUTe Port								ĺ		1		
Sample Type	Split	:	Prima	iry	Prima	ary	Prima	ary	Prima	ary	Spli	ıt
Sample Date	11/14/	03	02/24/	03	11/13		05/14	/03	11/14	11/14/03		/03
Radionuclides (pCi/l)	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting												
Actinium-228	ND	13.0	ND	13.6	ND	56.7	ND	5.67	ND	71.6	ND	12.8
Bismuth-212	ND	38.8	ND	24.1	ND	85.6	ND	8.75	ND	112	ND	40.4
Bismuth-214	ND	6.86	ND	9.54	ND	49.2	ND	2.64	ND	32.4	ND	6.27
Cobalt-57	ND	12.5	ИD	2.01	ND	7.96	ND	0.892	ND	7.16	ND	11.7
Cobalt-60	ND	3.31	ND	3.58	ND	12.7	ND	1.53	ND	14	ND	2.95
Cesium-134	ND	3.07	ND	3.70	ND	14.1	ND	2.83	ND	17.8	ND	3.30
Cesium-137	ND	2.67	ND	3.25	ND	10.8	ND	1.25	ND	13.1	ND	2.73
Potassium-40	ND	88.8	ND	88.1	ND	227	ND	30.1	ND	429	ND	77.1
Lead-210			ND	220	ND	2720	ND	238	ND	522		
Lead-212	ND	3.39	ND	4.52	ND	18.8	ND	1.9	ND	20.8	ND	4.15
Lead-214	ND	5.78	ND	6.09	ND	23.3	ND	2.58	ND	27.6	ND	5.41
Radium-226			ND	46.1	ND	224	ND	18.8	ND	178		
Thorium-234	ND	417	ND	70.4	ND	368	ND	37.6	ND	227	ND	475
Thallium-208	ND	2.74	ND	3.28	ND	12.8	ND	1.28	ND	15.4	ND	3.13
Uranium-235	ND	12.5	ND	17.5	ND	74.7	ND_	7.2	ND	69.1	ND	11.7
Isotopic Uranium												
and Thorium												
Thorium-228			***									
Thorium-230							'					
Thorium-232												
Uranium-233/234			•==									
Uranium-235												
Uranium-238		***										

TABLE X
SUMMARY OF ANALYSES FOR GAMMA-EMITTING RADIONUCLIDES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-28		RD-2	:8	RD-29		RD-3	10	RD-3	30	RD-33	3 A
FLUTe Port											Z4	
Sample Type	Primary	1	Prima	iry	Primary	,	Prima	ıry	Prima	ary	Prima	ary
Sample Date	02/24/0	3	11/14/	' 03	05/13/03		02/07/	ró3	11/14/		01/30	
Radionuclides (pCi/l)	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting												
Actinium-228	ND	6.56	ND	46.9	ND	7	ND	57.3	ND	46.9	ND	9.02
Bismuth-212	ND	10.2	ND	. 74.2	ND	11.1	ND	104	ND	72.5	ND	15.0
Bismuth-214	ND	3.17	ND	58.2	ND	3.36	ND	25.4	ND	46.7	ND	4.01
Cobalt-57	ND	0.848	ND	6.60	ND	0.918	ND	6.98	ND	7.28	ND	1.40
Cobalt-60	ND	1.55	ND	10.8	ND	1.88	ND	15.1	ND	10.2	ND	1.98
Cesium-134	ND	1.69	ND	11.6	ND	1.88	ND	16.1	ND	12.2	ND	2.26
Cesium-137	ND	1.41	ND	10.1	ND	1.56	ND	12.5	ND	10.1	ND	1.98
Potassium-40	ND	39.9	ND	164	ND	42.2	ND	171	ND	321	ND	41.5
Lead-210	ND	97.6	ND	698	ND	102	ND	858	ND	2550	ND	452
Lead-212	ND	1.96	ND	24.3	ND	2.04	ND	18.3	ND	18.0	ND	2.80
Lead-214	ND	2.84	ND	18.6	ND	2.99	ND	22.8	ND	48.2	ND	3.91
Radium-226	ND	21.4	ND	135	ND	22.2	ND	182	ND	367	ND	31.4
Thorium-234	ND	23.7	ND	222	ND	24.1	ND	308	ND	341	ND	62.6
Thallium-208	ND	1.47	ND	10.7	ND	1.57	ND	12.9	ND	12.5	ND	2.07
Uranium-235	МD	7.16	ND	51.2	ND	7.2	ND	52.6	ND	66.8	ND	12.2
Isotopic Uranium												,
and Thorium												
Thorium-228	0.044 +/- 0.031	0.042										
Thorium-230	0.037 +/- 0.050	0.112							~~~			
Thorium-232	0.016 +/- 0.012	0.024					***					
Uranium-233/234	9.37 +/- 0.40	0.061			8.74 +/- 0.55	0.049					***	
Uranium-235	0.409 +/- 0.078	0.027			0.366 +/- 0.069	0.021		***				
Uranium-238	9.31 +/- 0.40	0.056			8.21 +/- 0.52	0.047						

TABLE X
SUMMARY OF ANALYSES FOR GAMMA-EMITTING RADIONUCLIDES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-33	3B	RD-330	0	RD-34A		RD-34	B	RD-34	iC	RD-54A	
FLUTe Port									***		Z2	
Sample Type	Prima	ry	Primar	у	Primary		Prima	ry	Prima	ry	Primary	
Sample Date	02/11/	03	02/10/0	i 3	05/16/03	3	02/06/	oʻ3	02/06/	03	02/18/03	3
Radionuclides (pCi/l)	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting												
Actinium-228	ND	13.3	ND	11.8	ND	4.11	ND	10.6	ND	9.17	ND	9.26
Bismuth-212	ND	21.6	ND	18.9	ND	7.08	ND	17.6	ND	13.5	ND	15.8
Bismuth-214	ND	8.56	ND	5.06	ND	1.88	ND	4.38	ND	3.93	ND	4.41
Cobalt-57	ND	1.86	ND	1.80	ND	0.496	ND	1.44	ND	1.11	ND	1.34
Cobalt-60	ND	3.13	ND	2.39	ND	1.05	ND	2.64	ND	2.10	ND	2.51
Cesium-134	ND	3.46	ND	2.80	ND	1.26	ND	2.67	ND	3.73	ND	2.52
Cesium-137	ND	2.82	, ND	2.37	NĐ	0.908	ND	2.33	ND	2.13	ND	2.07
Potassium-40	ND	60.8	71.6 +/- 61	25.6	ND	11.2	ND	39.2	ND	51.2	ND	49.7
Lead-210	ND	198	ND	550	ND	53.4	ND	167	ND	145	ND	436
Lead-212	ND	4.15	ND	3.40	ND	1.45	ND	3.38	ND	2.50	ND	3.07
Lead-214	ND	5.63	ND	4.82	ND	1.71	ND	4.57	ND	3.71	ND	4.11
Radium-226	ND	42.3	ND	63.4	ND	23.2	ND	34.2	ND	27.2	ND	30.7
Thorlum-234	ND	64.6	ND	76.5	ND	25.4	ND	51.7	ND	30.4	ND	60.6
Thallium-208	ND	2.98	ND	2.56	ND	0.985	ND	2.46	ND	1.90	ND	2.16
Uranium-235	ND	16.1	ND	14.8	ND	4.68	ND	12.9	ND	8.90	ND	12.0
Isotopic Uranium												
and Thorium												
Thorium-228					0.017U +/- 0.058	0.111					0.052 +/- 0.048	0.067
Thorium-230					0.058U +/- 0.058	0.126					0.091 +/- 0.10	0.235
Thorium-232					0.006U +/- 0.023	0.045					-0.004 +/- 0.016	0.038
Uranium-233/234	***				8.23 +/- 0.62	0.09)			7.13 +/- 0.50	0.105
Uranium-235					0.362 +/- 0.098	0.057					0.389 +/- 0.12	0.068
Uranium-238					8.52 +/- 0.64	0.079					6.18 +/- 0.45	0.098

Well Identifier	RD-54	₽B	RD-54	4C	RD-5	7	RD-5	57	RD-59	PA I	RD-59	9A
FLUTe Port					Z8		Z8			į		
Sample Type	Prima	ry	Prima	ıry	Prima	ry	Prima	ary	Prima	ıry	Prima	ary
Sample Date	02/26/	03	02/26/	03	01/29/	03	04/30/	/03	01/31/	03	05/15/	/03
Radionuclides (pCi/l)	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting												
Actinium-228	ND	7.99	ND	6.76	ND	7.20	ND	5.26	ND	5.39	ND	6.54
Bismuth-212	ND	12.6	ND	12.0	ND	12.2	ND	8.85	ND	10.1	ND	11 9
Bismuth-214	ND	3.84	ND	3.02	ND	3.35	ND	2.6	ND	2.60	ND	4.7
Cobalt-57	ND	1.41	ND	0.946	ND	1.16	ND	0.901	ND	0.979	ND	1.24
Cobalt-60	ND	2.28	ND	1.63	ND	2.12	ND	1.58	ND	1.30	ND	1.47
Cesium-134	ND	4.17	ND	1.88	ND	2.11	ND	3.63	ND	1.69	ND	2.26
Cesium-137	ND	1.80	ND	1.57	ND	1.59	ND	1.25	ND	1.39	ND	1.42
Potassium-40	ND	44.8	ND	20.0	ND	40.0	ND	30.9	ND ·	14.0	ND	30.6
Lead-210	ND	326	ND	234	ND	317	ND	301	ND	121	ND	395
Lead-212	ND	2.80	ND	2.24	ND	2.41	ND	1.86	ND	2.18	ND	2.32
Lead-214	ND	3.71	ND	2.83	ND	3.21	ND	2.48	ND	2.75	ND	2.98
Radium-226	ND	27.8	ND	22.9	ND	23.4	ND	18.1	ND	22.1	ND	24.2
Thorium-234	ND	55.7	ND	43.7	ND	43.7	ND	36.4	ND	42.4	ND	54.3
Thallium-208	ND	1.86	ND	1.54	ND	1.66	ND	1.28	ND	1.36	ND	1.55
Uranium-235	ND	10.8	ND	6.95	ND	8.96	ND	6.22	ND	8.15	ND	9.36
Isotopic Uranium												
and Thorium			<u></u>									
Thorium-228]	***					
Thorium-230	***											
Thorium-232				***								
Uranium-233/234				}	***		n-n					
Uranium-235	***							***			***	
Uranium-238									***			***

TABLE X
SUMMARY OF ANALYSES FOR GAMMA-EMITTING RADIONUCLIDES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	RD-59	A	RD-59	В	RD-59	OC	RD-6	3	RD-64	
FLUTe Port						1			Z6	
Sample Type	Split	:	Prima	ry	Prima	ıry İ	Prima	ry	Primary	
Sample Date	05/15/		01/31/	03	01/31/		02/05/	03	01/29/03	3
Radionuclides (pCi/l)	Result	MDA	Result	MDA	Result	MDA	Result	MDA	Result	MDA
Gamma-Emitting										·
Actinium-228	ND	10.7	, ND	9.42	ND	9.29	ND	9.39	ND	3.38
Bismuth-212	ND	33.0	ND	14.9	ND	16.4	ND	15.6	ND	6.65
Bismuth-214	ND	5.34	ND	4.08	ND	4.01	ND	4.39	ND	1.77
Cobalt-57	ND	8.92	ND	1.42	ND	1.47	ND	1.30	ND	0.668
Cobalt-60	ND	2.68	ND	1.99	ND	2.26	ND	2.61	ND	0.834
Cesium-134	ND	2.65	ND	2.25	ND	2.61	ND	2.97	ND	1.14
Cesium-137	ND	2.28	ND	1.98	ND	2.18	ND	2.04	ND	0.879
Potassium-40	ND	68.3	ND	42.6	ПИ	28.8	ND	51.2	ND	9.26
Lead-210			ND	449	ND	172	ND	302	ND	79.1
Lead-212	ND	3.15	ND	2.78	МD	3.10	ND	2.94	ND	1.44
Lead-214	ND	4.49	ИD	3,94	ND	4.30	ND	3.90	ND	1.83
Radium-226			ND	31.0	ND	32.7	ND	28.5	ND	14.6
Thorium-234	ND	424	ND	62.9	ND	51.5	ND	57.0	ND	28.5
Thallium-208	ND	2.73	ND	2.06	ND	2.28	ND	2.14	ND	0.920
Uranium-235	ND	9.40	ND	12.1	ДИ	12.7	ND	10.9	ND_	5.37
Isotopic Uranium	<u>-</u>									
and Thorium										
Thorium-228						***		***		
Thorium-230				***						
Thorium-232										
Uranium-233/234							***		2.43 +/- 0.20	0.044
Uranium-235					•			-	0.096 +/- 0.044	0.033
Uranium-238					***				2.04 +/- 0.18	0.040

Page 8 of 8

Detected concentrations are presented as the activity plus or minus the error.

Non-detectable results are presented as "ND" with the minimum detectable activity (MDA).

Analyses were performed by Eberline Services of Richmond, California.

Split sample analyses were performed by Severn Trent Laboratories of Richland, Washington.

Analytical results that are less than the procedure background value are shown as negative values.

Samples are filtered and acidified in the field.

(---) = Analysis not performed.

pCi/l = PicoCuries per liter.

Primary = Primary sample.

Split = Sample split.

U = Not detected; numerical value represents the Method Detection Limit

for that compound.

Z = FLUTe sample port number.

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Inorganic Con	pounds								
Well Identifier			SH-04	RS-08	HAR-14	HAR-15	HAR-07	HAR-16	HAR-17
FLUTe Sample	Port							Comp	
Sample Date			04/14/03	04/14/03	04/15/03	04/15/03	04/16/03	04/17/03	04/16/03
Sample Type			Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	MCL							
Antimony	ug/l	6	1.5 J	3.3	0.6 U	6.1	3.2		1.3 J
Arsenic	ug/l	50	1.3	3	0.29 U	3.3 U	0.31 U	***	1.2 U
Barium	ug/l	1000	340	76	34	21	26		76
Beryllium	ug/l	4	0.29 J	0.11 U	0.11 U	0.11 U	0.11 U		0.11 U
Cadmium	ug/l	5	0.17 J	0.14 J	0.047 J	0.14 J	0.03 U		0.088 J
Chromium	ug/l	50	1.9	0.14 U	0.14 U	0.81 U	0.14 U		1.2 U
Cobalt	ug/l	NA	0.52 J	4.8	0.42 J	0.61 J	0.39 J		1.2
Copper	ug/l	1000 SMCL	3.8	2.3	0.58 J	1.9 J	1.4 J		5.6
Cyanide	mg/l	0.15	0.0042 U	0.0042 U	0.0042 U				
Lead	ug/l	15 ECAL	0.13 U	0.13 U	0.13 U	0.41 J	0.13 U		0.31 J
Mercury	mg/l	0.002	0.000069 J	0.000063 U	0.000063 U	0.000063 U	0.000063 U		0.000063 U
Nickel	ug/l	100	3.3	15	3.8	4.1	3	***	· 7.4
Selenium	ug/l	50	1.7 J	2.5	1.6 J	0.91 J	0.99 J		3.2
Silver	ug/l	100 SMCL	0.082 J	0.054 J	0.054 U	0.054 U	0.054 U		0.054 U
Sulfide	mg/l	NA	0.017 U	0.04 J	0.019 J	0.15	0.017 U	0.017 U	0.017 U
Thallium	ug/l	2	0.21 J	0.19 J	0.092 U	0.092 U	0.092 U		0.14 J
Tin	mg/l	NA	0.0024 U		0.0024 U				
Vanadium	ug/l	50 ACAL	3.9	1	0.58 J	8.3	0.39 U		1
Zinc	ug/l	5000 SMCL	130	5 J	4.3 J	8.2 J	21		170
Laboratory			DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Pesticides and Herbicide	s								
Well Identifier			SH-04	RS-08	HAR-14	HAR-15	HAR-07	HAR-16	HAR-17
FLUTe Sample Port								Comp	
Sample Date			04/14/03	04/14/03	04/15/03	04/15/03	04/16/03	04/17/03	04/16/03
Sample Type			Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	MCL							
Aldrin	ug/l	0.002 ACAL	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U		0.012 U
alpha-BHC	ug/l	0.015 ACAL	0.017 U	0.017 U	0.017 U	0.017 U	0.017 U		0.017 U
beta-BHC	ug/l	0.025 ACAL	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U		0.036 U
delta-BHC	ug/l	NA	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U		0.015 U
Gamma-BHC (Lindane)	ug/l	0.2	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U		0.015 U
Chlordane	ug/l	0.1	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U		0.057 U
Chlorobenzilate	ug/l	NA	10 U	9.8 U	9.7 U	10 U	9.6 U	9.7 U	9.7 U
4,4'-DDD	ug/l	NA	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U		0.013 U
4,4'-DDE	ug/l	NA	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U		0.013 U
4,4'-DDT	ug/l	NA	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U		0.019 U
Diallate	ug/l	NA	10 U	9.8 U	9.7 U	10 U	9.6 U	9.7 U	9.7 U
Dieldrin	ug/l	0.002 ACAL	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U		0.012 U
Dinoseb	ug/l	7	0.79 UJ	0.78 UJ	0.77 UJ	0.8 UJ	0.75 U		0.75 UJ
Endosulfan-I	ug/l	NA	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U		0.011 U
Endosulfan-II	ug/l	NA	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U		0.037 U
Endosulfan sulfate	ug/l	NA	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U		0.025 U
Endrin	ug/l	2	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U		0.011 U
Endrin aldehyde	ug/l	NA	0.016 U	0.016 U	0.016 U	0.016 U	0.016 U		0.016 U
Heptachlor	ug/l	0.01	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U	***	0.015 U
Heptachlor epoxide	ug/l	0.01	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	·	0.012 U
Isodrin	ug/l	NA	20 U	20 U	19 U	20 U	19 U	19 U	19 U
Kepone	ug/l	NA	200 U	200 U	190 U	200 U	190 U	190 U	190 U
Methoxychlor	ug/l	30	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U		0.031 U
Aroclor 1016	ug/l	0.5(total)	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U		0.19 U
Aroclor 1221	ug/l	0.5(total)	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U		0.063 U
Aroclor 1232	ug/l	0.5(total)	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U		0.13 U

Haley & Aldrich, Inc.

See last page of Table XI for footnotes and explanations.

G:\Projects\26472 - ROC\Reports\M-442 Annual\Tables\M442.T11.ApplX.xls

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier			SH-04	RS-08	HAR-14	HAR-15	HAR-07	HAR-16	HAR-17
FLUTe Sample Port					***			Comp	
Sample Date			04/14/03	04/14/03	04/15/03	04/15/03	04/16/03	04/17/03	04/16/03
Sample Type			Primary						
Compound	Units	MCL							
Aroclor 1242	ug/l	0.5(total)	0.21 U		0.21 U				
Aroclor 1248	ug/l	0.5(total)	0.2 U		0.2 U				
Aroclor 1254	ug/l	0.5(total)	0.1 U		0.1 U				
Aroclor 1260	ug/l	0.5(total)	0.11 U		0.11 U				
Toxaphene	ug/l	3	1.3 U		1.3 U				
2,4-D	ug/l	70	0.25 UJ	0.25 UJ	0.25 UJ	0.26 UJ	0.24 U		0.24 UJ
2,4,5-T	ug/l	NA	0.13 UJ	0.13 UJ	0.13 UJ	0.14 UJ	0.13 U		0.13 UJ
2,4,5-TP (Silvex)	ug/l	50	0.15 U	0.14 U	0.14 U	0.15 U	0.14 U		0.14 U
2,3,7,8-TCDD TEQ	pg/l	0.03	2.7 U	3.9 U	2.7 U	6.3 U	10.2 U		12.6 U
Laboratory			DMA						

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Volatile Organic Compounds								
Well Identifier			SH-04	SH-04	RS-08	RS-08	HAR-14	HAR-14
FLUTe Sample Port								
Sample Date			04/14/03	04/14/03	04/14/03	04/14/03	04/15/03	04/15/03
Sample Type			Primary	Split	Primary	Split	Primary	Split
Sample Qualifier					pН			
Compound	Units	MCL						
1,1,1,2-Tetrachloroethane	ug/l	NA	0.54 U		0.27 U		0.27 U	
1,1,1-Trichloroethane	ug/l	200	4	4	0.3 U	0.2 U	1.1 J	
1,1,2,2-Tetrachloroethane	ug/l	1	0.58 U	0.4 U	0.29 U	0.4 U	0.29 U	
1,1,2-Trichloroethane	ug/l	5	0.6 U	0.2 U	0.3 U	0. 2 U	0.3 U	
1,1-Dichloroethane	ug/l	5	14	12	0.27 U	0.2 U	0.27 U	
1,1-Dichloroethene	ug/l	6	5 J	4.3	0.32 U	0.3 U	8.4	
1,2,3-Trichloropropane	ug/l	0.005 ACAL	0.0094 J		0.0019 U		0.0019 U	
1,2-Dibromo-3-chloropropane	ug/l	0.2	0.0018 U		0.0018 U		0.0018 U	
1,2-Dibromoethane	ug/l	0.05	0.0021 U		0.0021 U		0.0021 U	
1,2-Dichloroethane	ug/l	0.5	6.2	7.3	0.28 U	0.2 U	0.28 U	
1,2-Dichloropropane	ug/l	5	0.7 U	0.4 U	0.35 U	0.4 U	0.35 U	
1,4-Dioxane	ug/l	3 ACAL	29		0.07 U		160	94
2-Butanone	ug/l	NA	7.6 U	7 U	3.8 U	7 U	3.8 UJ	
2-Hexanone	ug/l	NA	5 U	0.7 U	2.5 U	0.7 U	2.5 UJ	
4-Methyl-2-pentanone	ug/l	120 ACAL	5 U	0.2 U	2.5 U	0.2 U	2.5 U	
Acetone	ug/l	NA	9 U	3 U	4.9 UJ	3 U	4.5 UJ	
Acetonitrile	ug/l	NA	5.6 U		5.6 U		5.6 U	
Acrolein	ug/l	NA	4.6 U		4.6 U		4.6 U	
Acrylonitrile	ug/l	NA	5.1 U		5.1 U		5.1 U	
Allyl Chloride	ug/l	NA	0.35 UJ		0.35 UJ		0.35 UJ	
Benzene	ug/l	1	0.56 U	0.1 U	0.28 U	0.1 U	0.28 U	
Bromodichloromethane	ug/l	NA	0.6 U	0.1 U	0.3 U	0.1 U	0.3 U	
Bromoform	ug/l	NA	0.5 U	0.4 U	0.25 U	0.4 U	0.25 U	
Bromomethane	ug/l	NA	0.4 U	0.5 U	0.2 U	0.5 U	0.2 U	
Carbon disulfide	ug/l	160 ACAL	0.66 U	0.2 U	0.33 U	0.2 U	0.33 U	
Carbon tetrachloride	ug/l	0.5	170	170	0.28 U	0.3 U	1.7 J	
Chlorobenzene	ug/l	70	0.72 U	0.1 U	0.36 U	0.1 U	0.36 U	
Chloroethane	ug/l	NA	0.66 U	0.3 U	0.33 U	0.3 U	0.33 U	
Chloroform	ug/l	NA	51	50	0.33 U	0.2 U	2.6	_
Chloromethane	ug/l	NA	0.28 U	0.4 U	0.14 U	0.4 U	0.14 U	
Chloroprene	ug/l	NA	0.18 U		0.18 U		0.18 U	
cis-1,2-Dichloroethene	ug/l	6	11	10	7.8	6.3	0.32 U	
cis-1,3-Dichloropropene	ug/l	0.5(total)	0.44 U	0.2 U	0.22 U	0.2 U	0.22 U	
Dibromochloromethane	ug/l	NA	0.56 U	0.2 U	0.28 U	0.2 U	0.28 U	
Dibromomethane	ug/l	NA:	0.72 U		0.36 U		0.36 U	
Dichlorodifluoromethane	ug/l	1000 ACAL	2.2 U		1.1 U		1.1 U	
Ethyl methacrylate	ug/l	NA	0.37 U		0.37 U		0.37 U	
Ethylbenzene	ug/l	300	0.5 U	0.2 U	0.25 U	0.2 U	0.25 U	
lodomethane	ug/l	NA	10		1 U		1 U	
Isobutanol	ug/l	NA	8.4 U		8.4 U		8.4 U	
m,p-Xylenes	ug/l	1750(total)	0.76 U	0.3 U	0.38 U	0.3 U	0.38 U	
Methacrylonitrile	ug/l	NA	0.32 U		0.32 U		0.32 U	
	-						– –	

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Volatile Organic Compounds								
Well Identifier			SH-04	SH-04	RS-08	RS-08	HAR-14	HAR-14
FLUTe Sample Port								
Sample Date			04/14/03	04/14/03	04/14/03	04/14/03	04/15/03	04/15/03
Sample Type			Primary	Split	Primary	Split	Primary	Split
Sample Qualifier					pН			
Compound	Units	MCL						
Methylene chloride	ug/l	5	1.3 U	3 U	0.33 U	3 U	0.33 U	*
o-Xylene	ug/l	1750(total)	0.48 U	0.2 U	0.24 U	0.2 U	0.24 U	***
Propionitrile	ug/l	NA	4.7 U		4.7 U		4.7 U	
Styrene	ug/l	100	0.32 U		0.16 U	· 	0.16 U	
Tetrachloroethene	ug/I	5	13	16	0.32 U	0.2 U	0.32 U	***
Toluene	ug/l	150	0.98 U	0.2 U	0.49 U	0.2 U	0.49 U	
trans-1,2-Dichloroethene	ug/l	10	0.54 U	0.2 ป	0.91 J	0.75	0.27 U	
trans-1,3-Dichloropropene	ug/l	0.5(total)	0.48 U	0.2 U	0.24 U	0.2 U	0.24 U	
Trans-1,4-Dichloro-2-butene	ug/l	NA	1.1 U		1.1 U		1.1 U	
Trichloroethene	ug/l	5	69	70	0.26 ป	0.2 U	4.6	
Trichlorofluoromethane	ug/l	150	0.68 U	0.1 U	0.34 U	0.1 U	0.34 U	
Vinyl acetate	ug/l	NA	0.7 U		0.35 U	****	0.35 U	
Vinyl chloride	ug/l	0.5	0.38 U	0.2 U	0.75 J	0.2 U	0.19 U	
Laboratory			DMA	AMA	DMA	AMA	DMA	DMA

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Volatile Organic Compounds				•,				
Well Identifier			HAR-14	HAR-15	HAR-15	HAR-15	HAR-07	HAR-07
FLUTe Sample Port								
Sample Date			12/03/03	04/15/03	12/03/03	12/03/03	04/16/03	04/16/03
Sample Type			Primary	Primary	Primary	Dup	Primary	Split
Sample Qualifier								
Compound	Units	MCL						
1,1,1,2-Tetrachloroethane	ug/l	NA		0.27 U			11 U	
1,1,1-Trichloroethane	ug/l	200	1.1	0.3 U	0.3 U	0.3 U	12 U	
1,1,2,2-Tetrachloroethane	ug/l	1	0.24 U	0.29 U	0.24 U	0.24 U	12 U	
1,1,2-Trichloroethane	ug/l	5	0.3 U	0.3 U	0.3 U	0.3 U	12 U	
1,1-Dichloroethane	ug/l	5	0.27 U	0.27 U	0.27 U	0.27 U	11 U	
1,1-Dichforoethene	ug/l	6	9.6	0.32 U	0.32 U	0.32 U	13 U	
1,2,3-Trichloropropane	ug/l	0.005 ACAL		0.0019 U			0.0019 U	
1,2-Dibromo-3-chloropropane	ug/l	0.2		0.0018 U			0.0018 U	
1,2-Dibromoethane	ug/l	0.05		0.0021 U			0.0021 U	
1,2-Dichloroethane	ug/l	0.5	0.28 U	0.28 U	0.28 U	0.28 U	11 U	
1,2-Dichloropropane	ug/l	5	0.35 U	0.35 U	0.35 U	0.35 U	14 U	
1,4-Dioxane	ug/l	3 ACAL		2.54 C			0.07 U	0.54 U
2-Butanone	ug/l	NA	3.8 U	3.8 U	3.8 U	3.8 U	150 U	-
2-Hexanone	ug/l	NA	2.6 U	2.5 U	2.6 U	2.6 U	100 U	
4-Methyl-2-pentanone	ug/l	120 ACAL	2.5 U	2.5 U	2.5 U	2.5 U	100 U	
Acetone	ug/l	NA	4.5 U	4.8 U	4.5 U	4.6 J	180 U	
Acetonitrile	ug/l	NA		5.6 U			220 U	
Acrolein	ug/l	NA		4.6 U		•••	4.6 U	
Acrylonitrile	ug/l	NA		5.1 U			5.1 U	
Allyl Chloride	ug/l	NA		0.35 UJ			14 UJ	
Benzene	ug/l	1	0.28 U	0.28 U	0.28 U	0.28 U	11 U	
Bromodichloromethane	ug/l	NA .	0.3 U	0.3 U	0.3 U	0.3 U	12 U	
Bromoform	ug/l	NA	0.32 U	0.25 U	0.32 U	0.32 U	10 U	
Bromomethane	ug/i	NA	0.34 U	0.2 U	0.34 U	0.34 U	8 U	
Carbon disulfide	ug/l	160 ACAL	0.48 U	0.33 U	0.48 U	0.48 U	13 U	
Carbon tetrachloride	ug/i	0.5	2.2	0.28 UJ	0.48 U	0.48 U	11 U	
Chlorobenzene	ug/i	70	0.36 U	0.36 U	0.36 U	0.26 U	14 U	
Chloroethane	ug/l	NA	0.33 U	0.33 U	0.33 U	0.33 U	13 U	
Chloroform	ug/l	NA	2.5	0.33 U	0.33 U	0.33 U	13 U	
Chloromethane	ug/l	NA	0.3 U	0.14 U	0.3 U	0.3 U	5.6 U	
Chloroprene	ug/l	NA	0.50	0.14 U			7.2 U	
cis-1,2-Dichloroethene	ug/l	6	0.32 U	0.32 U	0.32 U	0.32 U	2800	
cis-1,3-Dichloropropene	ug/i	0.5(total)	0.32 U	0.32 U	0.22 U	0.32 U	8.8 U	
Dibromochloromethane	ug/l	NA	0.22 U	0.22 U	0.28 U	0.22 U	11 U	
Dibromomethane	ug/l	NA	0.20	0.26 U	0.20 0	0.20 0	14 U	
Dichlorodifluoromethane	ug/l	1000 ACAL		1.1 U			44 U	
Ethyl methacrylate	ug/l	NA	_	0.37 U			9.6 U	
Ethylbenzene	ug/i	300	0.25 U	0.37 U	0.25 U	0.25 U	10 U	
Iodomethane	ug/l	NA NA	0.20	1 U	0.25 0	0.20 0	40 U	
Isobutanol	ug/i ug/i	NA NA		8.4 U			340 U	
m,p-Xylenes	ug/i ug/i	1750(total)	0.52 U	0.38 U	0.52 U	0.52 U	15 U	
Methacrylonitrile	ug/i ug/i	NA	1	0.36 U 0.32 U	U.UZ U	0.32 0	13 U	
Methyl methacrylate	ug/l	NA NA		0.32 U 0.43 U			17 U	

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Volatile Organic Compounds		· · · · · · · · · · · · · · · · · · ·						
Well Identifier			HAR-14	HAR-15	HAR-15	HAR-15	HAR-07	HAR-07
FLUTe Sample Port								
Sample Date			12/03/03	04/15/03	12/03/03	12/03/03	04/16/03	04/16/03
Sample Type			Primary	Primary	Primary	Dup	Primary	Split
Sample Qualifier								
Compound	Units	MCL						
Methylene chloride	ug/l	5	0.48 U	0.33 U	0.48 U	0.48 U	17 U	
o-Xylene	ug/l	1750(total)	0.24 U	0.24 U	0.24 U	0.24 U	9.6 U	
Propionitrile	ug/l	NA		4.7 U			190 U	
Styrene	ug/l	100		0.16 U			6.4 U	
Tetrachloroethene	ug/l	5	0.32 U	0.32 U	0.32 U	0.32 U	13 U	
Toluene	ug/l	150	0.36 U	0.49 U	0.36 U	0.36 U	20 U	****
trans-1,2-Dichloroethene	ug/l	10	0.27 U	0.27 U	0.27 U	0.27 U	99	
trans-1,3-Dichloropropene	ug/l	0.5(total)	0.24 ป	0.24 U	0.24 U	0.24 U	9.6 U	
Trans-1,4-Dichloro-2-butene	ug/l	NA		1.1 U			44 U	
Trichloroethene	ug/I	5	4.4	0.26 U	0.26 U	0.26 U	3300	
Trichlorofluoromethane	ug/l	150	0.34 U	0.34 U	0.34 U	0.34 U	14 U	
Vinyl acetate	ug/l	NA		0.35 U		****	14 U	
Vinyl chloride	ug/l	0.5	0.26 U	0.19 U	0.26 U	0.26 U	110 J	
Laboratory			DMA	DMA	DMA	DMA	DMA	DMA

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier			HAR-07	HAR-16	HAR-17	HAR-17	HAR-17
FLUTe Sample Port			nan-u/	Comp	DAR-17	HAR-17	HAR-II
Sample Date			11/21/03	04/17/03	04/16/03	04/16/03	11/21/03
Sample Date Sample Type			Primary	Primary	Primary		
Sample Type Sample Qualifier			Fillialy	•	-	Dup	Primary
Compound	Units	MCL	 				
1,1,1,2-Tetrachloroethane	ug/l	NA		14 U	0.27 U	0.27 U	
1,1,1-Trichloroethane	ug/l	200	15 U	15 U	0.27 U	0.27 U	0.3 U
1,1,2,2-Tetrachloroethane	ug/l	1	12 U	14 U	0.3 U	0.29 U	0.3 U 0.24 U
1,1,2,Trichloroethane	ug/l	5	15 U	15 U	0.29 U	0.29 U	0.24 U
1,1-Dichloroethane	ug/l	5	14 U	13 U	0.49 J	0.44 J	0.3 J
1,1-Dichloroethene	ug/l	6	16 U	14 U	0.49 J 1.6 J	0.44 J 1.9 J	
	ug/i ug/l	0.005 ACAL	1	0.0019 U	0.0019 U	1.9 J	2.1
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane	ug/l ug/l	0.005 ACAL	-	0.0019 U	0.0019 U		
1,2-Dibromoethane	ug/l	0.05		0.0018 U	0.0018 U		
•	-	0.03	14 U			0.0011	
1,2-Dichloroethane	ug/l	0.5 5	18 U	14 U 18 U	0.28 U 0.35 U	0.28 U 0.35 U	0.28 U
1,2-Dichloropropane	ug/l	3 ACAL		43	5.44		0.35 U
1,4-Dioxane 2-Butanone	ug/l	NA NA	190 U	43 190 U	3.8 U	3.8 U	2011
	ug/l	NA					3.8 U
2-Hexanone	ug/l	120 ACAL	130 U	120 U	2.5 U	2.5 U	2.6 U
4-Methyl-2-pentanone	ug/l		120 U	120 U	2.5 U	2.5 U	2.5 U
Acetone	ug/l	NA	220 U	220 U	4.6 J	4.5 U	4.5 U
Acetonitrile	ug/l	NA		280 U	5.6 U	5.6 U	
Acrolein	ug/l	NA		4.6 U	4.6 U	****	
Acrylonitrile	ug/l	NA		5.1 U	5.1 U		
Allyl Chloride Benzene	ug/l ug/l	NA 1	18 J	18 UJ 14 U	0.35 UJ 0.28 U	0.35 UJ 0.28 U	0.28 U
Bromodichloromethane	ug/l	NA .	15 U	14 U	0.26 U	0.26 U	0.28 U
Bromoform	-						
Bromoiorni Bromomethane	ug/l	NA	16 U	12 U	0.25 U	0.25 U	0.32 U
Carbon disulfide	ug/i	NA 160 A CAL	17 U	10 U	0.2 U	0.2 U	0.34 U
Carbon disulide Carbon tetrachloride	ug/l	160 ACAL	24 U	16 U	0.33 U	0.33 U	0.48 U
Carbon tetrachionde Chlorobenzene	ug/l	0.5 70	14 U	14 U 18 U	0.28 U	0.28 U 0.36 U	0.28 U 0.36 U
Chloroethane	ug/l	NA	18 U	16 U	0.36 U		
Chloroform	ug/l	NA NA	16 U	16 U	0.33 U 0.33 U	0.33 U 0.33 U	0.33 U
Chloromethane	ug/l	NA NA	15 U	7 U	0.33 U 0.14 U	0.33 U 0.14 U	0.33 U
Chloroprene	ug/l	NA NA	150	9 U	0.14 U	0.14 U	0.3 U
cis-1,2-Dichloroethene	ug/l ug/l	6	3200	250	20	18	24
cis-1,3-Dichloropropene	_	-	11 U	250 11 U			
Dibromochloromethane	ug/l ug/l	0.5(total) NA	14 U	11 U	0.22 U 0.28 U	0.22 U 0.28 U	0.22 U 0.28 U
Dibromomethane	ug/l	NA NA	'4'	18 U	0.26 U	0.26 U	
Dichlorodifluoromethane		1000 ACAL	1 -	55 U			
Ethyl methacrylate	ug/l ug/l	NA		9.7 U	1.1 U 0.37 U	1.1 U 0.37 U	
Ethylbenzene	ug/i ug/i	300	12 U	9.7 U 12 U	0.37 U 0.25 U	0.37 U 0.25 U	0.25 U
ctnylberizene lodomethane	ug/i ug/i	NA	1	50 U	0.25 U 1 U	1 U	
	-	NA NA		420 U	8.4 U	8.4 U	
Isobutanol	ug/l	1750(total)	26 U	420 U			0.5211
m,p-Xylenes Mothacovlopitrile	ug/l	NA	200	19 U	0.38 U	0.38 U	0.52 U
Methacrylonitrile Methyl methacrylate	ug/l ug/l	NA NA		22 U	0.32 U 0.43 U	0.32 U 0.43 U	

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Volatile Organic Compounds							
Well Identifier			HAR-07	HAR-16	HAR-17	HAR-17	HAR-17
FLUTe Sample Port				Comp			
Sample Date			11/21/03	04/17/03	04/16/03	04/16/03	11/21/03
Sample Type			Primary	Primary	Primary	Dup	Primary
Sample Qualifier							
Compound	Units	MCL					
Methylene chloride	ug/l	5	24 U	37 U	0.62 U	0.38 UJ	0.48 U
o-Xylene	ug/l	1750(total)	12 U	12 U	0.24 U	0.24 U	0.24 U
Propionitrile	ug/l	NA	***	240 U	4.7 U	4.7 U	
Styrene	ug/l	100		8 U	0.16 U	0.16 U	
Tetrachloroethene	ug/l	5	16 U	16 U	0.32 U	0.32 ป	0.32 U
Toluene	ug/l	150	18 U	24 U	0.49 U	0.49 U	0.36 U
trans-1,2-Dichloroethene	ug/l	10	120	14 U	1.7 J	1.1 J	1
trans-1,3-Dichloropropene	ug/l	0.5(total)	12 U	12 U	0.24 U	0.24 U	0.24 U
Trans-1,4-Dichloro-2-butene	ug/l	NA		55 U	1.1 U	1.1 U	
Trichloroethene	ug/l	5	5600	2300	93 J	83	100
Trichlorofluoromethane	ug/l	150	17 U	17 U	0.34 U	0.34 U	0.34 U
Vinyl acetate	ug/l	NA		18 U	0.35 U	0.35 U	
Vinyl chloride	ug/l	0.5	54	9.5 U	. 0.19 U	0.19 U	0.26 U
Laboratory			DMA	DMA	DMA	DMA	DMA

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compour	nds		0.1.6.		114	
Well Identifier			SH-04	RS-08	HAR-14	HAR-15
FLUTe Sample Port						
Sample Date			04/14/03	04/14/03	04/15/03	04/15/03
Sample Type			Primary	Primary	Primary	Primary
Sample Qualifier						
Compound	Units	MCL	4011			40.11
1,2,4,5-Tetrachlorobenzene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
1,2,4-Trichlorobenzene	ug/l	70	3.4 U	3.4 U	3.3 U	3.4 U
1,2-Dichlorobenzene	ug/l	600	0.64 U	0.32 U	0.32 U	0.32 U
1,3,5-Trinitrobenzene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
1,3-Dichlorobenzene	ug/i	600 ACAL	0.7 U	0.35 U	0.35 U	0.35 U
1,3-Dinitrobenzene	ug/l	NA	20 U	20 U	19 U	20 U
1,4-Dichlorobenzene	ug/i	5	0.74 U	0.37 U	0.37 U	0.37 U
1,4-Naphthoquinone	ug/l	NA	20 U	20 U	19 U	20 U
1,4-Phenylenediamine	ug/l	NA	50 U	49 U	49 U	50 U
1-Naphthylamine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
2,3,4,6-Tetrachlorophenol	ug/l	NA	10 U	9.8 U	9.7 U	10 U
2,4,5-Trichlorophenol	ug/l	NA	4 U	3.9 U	3.8 U	4 U
2,4,6-Trichlorophenol	ug/l	NA	4.5 U	4.4 U	4.4 U	4.5 U
2,4-Dichlorophenol	ug/l	NA	4.8 U	4.7 U	4.6 U	4.8 U
2,4-Dimethylphenol	ug/l	100 ACAL	6 U	5.9 U	5.8 U	6 U
2,4-Dinitrophenol	ug/l	NA	1.3 U	1.3 U	1.2 U	1.3 U
2,4-Dinitrotoluene	ug/l	NA	1.3 U	1.3 U	1.2 U	1.3 U
2,6-Dichlorophenol	ug/l	NA	10 U	9.8 U	9.7 U	10 U
2,6-Dinitrotoluene	ug/l	NA	1.9 U	1.9 U	1.9 U	1.9 U
2-Acetylaminofluorene	ug/l	NA	20 U	20 U	19 U	20 U
2-Chloronaphthalene	ug/l	NA	3 U	3 U	2.9 U	3 U
2-Chlorophenol	ug/l	NA	4.9 U	4.8 U	4.8 U	4.9 U
2-Methylnaphthalene	ug/l	NA	3.5 U	3.4 U	3.4 U	3.5 U
2-Methylphenol	ug/l	NA	5.3 U	5.2 U	5.1 U	5.3 U
2-Naphthylamine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
2-Nitroaniline	ug/l	NA	2.6 U	2.6 U	2.6 U	2.6 U
2-Nitrophenol	ug/l	NA	4.8 U	4.7 U	4.6 U	4.8 U
2-Picoline	ug/l	NA	10 U	9.8 U	9.7 U	10 U
3,3'-Dichlorobenzidine	ug/i	NA	5 U	4.9 U	4.9 U	5 U
3,3'-Dimethylbenzidine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
3-Methylcholanthrene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
3-Methylphenol	ug/l	NA	10 U	9.8 U	9.7 U	10 U
3-Nitroaniline	ug/l	NA	4 U	3.9 U	3.8 U	4 U
4-Aminobiphenyl	ug/l	NA	20 U	20 U	19 U	20 U
4-Bromophenyl phenyl ether	ug/l	NA	2.1 U	2 U	2 U	2.1 U
4-Chloro-3-methylphenol	ug/l	NA	4 U	4 U	3.9 U	4 U
4-Chloroaniline	ug/l	NA	2.9 U	2.8 U	2.8 U	2.9 U
4-Chlorophenyl phenyl ether	ug/l	NA	2.6 U	2.6 U	2.6 U	2.6 U
4-methylphenol	ug/l	NA	4.5 U	4.4 U	4.4 U	4.5 U
4-Nitroaniline	ug/l	NA	5 U	4.9 U	4.8 U	5 U
4-Nitrophenol	ug/i	NA	1.7 U	1.7 U	1.6 U	1.7 U
4-Nitroquinoline-1-oxide	ug/l	NA	50 U	49 U	49 U	50 U

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compound	s					
Well Identifier			SH-04	RS-08	HAR-14	HAR-15
FLUTe Sample Port						
Sample Date			04/14/03	04/14/03	04/15/03	04/15/03
Sample Type			Primary	Primary	Primary	Primary
Sample Qualifier						
Compound	Units	MCL				
4,6-Dinitro-2-methylphenol	ug/l	NA	2.2 U	2.2 U	2.1 U	2.2 U
5-Nitro-o-toluidine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
7,12-Dimethylbenz(a)anthracene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Acenaphthene	ug/l	NA	2.6 U	2.6 U	2.6 U	2.6 U
Acenaphthylene	ug/l	NA	2.5 U	2.4 U	2.4 U	2.5 ∪
Acetophenone	ug/i	NA	10 U	9.8 U	9.7 U	10 U
Aniline	ug/l	NA	5 U	49U	4.8 U	5 U
Anthracene	ug/l	NA	0.8 ป	0.78 U	0.78 U	U 8.0
Aramite	ug/l	NA	200 U	200 U	190 U	200 U
Benzo (b+k) fluoranthene (total)	ug/l	NA	1.8 U	1.7 U	1.7 U	1.8 U
Benzo(a)anthracene	ug/l	NA	0.53 U	0.52 U	0.51 U	0.53 U
Benzo(a)pyrene	ug/l	0.2	0.97 U	0.95 U	0.94 U	0.97 U
Benzo(ghi)perylene	ug/l	NA	0.98 U	0.96 U	0.95 U	0.98 U
Benzyl Alcohol	ug/i	NA	3.1 U	3.1 U	3 U	3.1 U
Bis(2-Chloroethoxy)methane	ug/ī	NA	3.6 U	36U	3.5 U	3.6 U
Bis(2-chloroethyl)ether	ug/l	NA	3.6 U	3.5 U	3.5 U	3.6 U
Bis(2-chloroisopropyl)ether	ug/l	NA	4 U	4 U	3.9 U	4 U
Bis(2-Ethylhexyl) phthalate	ug/l	4	3.6 U	3.6 U	3.5 U	3.6 U
Butyl benzyl phthalate	ug/l	NA	0.91 U	0.89 U	0.88 U	0.91 U
Chrysene	ug/l	NA	0.96 U	0.94 U	0.93 U	0.96 U
Di-n-butyl phthalate	ug/l	NA	0.92 U	0.9 U	0.89 U	0.92 U
Di-n-octyl phthalate	uğ/l	NA	0.93 U	0.91 U	0.9 U	0.93 U
Dibenz(a,h)anthracene	ug/l	NA	0.89 ∪	0.87 U	0.86 U	0.89 U
Dibenzofuran	ug/l	NA	2.5 U	2.5 U	2.5 U	2.5 U
Diethyl phthalate	ug/l	NA	1.2 U	1.2 U	1.2 U	1.2 U
Dimethoate	ug/l	1 ACAL	0.33 U	0.34 U	0.32 U	0.34 U
Dimethyl phthalate	ug/l	NA	1.9 U	1.8 U	1.8 U	1.9 U
Diphenylamine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Disulfoton	ug/l	NA	0.15 U	0.15 U	0.14 U	0.15 U
Ethyl methanesulfonate	ug/l	NA	20 U	20 U	19 U	20 U
Famphur	ug/l	NA	200 U	200 U	190 U	200 U
Fluoranthene	ug/l	NA	0.78 U	0.76 U	0.76 U	0.78 U
Fluorene	ug/l	NA	2.6 U	2.6 U	2.6 U	2.6 U
Hexachlorobenzene	ug/l	1	1.7 U	1.7 U	1.7 U	1.7 U
Hexachlorobutadiene	ug/l	NA	3.1 U	3.1 U	3 U	3.1 U
Hexachlorocyclopentadiene	ug/l	50	1.4 U	1.3 UJ	1.3 UJ	1.4 UJ
Hexachloroethane	ug/l	NA	2.4 U	2.3 U	2.3 U	2.4 U
Hexachlorophene	ug/l	NA	200 U	200 U	190 U	200 U
Hexachloropropene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Indeno(1,2,3-cd)pyrene	ug/l	NA	0.78 U	0.76 U	0.76 U	0.78 U
Isophorone	ug/l	NA	3.2 U	3.2 U	3.1 U	3.2 U
Isosafrole	ug/l	NA	10 U	9.8 U	9.7 U	10 U

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compound	s					
Well Identifier			SH-04	RS-08	HAR-14	HAR-15
FLUTe Sample Port						
Sample Date			04/14/03	04/14/03	04/15/03	04/15/03
Sample Type			Primary	Primary	Primary	Primary
Sample Qualifier			′			
Compound	Units	MCL				
Methapyrilene	ug/l	NA	100 U	98 U	97 U	100 U
Methyl methanesulfonate	ug/l	NA	10 U	9.8 U	9.7 U	10 U
N-Nitrosodi-n-butylamine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
N-Nitrosodi-n-propylamine	ug/l	NA	3.7 U	3.6 U	3.6 U	3.7 U
N-Nitrosodiethylamine	ug/l	NA	20 U	20 U	19 U	20 U
N-Nitrosodimethylamine	ng/l	10 ACAL	280	22	1300 J	0.5 U
N-Nitrosodiphenylamine	ug/l	NA	2.8 ∪	2.7 U	2.7 U	2.8 U
N-Nitrosomethylethylamine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
N-Nitrosomorpholine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
N-Nitrosopiperidine	ug/l	NA	20 U	20 U	19 U	20 U
N-Nitrosopyrrolidine	ug/l	NA	40 U	39 U	39 U	40 U
Naphthalene	ug/l	170 ACAL	3.8 U	3.7 U	3.7 U	3.8 U
Nitrobenzene	ug/l	NA	3.3 U	3.2 U	3.2 U	3.3 U
O,O,O-Triethylphosphorothioate	ug/I	NA	10 U	9.8 U	9.7 U	10 U
o-Toluidine	ug/l	NA	10 U	9.8 U	9.7 U	10 U
p-Dimethylaminoazobenzene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Parathion-ethyl	ug/l	40 ACAL	0.15 U	0.16 U	0.14 U	0.15 U
Parathion-methyl	ug/l	2 ACAL	0.13 U	0.13 U	0.12 U	0.13 U
Pentachlorobenzene	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Pentachloroethane	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Pentachloronitrobenzene	ug/i	20 ACAL	20 U	20 U	19 U	20 U
Pentachlorophenol	ug/l	1	0.165 U	0.165 U	0.165 U	0.165 U
Phenacetin	ug/l	NA	20 U	20 U	19 U	20 U
Phenanthrene	ug/l	NA	1.4 U	1.4 U	1.4 U	1.4 U
Phenol	ug/l	4200 ACAL	4 U	3.9 U	3.9 U	4 U
a,a-Dimethylphenethylamine	ug/I	NA	10 U	9.8 U	9.7 U	10 U
Phorate	ug/I	NA	0.14 U	0.14 U	0.13 U	0.14 U
Pronamide	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Pyrene	ug/l	NA	0.72 U	0.71 U	0.7 U	0.72 U
Pyridine	ug/l	NA	2.1 U	2 U	2 U	2.1 U
Safrole	ug/l	NA	10 U	9.8 U	9.7 U	10 U
Sulfotepp	ug/l	NA	0.46 U	0.47 U	0.44 U	0.47 U
Thionazin	ug/l	NA	20 UJ	20 UJ	19 U	20 UJ
Laboratory			DMA	DMA	DMA	DMA

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compou	nds					· · · · · · · · · · · · · · · · · · ·
Well Identifier			HAR-07	HAR-07	HAR-07	HAR-16
FLUTe Sample Port						Comp
Sample Date			04/16/03	04/16/03	04/16/03	04/17/03
Sample Type			Primary	Dup	Split	Primary
Sample Qualifier						
Compound	Units	MCL				
1,2,4,5-Tetrachlorobenzene	ug/l	NA	9.6 U			9.7 U
1,2,4-Trichlorobenzene	ug/l	70	3.3 ∪			3.3 U
1,2-Dichlorobenzene	ug/l	600	3.3 U			3.3 U
1,3,5-Trinitrobenzene	ug/l	NA	9.6 U		***	9.7 U
1,3-Dichlorobenzene	ug/l	600 ACAL	3 U			3 U
1,3-Dinitrobenzene	ug/l	NA	19 U			19 U
1,4-Dichlorobenzene	ug/l	5	3.1 U			3.1 U
1,4-Naphthoquinone	ug/l	NA	19 U			19 U
1,4-Phenylenediamine	ug/l	NA	48 U			49 U
1-Naphthylamine	ug/l	NA	9.6 U			9.7 U
2,3,4,6-Tetrachlorophenol	ug/l	NA	9.6 U			9.7 U
2,4,5-Trichlorophenol	ug/l	NA	3.8 U			3.8 U
2,4,6-Trichlorophenol	ug/i	NA	4.3 U			4.4 U
2,4-Dichlorophenol	ug/i	NA	4.6 U			4.6 U
2,4-Dimethylphenol	ug/l	100 ACAL	5.8 U			5.8 U
2,4-Dinitrophenol	ug/i	NA	1.2 U			1.2 U
2,4-Dinitrotoluene	ug/l	NA	1.2 U			1.2 U
2,6-Dichlorophenol	ug/l	NA	9.6 U			9.7 U
2,6-Dinitrotoluene	ug/l	NA	1.8 U			1.9 U
2-Acetylaminofluorene	ug/l	NA	19 U			19 U
2-Chloronaphthalene	ug/l	NA	2.9 ∪			2.9 U
2-Chlorophenol	ug/l	NA	4.7 U			4.8 U
2-Methylnaphthalene	ug/l	NA	3.4 U			3.4 U
2-Methylphenol	ug/l	NA	5.1 U			5.1 U
2-Naphthylamine	ug/l	NA	9.6 U			9.7 U
2-Nitroaniline	ug/l	NA	2.5 U			2.6 U
2-Nitrophenol	ug/l	NA	4.6 U			4.6 U
2-Picoline	ug/l	NA	9.6 ∪			9.7 U
3,3'-Dichlorobenzidine	ug/l	NA	4.8 U			4.9 U
3,3'-Dimethylbenzidine	ug/l	NA	9.6 U			9.7 U
3-Methylcholanthrene	ug/l	NA	9.6 U			9.7 U
3-Methylphenol	ug/l	NA	9.6 U			9.7 U
3-Nitroaniline	ug/l	NA	3.8 U			3.8 U
4-Aminobiphenyl	ug/l	NA	19 U			19 U
4-Bromophenyl phenyl ether	ug/l	NA	2 U			2 U
4-Chloro-3-methylphenol	ug/l	NA	3.9 U		aller dur de	3.9 U
4-Chloroaniline	ug/l	NA	2.8 U		***	2.8 U
4-Chlorophenyl phenyl ether	ug/l	NA	2.5 U			2.6 U
4-methylphenol	ug/l	NA	4.3 U			4.4 U
4-Nitroaniline	ug/l	NA	4.8 U			4.8 U
4-Nitrophenol	ug/l	NA	1.6 U			1.6 U
4-Nitroquinoline-1-oxide	ug/l	NA	48 U			49 U

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compound	s					
Well Identifier			HAR-07	HAR-07	HAR-07	HAR-16
FLUTe Sample Port						Comp
Sample Date			04/16/03	04/16/03	04/16/03	04/17/03
Sample Type			Primary	Dup	Split	Primary
Sample Qualifier						
Compound	Units	MCL				
4,6-Dinitro-2-methylphenol	ug/l	NA	2.1 U			2.1 U
5-Nitro-o-toluidine	ug/l	NA	9.6 U	***		9.7 U
7,12-Dimethylbenz(a)anthracene	ug/l	NA	9.6 U		~~~	9.7 U
Acenaphthene	ug/l	NA	2.5 U			2.6 U
Acenaphthylene	ug/l	NA	2.4 U			2.4 U
Acetophenone	ug/l	NA	9.6 U			9.7 U
Aniline	ug/l	NA	4.8 U			4.8 U
Anthracene	ug/l	NA	0.77 U			0.78 U
Aramite	ug/l	NA	190 U			190 U
Benzo (b+k) fluoranthene (total)	ug/i	NA	1.7 UJ			1.7 U
Benzo(a)anthracene	ug/l	NA	0.51 U	***		0.51 U
Benzo(a)pyrene	ug/l	0.2	0.93 U			0.94 U
Benzo(ghi)perylene	ug/l	NA	0.94 U			0.95 U
Benzyl Alcohol	ug/l	NA	3 U			3 U
Bis(2-Chloroethoxy)methane	ug/l	NA	3.5 U			3.5 U
Bis(2-chloroethyl)ether	ug/l	NA	3.5 UJ			3.5 U
Bis(2-chloroisopropyl)ether	ug/l	NA	3.9 U	-	***	3.9 U
Bis(2-Ethylhexyl) phthalate	ug/l	4	3.5 U			3.5 U
Butyl benzyl phthalate	ug/l	NA	0.88 U	*****	-	0.88 U
Chrysene	ug/l	NA	0.92 U		***	0.93 U
Di-n-butyl phthalate	ug/l	NA	0.88 U		***	0.89 U
Di-n-octyl phthalate	ug/l	NA	0.89 UJ			0.9 U
Dibenz(a,h)anthracene	ug/l	NA	0.86 U			0.86 U
Dibenzofuran	ug/l	NA	2.4 U			2.5 U
Diethyl phthalate	ug/l	NA	1.2 U			1.2 U
Dimethoate	ug/l	1 ACAL	0.32 U		***	19 U
Dimethyl phthalate	ug/l	NA	1.8 U	***		1.8 U
Diphenylamine	ug/l	NA	9.6 U			9.7 U
Disulfoton	ug/l	NA	0.14 U		T==	
Ethyl methanesulfonate	ug/l	NA	19 U		****	19 U
Famphur	ug/l	NA	190 U	***		190 U
Fluoranthene	ug/l	NA	0.75 U		***	0.76 U
Fluorene	ug/l	NA	2.5 U		***	2.6 U
Hexachlorobenzene	ug/l	1	1.7 U			1.7 U
Hexachlorobutadiene	ug/l	NA	3 U	All suit on		3 U
Hexachlorocyclopentadiene	ug/l	50	1.3 UJ			1.3 U
Hexachloroethane	ug/l	NA	2.3 U			2.3 U
Hexachlorophene	ug/l	NA	190 U	***		190 U
Hexachloropropene	ug/l	NA	9.6 U		***	9.7 U
Indeno(1,2,3-cd)pyrene	ug/l	NA	0.75 U			0.76 U
Isophorone	ug/l	NA	3.1 U			3.1 U
Isosafrole	ug/l	NA	9.6 U			9.7 U

Haley & Aldrich, Inc.

See last page of Table XI for footnotes and explanations.

G:\Projects\26472 - ROC\Reports\M-442 Annual\Tables\M442.T11.ApplX.xls

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compound			· · · · · · · · · · · · · · · · · · ·			
Well Identifier			HAR-07	HAR-07	HAR-07	HAR-16
FLUTe Sample Port						Comp
Sample Date			04/16/03	04/16/03	04/16/03	04/17/03
Sample Type			Primary	Dup	Split	Primary
Sample Qualifier					*****	
Compound	Units	MCL				
Methapyrilene	ug/l	NA	96 U			97 U
Methyl methanesulfonate	ug/l	NA	9.6 U			9.7 U
N-Nitrosodi-n-butylamine	ug/i	NA	9.6 U	***		9.7 U
N-Nitrosodi-n-propylamine	ug/l	NA	3.5 U			3.6 U
N-Nitrosodiethylamine	ug/l	NA	19 U			19 U
N-Nitrosodimethylamine	ng/l	10 ACAL	55	51	54	18000 J
N-Nitrosodiphenylamine	ug/l	NA	2.6 U			2.7 U
N-Nitrosomethylethylamine	ug/l	NA	9.6 U			9.7 U
N-Nitrosomorpholine	ug/l	NA	9.6 U			9.7 U
N-Nitrosopiperidine	ug/l	NA	19 U			19 U
N-Nitrosopyrrolidine	ug/l	NA	38 U			39 U
Naphthalene	ug/l	170 ACAL	3.7 U			3.7 U
Nitrobenzene	ug/l	NA	3.2 U			3.2 U
O,O,O-Triethylphosphorothioate	ug/l	NA	9.6 U			9.7 U
o-Toluidine	ug/l	NA	9.6 U			9.7 U
p-Dimethylaminoazobenzene	ug/l	NA	9.6 U			9.7 U
Parathion-ethyl	ug/l	40 ACAL	0.14 U			
Parathion-methyl	ug/l	2 ACAL	0.12 U			
Pentachlorobenzene	ug/i	NA	9.6 U			9.7 U
Pentachloroethane	ug/l	NA	9.6 U			9.7 U
Pentachloronitrobenzene	ug/l	20 ACAL	19 U			19 U
Pentachlorophenol	ug/I	1	0.165 U			2 U
Phenacetin	ug/i	NA	19 U			19 U
Phenanthrene	ug/i	NA	1.4 U			1.4 U
Phenol	ug/l	4200 ACAL	3.8 U			3.9 U
a,a-Dimethylphenethylamine	ug/l	NA	9.6 U		***	9.7 U
Phorate	ug/l	NA	0.13 U		***	
Pronamide	ug/l	NA	9.6 U		****	9.7 U
Pyrene	ug/l	NA	0.69 U			0.7 U
Pyridine	ug/i	NA	2 U			2 U
Safrole	ug/l	NA	9.6 U		***	9.7 U
Sulfotepp	ug/l	NA	0.44 U			
Thionazin	ug/l	NA	19 UJ			19 U
Laboratory			DMA	Weck	DMA	DMA

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compou	nds			
Well Identifier			HAR-17	HAR-17
FLUTe Sample Port				
Sample Date			04/16/03	04/16/03
Sample Type			Primary	Dup
Sample Qualifier				
Compound	Units	MCL		
1,2,4,5-Tetrachlorobenzene	ug/l	NA	9.7 U	
1,2,4-Trichlorobenzene	ug/l	70	3.3 ∪	
1,2-Dichlorobenzene	ug/i	600	0.32 U	0.32 U
1,3,5-Trinitrobenzene	ug/l	NA	9.7 U	
1,3-Dichlorobenzene	ug/l	600 ACAL	0.35 U	0.35 U
1,3-Dinitrobenzene	ug/l	NA	19 U	
1,4-Dichlorobenzene	ug/l	5	0.37 U	0.37 U
1,4-Naphthoquinone	ug/l	NA	19 U	
1,4-Phenylenediamine	ug/l	NA	49 U	
1-Naphthylamine	ug/l	NA	9.7 U	•
2,3,4,6-Tetrachlorophenol	ug/l	NA	9.7 U	
2,4,5-Trichlorophenol	ug/l	NA	3.8 U	
2,4,6-Trichlorophenol	ug/l	NA	4.4 U	
2,4-Dichlorophenol	ug/l	NA	4.6 U	
2,4-Dimethylphenol	ug/l	100 ACAL	5.8 U	
2,4-Dinitrophenol	ug/l	NA	1.2 U	
2,4-Dinitrotoluene	ug/l	NA	1.2 U	
2,6-Dichlorophenol	ug/l	NA	9.7 U	
2,6-Dinitrotoluene	ug/l	NA	1.9 U	
2-Acetylaminofluorene	ug/l	NA	19 U	
2-Chloronaphthalene	ug/l	NA	2.9 U	
2-Chlorophenol	ug/i	NA	4.8 U	
2-Methylnaphthalene	ug/l	NA	3.4 U	
2-Methylphenol	ug/l	NA	5.1 U	
2-Naphthylamine	ug/l	NA	9.7 U	
2-Nitroaniline	ug/l	NA	2.6 U	
2-Nitrophenol	ug/l	NA	4.6 U	
2-Picoline	ug/l	NA	9.7 U	
3,3'-Dichlorobenzidine	ug/l	NA	4.9 U	
3,3'-Dimethylbenzidine	ug/l	NA	9.7 U	
3-Methylcholanthrene	ug/l	NA	9.7 U	
3-Methylphenol	ug/l	NA	9.7 U	
3-Nitroaniline	ug/l	NA	3.8 U	
4-Aminobiphenyl	ug/l	NA	19 U	
4-Bromophenyl phenyl ether	_	NA	2 U	
4-Chloro-3-methylphenol	ug/l ug/i	NA NA	3.9 U	
4-Chloroaniline		NA NA	2.8 U	
4-Chlorophenyl phenyl ether	ug/i	NA	2.6 U	
4-methylphenol	ug/l	NA NA	E .	
4-Nitroaniline	ug/l	NA NA	4.4 U 4.8 U	
4-Nitrophenol	ug/l		B	
•	ug/l	NA NA	1.6 U	
4-Nitroquinoline-1-oxide	ug/l	NA	49 U	

TABLE XI SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compound Well Identifier			HAR-17	HAR-17
FLUTe Sample Port			17717	11/41/-11
Sample Date			04/16/03	04/16/03
Sample Date Sample Type			Primary	Dup
* **			Filliary	*
Sample Qualifier	Units	MCL	 	
Compound 4,6-Dinitro-2-methylphenol		NA	2.1 U	
· · · · · · · · · · · · · · · · · · ·	ug/l			
5-Nitro-o-toluidine	ug/i	NA	9.7 U	
7,12-Dimethylbenz(a)anthracene	ug/l	NA	9.7 U	
Acenaphthene	ug/l	NA	2.6 U	
Acenaphthylene	ug/l	NA	2.4 U	
Acetophenone	ug/l	NA	9.7 U	
Aniline	ug/l	NA	4.8 U	
Anthracene	ug/l	NA	0.78 U	
Aramite	ug/l	NA	190 U	
Benzo (b+k) fluoranthene (total)	ug/i	NA	1.7 UJ	
Benzo(a)anthracene	ug/l	NA	0.51 U	
Benzo(a)pyrene	ug/l	0.2	0.94 U	
Benzo(ghi)perylene	ug/i	NA	0.95 U	
Benzyl Alcohol	ug/l	NA	3 U	
Bis(2-Chloroethoxy)methane	ug/l	NA	3.5 U	
Bis(2-chloroethyl)ether	ug/l	NA	3.5 UJ	
Bis(2-chloroisopropyl)ether	ug/l	NA	3.9 U	
Bis(2-Ethylhexyl) phthalate	ug/l	4	3.5 UJ	
Butyl benzyl phthalate	ug/l	NA	0.88 U	
Chrysene	ug/l	NA	0.93 U	
Di-n-butyl phthalate	ug/l	NA	0.89 U	
Di-n-octyl phthalate	ug/l	NA	0.9 UJ	
Dibenz(a,h)anthracene	ug/l	NA	0.86 U	
Dibenzofuran	ug/l	NA	2.5 U	
Diethyl phthalate	ug/l	NA	1.2 U	
Dimethoate	ug/l	1 ACAL	0.32 U	
Dimethyl phthalate	ug/l	NA	1.8 U	
Diphenylamine	ug/l	NA	9.7 U	
Disulfoton	ug/l	NA	0.14 U	
Ethyl methanesulfonate	ug/l	NA	19 U	
Famphur	ug/l	NA	190 U	
Fluoranthene	ug/l	NA	0.76 U	***
Fluorene	ug/l	NA	2.6 U	***
Hexachlorobenzene	ug/l	1	1.7 U	
Hexachlorobutadiene	ug/l	NA	3 U	
-lexachlorocyclopentadiene	ug/l	50	1.3 UJ	
Hexachloroethane	ug/l	NA	2.3 U	
Hexachlorophene	ug/l	NA	190 U	
Hexachloropropene	ug/l	NA	9.7 U	
ndeno(1,2,3-cd)pyrene	ug/l	NA	0.76 U	
sophorone	ug/l	NA	3.1 U	
Isosafrole	ug/l	NA	9.7 U	

TABLE XI
SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Semi-Volatile Organic Compound	ls			
Well Identifier			HAR-17	HAR-17
FLUTe Sample Port				
Sample Date			04/16/03	04/16/03
Sample Type			Primary	Dup
Sample Qualifier				
Compound	Units	MCL		
Methapyrilene	ug/l	NA	97 U	
Methyl methanesulfonate	ug/l	NA	9.7 U	***
N-Nitrosodi-n-butylamine	ug/l	NA	9.7 U	*****
N-Nitrosodi-n-propylamine	ug/l	NA	3.6 U	
N-Nitrosodiethylamine	ug/i	NA	19 U	
N-Nitrosodimethylamine	ng/l	10 ACAL	33	***
N-Nitrosodiphenylamine	ug/l	NA	2.7 U	
N-Nitrosomethylethylamine	ug/l	NA	9.7 U	
N-Nitrosomorpholine	ug/l	NA	9.7 U	***
N-Nitrosopiperidine	ug/l	NA	19 U	·
N-Nitrosopyrrolidine	ug/l	NA	39 U	
Naphthalene	ug/l	170 ACAL	3.7 U	
Nitrobenzene	ug/l	NA	3.2 U	
O,O,O-Triethylphosphorothioate	ug/l	NA	9.7 U	***
o-Toluidine	ug/l	NA	9.7 U	
p-Dimethylaminoazobenzene	ug/l	NA	9.7 U	
Parathion-ethyl	ug/l	40 ACAL	0.14 U	
Parathion-methyl	ug/l	2 ACAL	0.12 U	
Pentachlorobenzene	ug/i	NA	9.7 U	
Pentachloroethane	ug/l	NA	9.7 U	
Pentachloronitrobenzene	ug/l	20 ACAL	19 U	
Pentachlorophenol	ug/l	1	0.165 U	
Phenacetin	ug/I	NA	19 U	
Phenanthrene	ug/l	NA	1.4 U	
Phenol	ug/l	4200 ACAL	3.9 U	
a,a-Dimethylphenethylamine	ug/l	NA	9.7 U	
Phorate	ug/l	NA	0.13 U	
Pronamide .	ug/l	NA	9.7 U	
Pyrene	ug/l	NA	0.7 U	
Pyridine	ug/l	NA	2 U	
Safrole	ug/l	NA	9.7 U	
Sulfotepp	ug/l	NA	0.44 U	
Thionazin	ug/l	NA	19 U	
Laboratory			DMA	DMA

TABLE XI FOOTNOTES AND EXPLANATIONS

		•
AMA	=	American Analytics of Chatsworth, California.
DMA	=	Del Mar Analytical of Irvine, California.
Weck	=	Weck Laboratories of City of Industry, California.
()	=	Analysis not performed.
Primary	=	Primary sample.
Dup	=	Duplicate sample.
Split	=	Split sample.
mg/l	=	Milligrams per liter.
ug/l	=	Micrograms per liter.
ng/l	=	Nanograms per liter.
pg/l	=	Picograms per liter.
MCL	=	Maximum Contaminant Level, California primary drinking water standard
		(California Department of Health Services, 2003.
		http://www.dhs.ca.gov/ps/ddwem/publications/regulations/MCLrevisions6-12-03.pdf).
SMCL	=	Secondary drinking water MCL.
ECAL	=	Enforceable California Action Level to be met at a customer tap.
ACAL	=	Advisory California Action Level for unregulated chemical contaminants.
NA	=	Not available; no MCL promulgated.
С	=	Possible carry-over contaminant.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range (see Appendix D for details).
Comp	=	Composite sample. The HAR-16 sample was composited at the laboratory from FLUTe ports 7 through 12.
TEQ	=	Toxicity equivalent.
рН	=	VOC samples, pH of preserved sample did not meet the method preservation requirements.

Notes:

Low-level 1,4-dioxane analyses were performed by Ceimic Corporation using modified EPA method 8260 SIM.

Low-level N-nitrosodimethylamine analyses were performed by Weck Laboratories for primary samples and by Del Mar Analytical for split samples using modified EPA method 1625.

BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

Well Identifier		OS-28	OS-28	OS-28	OS-28	OS-28	· OS-28	OS-28	OS-28	OS-28	OS-28
FLUTe Sample Port						***			***		
Sample Date		08/22/03	08/22/03	08/22/03	08/22/03	09/18/03	09/18/03	09/18/03	12/16/03	12/16/03	12/16/03
Sample Type		Primary	Dup	Split	Split Dup	Primary	Dup	Dup	Primary	Dup	Split
Qualifier	Units		***			***					
Organic Constituents and Perchlorate											
1,1,1-Trichloroethane	ug/l	0.3 U	0.3 U			0.3 U		***			
1,1,2-Trichloroethane	ug/l	0.3 U	0.3 U			0.3 U				***	
1,1-Dichloroethane	ug/l	0.27 U	0.27 U			0.27 U	***				
1,1-Dichloroethene	ug/l	0.32 U	0.32 U			0.32 U					***
1,2-Dichloroethane	ug/l	0.28 U	0.28 U	****		0.28 U					
1,3-Dinitrobenzene	ug/l	8.4 U				8.4 U				~~=	
1,4-Dioxane	ug/l	0.07 U	0.07 U			· 0.07 U					
2-Butanone	ug/l	3.8 U	3.8 U			3.8 U				***	
Acetone	ug/l	4.5 U	4.5 U			4.5 U			***		
Benzene	ug/l	0.28 U	0.28 U	,		0.28 U				***	
Carbon tetrachloride	ug/l	0.28 U	0.28 U			0.28 U		•••			
Chloroform	ug/i	0.33 U	0.33 U			0.33 U					
cis-1,2-Dichloroethene	ug/l	0.32 U	0.32 U			0.32 U					
Ethylbenzene	ug/l	0.25 U	0.25 U			0.25 U					
m,p-Xylenes	ug/l	0.52 U	0.52 U	***		0.52 U			•••		
Methylene chloride	ug/l	0.9 U	0.89 U	***		0.48 U		***			
n-Nitrosodimethylamine	ug/l	0.012 R	0.0007 U	0.002 U	0.002 U	0.0057 R	0.0028 U	0.006 J	0.002	0.0036	0.0047
Nitrobenzene	ug/l	2.7 U	2.7 U			2.7 U				***	
o-Xylene	ug/l	0.24 U	0.24 U			0.24 U			***		***
Perchlorate	ug/l	0.8 U				0.8 U	***				***
Tetrachloroethene	ug/l	0.32 U	0.32 U			0.32 U	***				***
Toluene	ug/l	0.36 U	0.36 U			0.36 U					
trans-1,2-Dichloroethene	ug/l	0.27 U	0.27 U			0.27 U					
Trichloroethene	ug/l	0.26 U	0.26 U	***		0.26 U	***				
Trichlorofluoromethane	ug/l	0.34 U	0.34 U			0.34 U	***			***	
Trichlorotrifluoroethane (Freon 113)	ug/l	1.2 U	1.2 U	***		1.2 U					
Vinyl chloride	ug/l	0.26 U	0.26 U			0.26 U				***	
Naturally Occurring Constituents											
Ammonia-N	mg/l										
Fluoride	mg/i	0.53	0.5								
Formaldehyde	ug/l										
Nitrate-N	mg/l	0.072 U	0.072 U							***	
Laboratory		DMA	DMA	Weck	Weck	DMA	Weck	Weck	Pacific	Pacific	Weck

VENTURA COUNTY, CALIFORNIA

Well Identifier		RD-01	RD-02	RD-02	RD-02	RD-02	RD-02	RD-02	RD-04	RD-04	RD-04
FLUTe Sample Port										***	
Sample Date		05/07/03	02/04/03	05/05/03	08/11/03	08/11/03	11/19/03	11/19/03	02/03/03	05/07/03	05/07/03
Sample Type		Primary	Primary	Primary	Primary	Dup	Primary	Dup	Primary	Primary	Split
Qualifier	Units					· ·		•			
Organic Constituents and Perchlorate							17-11-1				
1,1,1-Trichloroethane	ug/l	3 U	0.6 U	1.5 U	3 U		0.3 U	1.5 U	0.3 U	0.3 U	
1,1,2-Trichloroethane	ug/l	3 U	0.6 U	1.5 U	3 U		0.3 U	1.5 U	0.3 U	0.3 U	
1,1-Dichloroethane	ug/l	2.7 U	0.54 U	1.4 U	2.7 U		0.27 U	1.4 U	0.27 U	0.27 U	
1,1-Dichloroethene	ug/l	3.2 U	1.4 J	1.6 U	3.2 U		1.5	1.8 J	0.32 U	0.32 U	
1,2-Dichloroethane	ug/l	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U	0.28 U	0.28 U	
1,3-Dinitrobenzene	ug/l	8.4 U	8.4 U	8.4 U	8.4 U		8.4 U		8.4 U	8.4 U	
1,4-Dioxane	ug/l	2.67	1.82 J	2.32	1.52	1.64	1.8 U		0.265 J	0.331 U	0.45 U
2-Butanone	ug/l	38 U	7.6 U	19 U	38 U		3.8 U	19 U	3.8 U	3.8 U	
Acetone	ug/l	45 U	9 U	22 U	45 U		4.5 U	22 U	4.5 U	4.5 U	
Benzene	ug/l	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U	0.28 U	0.28 U	
Carbon tetrachloride	ug/l	2.8 U	0.56 U	1.4 U	2.8 U		0.28 U	1.4 U	0.28 U	0.28 U	
Chloroform	ug/l	3.3 U	0.66 U	1.6 U	3.3 U		0.33 U	1,6 U	0.33 U	0.33 U	****
cis-1,2-Dichloroethene	ug/l	690	360	390	490		440	450	13	13	
Ethylbenzene	ug/l	2.5 U	0.5 U	1.2 U	2.5 U		0.25 U	1.2 U	0.25 U	0.25 U	
m,p-Xylenes	ug/l	3.8 ∪	0.76 U	1.9 U	5.2 U		0.52 U	2,6 U	0.38 U	0.38 U	
Methylene chloride	ug/l	5.7 J	0.66 U	1.6 U	7.6 J,L		0.48 U	2.4 U	0.33 U	0.33 U	
n-Nitrosodimethylamine	ug/l	0.0007 U	0.0058	0.0062	0.0074		3 U		0.0005 U	0.038	
Nitrobenzene	ug/l	9.6 U	9.6 U	9.6 U	2.7 U		2.7 U		9.6 U	9.6 U	
o-Xylene	ug/l	2.4 U	0.48 U	1.2 U	2.4 U		0.24 U	1.2 U	0.24 U	0.24 U	
Perchlorate	ug/l	0.8 U	0.8 U	0.8 U	0.8 U		0.8 U		0.8 U	0.8 U	
Tetrachloroethene	ug/l	3.2 U	0.64 U	1.6 U	3.2 U		0.32 U	1.6 U	0.32 U	0.32 U	
Toluene	ug/l	4.9 U	0.98 U	2.4 U	3.6 U		0.36 U	1.8 U	0.49 U	0.49 U	
trans-1,2-Dichloroethene	ug/l	23	27	24 .	28		25	26	0.32 J	0.28 J	
Trichloroethene	ug/l	970	330	330	350		280	290	62	60	
Trichlorofluoromethane	ug/l	3.4 U	0.68 U	1.7 U	3.4 U		0.34 U	1.7 U	0.34 U	0.34 U	
Trichlorotrifluoroethane (Freon 113)	ug/l	12 U	2.4 U	6 U	12 U		1.2 U	6 U	1.2 U	1.2 U	
Vinyl chloride	ug/l	6	10	7.5	6.5		7.2	6.9	0.19 U	0.19 U	
Naturally Occurring Constituents											
Ammonia-N	mg/l	0.11 U	0.087 U		0.11 U		0.11 U		0.087 U	0.11 U	
Fluoride	mg/l	0.44 J	0.25 J	0.4 J	0.42 J		0.4 J		0.26 J	0.45 J	
Formaldehyde	ug/l	21 J,L	20 U	20 U	20 U				20 U	20 U	
Nitrate-N	mg/l	0.17	0.072 U	0.072 U	0.072 U		0.072 U	***	0.072 U	0.14 U	
Laboratory		DMA	DMA	DMA	DMA	Ceimic	DMA	DMA	DMA	DMA	DMA

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier		RD-04	RD-04	RD-10	RD-10	RD-44	RD-44	RD-44	RD-44	RD-49A	RD-49A
FLUTe Sample Port				Comp	Comp						
Sample Date		08/20/03	11/20/03	01/28/03	04/30/03	02/04/03	02/04/03	05/06/03	08/11/03	02/04/03	02/04/03
Sample Type		Primary	Primary	Primary	Primary	Primary	Dup	Primary	Primary	Primary	Dup
Qualifier	Units									***	
Organic Constituents and Perchlorate											
1,1,1-Trichloroethane	ug/l	0.3 U		0.3 U	0.3 U	12 U	12 U				
1,1,2-Trichloroethane	ug/l	0.3 U		0.3 U	0.3 U	12 U	12 U				
1,1-Dichloroethane	ug/i	0.27 U		0.27 U	0.27 U	11 U	11 U				
1,1-Dichloroethene	ug/l	0.32 U	# #	0.32 U	0.32 U	13 U	13 U				
1,2-Dichloroethane	ug/l	0.28 U		0.28 U	0.28 U	11 U	11 U				
1,3-Dinitrobenzene	ug/l	8.4 U		8.4 U	8.4 U	8.4 U					
1,4-Dioxane	ug/l	0.249 U	0.07 U	0.448 J	0.07 U	0.07 U	0.07 U	0.147 U	0.07 U	0.414 J	
2-Butanone	ug/l	3.8 U		3.8 U	3.8 U	150 U	150 U				
Acetone	ug/l	4.5 U	4.5 J,L	4.5 U	9.4 J,F	4.5 U		4.5 U	4.5 U	180 U	180 U
Benzene	ug/l	0.28 U		0.28 U	0.28 U	11 U	11 U				
Carbon tetrachloride	ug/l	0.28 U		0.28 U	0.28 U	11 U	11 U				
Chloroform	ug/l	0.33 U		0.33 U	0.33 U	13 U	13 U				
cis-1,2-Dichloroethene	ug/l	14	14	13	12	0.32 U		0.32 U	0.32 U	2000	2200
Ethylbenzene	ug/l	0.25 U		0.25 U	0.25 U	10 U	10 U				
m,p-Xylenes	ug/l	0.52 U	0.52 U	0.38 U	0.38 U	0.38 U		0.38 U	0.52 U	15 U	15 U
Methylene chloride	ug/i	0.48 U	2.8 J,L	0.33 U	0.33 U	0.33 U		0.33 U	0.48 U	20 J,L	13 J,L
n-Nitrosodimethylamine	ug/l	0.0024 U	3 U	0.0005 U	0.0007 U	0.0005 U		0.0007 U	0.00081 J	0.0005 U	
Nitrobenzene	ug/l	2.7 U	2.7 U	9.6 U	9.6 U	9.6 U		9.6 U	2.7 U	9.6 U	
o-Xylene	ug/l	0.24 U		0.24 U	0.24 U	9.6 U	9.6 U				
Perchlorate	ug/l	0.8 U	0.8 U	160	220	0.8 U		0.8 U	U 8.0	0.8 U	
Tetrachloroethene	ug/l	0.32 U	***	0.32 U	0.32 U	13 U	13 U				
Toluene	ug/l	0.36 U	0.36 U	0.49 U	0.49 U	0.49 U		0.49 U	0.36 U	20 U	20 U
trans-1,2-Dichloroethene	ug/l	0.41 J	0.33 J	0.46 J	0.47 J,F	0.27 U		0.27 U	0.27 U	46	51
Trichloroethene	ug/l	71	79	6.6	4.9	0.26 U		0.26 U	0.26 U	4100	4400
Trichlorofluoromethane	ug/l	0.34 U		0.34 U	0.34 U	14 U	14 U				
Trichlorotrifluoroethane (Freon 113)	ug/l	1.2 U		1.2 U	1.2 U	48 U	48 U				
Vinyl chloride	ug/l	0.26 U	0.26 U	0.19 U	0.19 U	0.19 U	***	0.19 U	0.26 U	7.6 U	7.6 U
Naturally Occurring Constituents											
Ammonia-N	mg/l	0.11 U	0.11 U	0.13 J	0.11 U	0.087 U		0.11 U	0.11 U	0.087 U	
Fluoride	mg/l	0.46 J	0.31 J	0.37 J	0.31 J	0.32 J		0.45 J	0.49 J	0.43 J	
Formaldehyde	ug/l	20 U	25 U	20 U	20 U	20 U	-	20 U	20 U	20 U	
Nitrate-N	mg/l	0.072 U	0.072 U	0.2	0.28	0.072 U		0.072 U	0.072 U	0.072 U	
Laboratory		DMA	DMA	DMA	DMA	DMA	Ceimic	DMA	DMA	DMA	DMA

TABLE XII
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier		RD-49A	RD-49A	RD-49A	RD-49A	RD-49B	RD-49B	RD-49B	RD-49B	RD-49B	RD-49B
FLUTe Sample Port							***	***			
Sample Date		05/07/03	05/07/03	08/11/03	11/18/03	02/03/03	05/06/03	05/06/03	08/11/03	11/17/03	11/17/03
Sample Type		Primary	Split	Primary	Primary	Primary	Primary	Split	Primary	Primary	Dup
Qualifier	Units						•••	****		***	
Organic Constituents and Perchlorate											
1,1,1-Trichloroethane	ug/l	30 U		12 U	12 U	0.3 U	0.6 U		0.6 U	1.2 U	
1,1,2-Trichloroethane	ug/l	30 U		12 U	12 U	0.3 U	0.6 U		0.6 U	1.2 U	
1,1-Dichloroethane	ug/l	27 U		11 U	11 U	0.27 U	0.54 U		0.54 U	1.1 U	***
1,1-Dichloroethene	ug/l	32 U		13 U	13 U	0.49 J	0.64 U	***	0.64 U	1,3 U	
1,2-Dichloroethane	ug/l	28 U		11 U	11 U	0.28 U	0.56 U		0.56 U	1,1 U	
1,3-Dinitrobenzene	ug/l	8.4 U		8.4 U	8.4 U	8.4 U	8.4 U		8.4 U	8.4 U	
1,4-Dioxane	ug/l	0.65 J	0.73 U	0.07 U	0.68 U	1.5 J	2.76	2.4 U	1.5	2.3	1.8 U
2-Butanone	ug/l	380 U		150 U	150 U	3.8 U	7.6 U		7.6 U	15 U	
Acetone	ug/l	450 U		180 U	180 U	4.5 U	9 U		9 U	18 U	
Benzene	ug/l	28 U		11 U	11 U	0.28 U	0.56 U		0.56 U	1.1 U	***
Carbon tetrachloride	ug/l	28 U	-	11 U	11 U	0.28 U	0.56 U		0.56 U	1,1 U	
Chloroform	ug/l	33 U		13 U	13 U	0.33 U	0.66 U		0.66 U	1.3 U	
cis-1,2-Dichloroethene	ug/l	2100		3400	2000 J	180	220		280	260	
Ethylbenzene	ug/l	25 U		10 U	10 U	0.25 U	0.5 U		0.5 U	1 U	
m,p-Xylenes	ug/l	38 U		21 U	21 U	0.38 U	0.76 U		1 U	2.1 U	
Methylene chloride	ug/l	55 J,L		19 U	19 U	0.33 U	0.66 U		0.96 U	1.9 U	
n-Nitrosodimethylamine	ug/l	0.0018 J	***	0.0028	3 U	0.051	0.049		0.066	3 U	
Nitrobenzene	ug/l	9.6 U		2.7 U	2.7 U	9.6 U	9.6 U		2.7 U	2.7 U	
o-Xylene	ug/l	24 U		9.6 U	9.6 U	0.24 U	0.48 U		0.48 U	0.96 U	***
Perchlorate	ug/l	0.8 U		0.8 U	0.8 U	0.8 U	0.8 U		0.8 U	0.8 U	***
Tetrachloroethene	ug/l	32 U		13 U	13 U	0.32 U	0.64 U		0.64 U	1.3 U	***
Toluene	ug/l	49 U		14 U	14 U	0.49 U	0.98 U		0.72 U	1.4 U	
trans-1,2-Dichloroethene	ug/l	40 J		60	42	· 12	11		14	14	
Trichloroethene	ug/l	4000		2300	3900	290	250	***	270	350	
Trichlorofluoromethane	ug/l	34 U		14 U	14 U	0.34 U	0.68 U		0.68 U	1.4 U	
Trichlorotrifluoroethane (Freon 113)	ug/l	120 U		48 U	48 UJ	18	2.4 U	204	2.4 U	4.8 U	•
Vinyl chloride	ug/l	19 U		10 U	10 U	4.8	5.8		6	7.4	
Naturally Occurring Constituents				·							
Ammonia-N	mg/l	0.11 U	***	0.11 U	0.11 U	0.087 U	0.11 U		0.11 U	0.11 U	
Fluoride	mg/l	0.57 J		0.63	0.37 J	0.32 J	0.28 J		0.29 J	0.3 J	
Formaldehyde	ug/l	20 U		20 U	21 J	20 U	20 U		20 U	20 U	***
Nitrate-N	mg/l	0.14 U		0.072 U	0.072 U	0.072 U	0.072 U	***	0.072 U	0.072 U	
Laboratory		DMA	Ceimic								

TABLE XII
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier		RD-49B	RD-49C	RD-49C	RD-49C	RD-49C	RD-49C	RD-49C	WS-05	WS-05	WS-05
FLUTe Sample Port								***		***	
Sample Date		11/17/03	02/04/03	05/06/03	08/19/03	11/18/03	11/18/03	11/18/03	02/04/03	05/05/03	05/05/03
Sample Type		Split	Primary	Primary	Primary	Primary	Dup	Split	Primary	Primary	Split
Qualifier	Units										
Organic Constituents and Perchlorate											
1,1,1-Trichloroethane	ug/l		0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	•••
1,1,2-Trichloroethane	ug/l		0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	
1,1-Dichloroethane	ug/l		0.27 U	0.27 U	0.27 U	0.27 U			0.27 U	0.27 U	
1,1-Dichloroethene	ug/l		0.32 U	0.32 U	0.32 U	0.32 U			0.32 U	0.32 U	
1,2-Dichloroethane	ug/l		0.28 U	0.28 U	0.28 U	0.28 U			0.28 U	0.28 U	
1,3-Dinitrobenzene	ug/l		8.4 U	8.4 U	8.4 U	8.4 U			8.4 U	8.4 U	
1,4-Dioxane	ug/l	0.93 J	0.815 J	1.08	0.755 U	0.6 U	0.74 U	0.49 U	2.17 J	2.38	2.6 U
2-Butanone	ug/l		3.8 U	3.8 U	3.8 U	3.8 U			3.8 U	3.8 U	
Acetone	ug/l		4.5 U	4.5 U	4.5 U	4.5 U			4.5 U	4.5 U	
Benzene	ug/l		0.28 U	0.28 U	0.28 U	0.28 U			0.28 U	0.28 U	
Carbon tetrachloride	ug/l		0.28 U	0.28 U	0.28 U	0.28 U	***		0.28 U	0.28 U	
Chloroform	ug/l		0.33 U	0.33 U	0.33 U	0.33 U			0.33 U	0.33 U	
cis-1,2-Dichloroethene	ug/l		77	81	75	75 J			2.9	2.6	
Ethylbenzene	ug/i		0.25 U	0.25 U	0.25 U	0.25 U			0.25 U	0.25 U	
m,p-Xylenes	ug/l		0.38 U	0.38 U	0.52 U	0.52 U			0.38 U	0.38 U	
Methylene chloride	ug/l		0.33 U	0.33 U	0.48 U	0.48 U			0.33 U	0.33 U	
n-Nitrosodimethylamine	ug/l	ļ	0.014	0.014	0.013	3 U			0.0005 U	0.0007 U	
Nitrobenzene	ug/l		9.6 U	9.6 U	2.7 U	2.7 U			9.6 U	9.6 U	
o-Xylene	ug/l	ļ	0.24 U	0.24 U	0.24 U	0.24 U			0.24 U	0.24 U	
Perchlorate	ug/l		0.8 U	0.8 U	0.8 U	0.8 U			0.8 U	0.8 U	
Tetrachloroethene	ug/l		0.32 U	0.32 U	0.32 U	0.32 U			0.32 U	0.32 U	***
Toluene .	ug/l		0.49 U	0.49 U	0.36 U	0.36 U			0.49 U	0.49 U	
trans-1,2-Dichloroethene	ug/l		3.9	2.9	2.7	2.4			0.27 U	0.27 U	
Trichloroethene	ug/l		26	24	24	24			1.5	1.3	
Trichlorofluoromethane	ug/l		0.34 U	0.34 U	0.34 U	0.34 U			0.34 U	0.34 U	
Trichlorotrifluoroethane (Freon 113)	ug/l		5	1.2 U	1.2 U	1.2 UJ			1.2 U	1.2 U	
Vinyl chloride	ug/l		2.3	2.5	2	2.6			0.19 U	0.19 U	
Naturally Occurring Constituents											
Ammonia-N	mg/l		0.087 U	0.11 U	0.11 J	0.11 J			0.098 J	***	
Fluoride	mg/l		0.32 J	0.33 J	0.41 J	0.34 J			0.26 J	0.31 J	***
Formaldehyde	ug/l		20 U	20 U	20 U	20 U			20 U	20 U	
Nitrate-N	mg/f		0.072 U	0.072 U	0.072 U	0.072 U			0.072 U	0.072 U	
Laboratory		DMA	DMA	DMA	DMA	DMA	Ceimic	DMA	DMA	DMA	DMA

TABLE XII
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier		WS-06	WS-06	WS-06	WS-06	WS-09	WS-09	WS-12	WS-13
FLUTe Sample Port				***					
Sample Date		02/03/03	05/07/03	08/19/03	11/19/03	02/03/03	05/07/03	08/13/03	08/20/03
Sample Type		Primary	Primary						
Qualifier	Units								
Organic Constituents and Perchlorate									
1,1,1-Trichloroethane	ug/l	0.3 U	0.3 U	0.3 U	0.3 U	12 U	12 U	0.3 U	0.3 U
1,1,2-Trichloroethane	ug/l	0.3 U	0.3 U	0.3 U	0.3 U	12 U	12 U	0.3 U	0.3 U
1,1-Dichloroethane	ug/l	0.27 U	0.27 U	0.27 U	0.27 U	11 U	11 U	0.27 U	0.27 U
1,1-Dichloroethene	ug/l	0.32 U	0.32 U	0.32 U	0.32 U	13 U	13 U	0.32 U	0.32 U
1,2-Dichloroethane	ug/l	0.28 U	0.28 U	0.28 U	0.28 U	11 U	11 U	0.28 U	0.28 U
1,3-Dinitrobenzene	ug/l	8.4 U	8.4 U						
1,4-Dioxane	ug/l	0.768 J	0.898 J	0.698 U	0.79 U	1.93 J	3.71	0.336 U	0.297 U
2-Butanone	ug/l	3.8 U	3.8 U	3.8 ⊍	3.8 U	150 U	150 U	3.8 U	3.8 U
Acetone	ug/l	4.5 U	4.5 U	4.5 U	4.5 U	180 U	180 U	4.5 U	4.5 U
Benzene	ug/l	0.28 U	0.28 U	0.28 U	0.28 U	11 Ú	11 U	0.28 U	0.28 U
Carbon tetrachloride	ug/l	0.28 U	0.28 U	0.28 U	0.28 U	11 U	11 U	0.28 U	0.28 U
Chloroform	ug/l	0.33 U	0.33 U	0.33 U	0.33 U	13 U	13 U	0.33 U	0.33 U
cis-1,2-Dichloroethene	ug/l	38	36	47	52	430	410	14	0.32 U
Ethylbenzene	ug/i	0.25 U	0.25 U	0.25 U	0.25 U	10 U	10 U	0.25 U	0.25 U
m,p-Xylenes	ug/l	0.38 U	0.38 U	0.52 U	0.52 U	15 U	15 U	0.52 U	0.52 U
Methylene chloride	ug/l	0.33 U	0.33 U	0.48 U	0.88 J,L	13 U	13 U	0.62 U	0.48 U
n-Nitrosodimethylamine	ug/l	0.0005 U	0.0007 U	0.0014 U	3 U	0.0005 U	0.003	0.001 J,S	0.0012 U
Nitrobenzene	ug/l	9.6 U	9.6 U	2.7 U	2.7 U	9.6 U	9.6 U	2.7 U	2.7 U
o-Xylene	ug/l	0.24 U	0.24 U	0.24 U	0.24 U	9.6 U	9.6 U	0.24 U	0.24 U
Perchlorate	ug/l	0.8 U	0.8 U	U 8.0	0.8 U	0.8 U	0.8 U	U 8.0	0.8 U
Tetrachloroethene	ug/l	0.32 U	0.32 U	0.32 U	0.32 U	13 U	13 U	0.32 U	0,32 U
Toluene	ug/l	0.49 U	0.49 U	0.36 U	0.36 U	20 U	20 U	0.36 U	0.36 U
trans-1,2-Dichloroethene	ug/l	6	6.1	8.1	7.6	11 U	11 U	1.1	0.27 U
Trichloroethene	ug/l	7	2.8	4.6	4.4	7600	7300	16	0.26 U
Trichlorofluoromethane	ug/i	0.34 U	0.34 U	0.34 U	0.34 U	14 U	14 U	0.34 U	0.34 U
Trichlorotrifluoroethane (Freon 113)	ug/l	1.2 U	1.2 U	1.2 U	1.2 U	48 U	48 U	1.2 U	1.2 U
Vinyl chloride	ug/l	1.8	1.5	2.1	2.6	7.6 U	7.6 U	0.26 U	0.26 U
Naturally Occurring Constituents									
Ammonia-N	mg/l	0.1 J	0.11 U	0.11 U	0.11 U	0.087 U	0.11 U	0.11 U	0.11 U
Fluoride	mg/l	0.3 J	0.31 J	0.42 J	0.3 J	0.28 J	0.35 J	0.45 J	0.48 J
Formaldehyde	ug/l	20 U	22 J	20 U		20 U	21 J,L	20 U	20 U
Nitrate-N	mg/l	0.072 U	0.072 U						
Laboratory		DMA	DMA						

Ceimic	=	Ceimic Corporation of Narragansett, Rhode Island.
DMA	=	Del Mar Analytical of Irvine, California.
Pacific	=	Pacific Analytical of Carlsbad, California.
Weck	=	Weck Laboratories of City of Industry, California.
()	=	Analysis not performed.
Comp	=	Composite sample. First and third quarter RD-10 samples were composited at the laboratory from FLUTe ports 3, 6, and 9.
Primary Dup Split Split Dup	= = =	Primary sample. Sample duplicate. Split sample. Duplicate sample analyzed by the split lab.
mg/l ug/l	=	Milligrams per liter. Micrograms per liter.
F	=	Sampled through multi-level FLUTe ports. Footnoted results are not representative of historic groundwater samples, and may have been introduced in the FLUTe samples by compressed nitrogen gas, electrical tape and/or FLUTe components.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
L	=	Laboratory contaminant.
R	=	The analyte result was rejected; presence or absence of the analyte cannot be verified.
s	=	Suspect result.
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range (see Appendix D for details).

Note:

Low-level 1,4-dioxane analyses were performed on primary samples by Ceimic Corporation using modified EPA method 8260 SIM.

Low-level N-nitrosodimethylamine (NDMA) analyses were performed on primary samples by Weck Laboratories using modified EPA method 1625. NDMA results for fourth quarter samples from wells RD-02, RD-04, RD-49A, RD-49B, RD-49C, and WS-06 were analyzed by Del Mar Analytical using EPA method 8270.

TABLE XIII
SUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier				RD-51B	RD-51C	RD-52B	RD-52C	RD-59A	RD-59B	RD-59C	RD-68A	RD-68B
Sample Date				11/06/03	11/07/03	11/18/03	11/19/03	11/14/03	12/04/03	12/04/03	12/04/03	12/04/03
Sample Type				Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Compound	Units	Method	MCL									
Calcium	mg/l	6010B	NA	120	89	110	95	90	56	37	11	63
Magnesium	mg/l	6010B	NA	41	30	30	23	27	16	12	21	18
Potassium	mg/l	6010B	NA	5.3	3.5	4.3	3.5	4	3.1	2.5	4.2	3.6
Sodium	mg/l	6010B	NA	64	84	67	53	97	94	130	76	89
Bicarbonate as CaCo3	mg/l	SM2320B	NA	380	300	340	300	290	260	280	170	300
Carbonate as CaCo3	mg/l	SM2320B	NA	2 U	2 U	2 U	2 U	2 U	2 U	2 U	4	2 U
Chloride	mg/l	300.0	250 SMCL	47	39	37	31	48	33	30	36	28
Fluoride	mg/l	300.0	2.0					#4n				
Nitrate-N	mg/l	300.0	10 EPA	0.072 U	0.072 U	0.072 U	0.072 U		0.072 U	0.072 U	0.072 U	0.072 U
Sulfate	mg/l	300.0	250 SMCL	170	150	170	140	190	100	100	50	92
Total Dissolved Solids	mg/l	160.1	500 SMCL	730	640	670	570	680	480	550	410	490
Total Iron	mg/l	6010B	NA	0.34	0.18	2.5	0.37	0.083 U	0.069	0.021 J	0.32	1.1
Dissolved Iron	mg/l	6010B-Diss	NA	0.28	0.18	0.26	0.23	0.029 J	0.065	0.011 J	0.058	1.1
рН	pH units	150.1	6.5-8.5 SMCL	7.01	7.72	7.27	7.43		7.44	7.71	8.72	7.43
Specific Conductance	umhos/cm	120.1	900	1200	1000	1100	910	1100	790	810	550	800
Delta Deuterium	per mil	MS	NA									
Delta Oxygen-18	per mil	MS	NA				- Annah - Anna					
Laboratory				DMA	DMA	DMA	DMA	DMA	DMA	DMA	DMA	DMA

TABLE XIII
SUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier				WS-04A	WS-09B	OS-02	OS-03	OS-04	OS-05	OS-08	OS-09	OS-09
Sample Date				12/03/03	11/06/03	12/09/03	12/09/03	12/09/03	12/09/03	12/09/03	07/02/03	07/10/03
Sample Type				Primary								
Compound	Units_	Method	MCL									
Calcium	mg/l	6010B	NA	110	120	9.1	53	100	90	79	3.1	3.1
Magnesium	mg/l	6010B	NA	26	44	3.2	16	26	25	29	1.9	1.9
Potassium	mg/l	6010B	NA	3.8	5.6	1.5	3.1	4.4	3.8	3,5	2	0.95
Sodium	mg/l	6010B	NA	42	61	170	100	84	94	97	200	190
Bicarbonate as CaCo3	mg/l	SM2320B	NA	270	370	260	250	320	300	300	260	260
Carbonate as CaCo3	mg/l	SM2320B	NA	2 U	2 U	8	2 U	2 U	2 U	2 U	6.4	12
Chloride	mg/l	300.0	250 SMCL	30	48	26	35	41	43	36	26	28
Fluoride	mg/l	300.0	2.0			***						
Nitrate-N	mg/l	300.0	10 EPA	0.072 U	0.072 U	0.16	0.072 U	0.072 U	0.072 U	0.078 J	0.072 U	0.072 U
Sulfate	mg/l	300.0	250 SMCL	210	150	80	100	160	160	160	130	120
Total Dissolved Solids	mg/l	· 160.1	500 SMCL	610	720	530	510	690	630	620	570	580
Total Iron	mg/l	6010B	NA	8.2	0.055	0.051	0.32	36	0.02 J	0.087		
Dissolved Iron	mg/l	6010B-Diss	NA	0.93	0.64 W	0.0088 U	0.3	2.1	0.011 J	0.0088 J		
pH	pH units	150.1	6.5-8.5 SMCL	7.3	7.02	8.27	7.69	7.36	7.32	8.03	8.42	8.6
Specific Conductance	umhos/cm	120.1	900	900	1200	800	800	1000	980	960	870	890
Delta Deuterium	per mil	MS	NA				-				-52.2	
Delta Oxygen-18	per mil	MS	NA				***				-7.32	
Laboratory				DMA	DMA/GGH	DMA						

TABLE XIII
SUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier				OS-09								
Sample Date				07/17/03	07/24/03	07/31/03	08/07/03	08/12/03	08/21/03	08/28/03	09/04/03	09/11/03
Sample Type				Primary								
Compound	Units	Method	MCL									
Calcium	mg/l	6010B	NA	3.1	3	2.9	3	3.3	3.1	3.1	3.2	3.1
Magnesium	mg/l	6010B	NA	1.9	1.8	1.8	1.8	1.9	1.9	1.9	1.9	1.9
Potassium	mg/l	6010B	NA	1.2	1.5	1.2	1.2	1.2	1.3	1.1	1	1.2 U
Sodium	mg/l	6010B	NA	190	190	190	190	190	190	200	200	190
Bicarbonate as CaCo3	mg/l	SM2320B	NA	250	220	270	100	270	250	270	250	250
Carbonate as CaCo3	mg/l	SM2320B	NA	24	36	2 U	160	4	8	9.6	8	24
Chloride	mg/l	300.0	250 SMCL	26	28	26	26	26	25	27	28	27
Fluoride	mg/l	300.0	2.0								***	
Nitrate-N	mg/l	300.0	10 EPA	0.083 J	0.072 U							
Sulfate	mg/l	300.0	250 SMCL	130	140	130	140	130	120	130	130	120
Total Dissolved Solids	mg/l	160.1	500 SMCL	580	640	570	580	580	550	760	610	600
Total Iron	mg/l	6010B	NA				***		0.012 U	0.0088 U	0.032 J	0.012 J
Dissolved Iron	mg/l	6010B-Diss	NA			***			0.0088 U	0.0088 U	0.0088 U	0.0088 U
рН	pH units	150.1	6.5-8.5 SMCL	8.64	8.56	8.29	8.26	8.39	8.42	8.49	8.42	8.58
Specific Conductance	umhos/cm	120.1	900	890	880	880	900	890	880	870	870	870
Delta Deuterium	per mil	MS	NA	-52.5						-51.1		
Delta Oxygen-18	per mil	MS	NA	-7.33		***		***	•	-7.17		*
Laboratory				DMA/GGH	DMA	DMA	DMA	DMA	DMA	DMA/GGH	DMA	DMA

TABLE XIII
SUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier				OS-09								
Sample Date				09/18/03	09/25/03	10/02/03	11/06/03	11/13/03	11/20/03	11/24/03	12/04/03	12/11/03
Sample Type				Primary								
Compound	Units	Method	MCL									
Calcium	mg/l	6010B	NA	3.1	3	3	3	2.9	2.9	2.9	3.2	3.1
Magnesium	mg/l	6010B	NA	1.9	1.8	1.9	1.8	1.8	1.8	1.8	1.9	1.9
Potassium	mg/l	6010B	NA	1.3	1.1	1.4	1.1	1.2	1.1	2.4	1.3	1.3
Sodium	mg/l	6010B	NA	190	190	190	200	190	190	200	200	210
Bicarbonate as CaCo3	mg/l	SM2320B	NA	280	260	260	280	300	250	270	280	300
Carbonate as CaCo3	mg/l	SM2320B	NA	2 U	2 U	16	4	16	32	2 U	4	4
Chloride	mg/l	300.0	250 SMCL	28	26	26	24	28	28	29	30	26
Fluoride	mg/l	300.0	2.0						***			
Nitrate-N	mg/l	300.0	10 EPA	0.072 U	0.072 U	0.072 U	0.072 U	0.072 ป	0.072 U	0.075 J	0.072 U	0.072 U
Sulfate	mg/l	300.0	250 SMCL	120	110	120	120	120	110	110	130	110
Total Dissolved Solids	mg/l	160.1	500 SMCL	590	600	690	580	650	650	600	570	600
Total Iron	mg/l	6010B	NA	0.017 J	0.010 J	0.026 J	0.033 J	0.054	0.014 J	0.02 J	0.03 J	0.83
Dissolved Iron	mg/l	6010B-Diss	NA	0.0088 U	0.016 J	0.0088 U	0.0088 U					
рН	pH units	150.1	6.5-8.5 SMCL	8.68	8.56	8.66	8.41	8.47	8.59	8.67	8.67	8.48
Specific Conductance	umhos/cm	120.1	900	850	870	860	890	880	880	880	880	880
Delta Deuterium	per mil	MS	NA		-53.8		-51.0		***		-52.1	
Delta Oxygen-18	per mil	MS	NA		-7.52		-7.40				-7.32	
Laboratory				DMA	DMA/GGH	DMA						

TABLE XIII
SUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

										•	
Well Identifier				OS-09	OS-09	OS-09	OS-10	OS-21	OS-26	OS-28	OS-28
Sample Date				12/18/03	12/23/03	12/30/03	12/09/03	12/02/03	12/02/03	08/22/03	08/22/03
Sample Type				Primary	Dup						
Compound	Units	Method	MCL								
Calcium	mg/l	6010B	NA	3.2	3.2	3.1	5.1	120	110	110	110
Magnesium	mg/l	6010B	NA	1.9	2.0	1.9	1.5	45	56	58	58
Potassium	mg/l	6010B	NA	1.1	1.2	1.2	1.4	4.4	4.5	4.6	4.9
Sodium	mg/l	6010B	NA	200	200	210	160	73	62	66	65
Bicarbonate as CaCo3	mg/l	SM2320B	NA	260	270	260	270	310	330	340	330
Carbonate as CaCo3	mg/l	SM2320B	NA	8	8.0	4.0	8	2 U	2 U	2 U	2 U
Chloride	mg/l	300.0	250 SMCL	27	27	25	21	28	54	38	38
Fluoride	mg/l	300.0	2.0							0.53	0.5
Nitrate-N	mg/l	300.0	10 EPA	0.072 U	0.072 U	0.072 U	0.076 J	0.072 U	0.072 U	0.072 U	0.072 U
Sulfate	mg/l	300.0	250 SMCL	110	120	120	62	310	230	250	250
Total Dissolved Solids	mg/l	160.1	500 SMCL	600	590	600	480	810	790	770	790
Total Iron	mg/l	6010B	NA	0.036 J	0.012 U	0.018 J	0.051	0.53	0.17		***
Dissolved Iron	mg/l	6010B-Diss	NA	0.0088 U	U 8800.0	0.0088 U	0.041	0.095	0.12	***	
pН	pH units	150.1	6.5-8.5 SMCL	8.7	8.60	8.54	8.49	7.26	7.12	7.29	7.26
Specific Conductance	umhos/cm	120.1	900	870	870	900	700	1200	1200	1200	1200
Delta Deuterium	per mil	MS	NA					***			
Delta Oxygen-18	per mil	MS	NA								
Laboratory				DMA							

TABLE XIII FOOTNOTES AND EXPLANATIONS

EPA	=	EPA Primary Drinking Water MCL.
DMA	=	Del Mar Analytical of Irvine, California.
GGH	=	G.G. Hatch Laboratories of Ottawa, Ontario. Oxygen-18 and deuterium isotope analyses.
MCL	=	Maximum Contaminant Level, California primary drinking water standard (California Department of Health Services, 2003. http://www.dhs.ca.gov/ps/ddwem/publications/regulations/MCLrevisions6-12-03.pdf).
NA	=	Not applicable; no MCL promulgated.
SMCL	=	California DHS Secondary Drinking Water MCL.
()	=	Analysis not performed.
Primary _	=	Primary sample.
Dup	=	Sample duplicate.
mg/l	=	Milligrams per liter.
per mil	=	Parts per thousand.
umhos/cm	=	Micromhos per centimeter.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
W	=	Result not verified.

Note: Well OS-09 has been also referred to as Brandeis-Bardin Institute "Bathtub Well No. 1".

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Delta ASU	HAR-07	01/07/03	1728.38	76.73	1651.65	0*		(1)
		02/04/03	1728.38	75.28	1653.10	0*		(1)
		03/04/03	1728.38	79.13	1649.25	0*	0*	(1)
		04/18/03	1728.38	76.94	1651.44	0*		(1)
		05/06/03	1728.38	75.32	1653.06	0*		(1)
		06/10/03	1728.38	52.84	1675.54	0*	0*	(1)
		07/18/03	1728.38	54.78	1673.60	0*		(1)
		08/06/03	1728.38	56.86	1671.52	0*		(.,
		09/03/03	1728.38	40.14	1688.24	0*	0*	(1)
		10/06/03	1728.38	38.14	1690.24	0*	Ü	(1)
		11/05/03	1728.38	72.77	1655.61	0*		('')
		12/04/03	1728.38	36.45	1691.93	0*	0*	(1)
	WS-09A	01/07/03	1647.61	54.23	1593.38	15.02	0	(1)
	VV3-03A	02/04/03	1647.61	35.84	1611.77	33.75		
		03/04/03	1647.61	21.22	1626.39	6.48	18.34	(1)
						6.80	10.34	(1)
		04/08/03	1647.61	22.66	1624.95			(1)
		05/06/03	1647.61	38.43	1609.18	11.56	0.0	(1)
		06/04/03	1647.61	52.67	1594.94	0.43	6.2	(1)
		07/18/03	1647.61	41.28	1606.33	7.56		(1)
		08/05/03	1647.61	32.31	1615.30	7.10		(4)
		09/03/03	1647.61	54.41	1593.20	10.52	8.39	(1)
		10/06/03	1647.61	62.76	1584.85	0.92		(1)
		11/04/03	1647.61	37.24	1610.37	5.96		
		12/04/03	1647.61	63.14	1584.47	7.27	4.72	(1)
Alfa ASU	WS-06	01/04/03	1932.72	NA		0*		(1)
		01/30/03	1932.72	400.15	1532.57	0*		
		03/04/03	1932.72	NA		0*	0*	(1)
		04/08/03	1932.72	NA		0*		(1)
		04/29/03	1932.72	395.35	1537.37	0*		
		06/10/03	1932.72	421.61	1511.11	0*	0*	(1)
		07/18/03	1932.72	449.10	1483.62	0*		(1)
		08/06/03	1932.72	390.75	1541.97	0*		
		09/03/03	1932.72	446.64	1486.08	0*	0*	(1)
		10/10/03	1932.72	445.25	1487.47	0*		(1)
		11/05/03	1932.72	387.50	1545.22	0*		
		12/03/03	1932.72	443.79	1488.93	0*	0*	(1)
Bravo ASU	ES-21	01/03/03	1769.62	31.13	1738.49	0*		(2)
		02/03/03	1769.62	31.29	1738.33	0*		(2)
		03/03/03	1769.62	30.86	1738.76	0*	0*	(2)
		04/03/03	1769.62	29.56	1740.06	0*		(2)
		05/03/03	1769.62	28.89	1740.73	0*		(2)
		06/03/03	1769.62	28.58	1741.04	0*	0*	(2)
	•	07/03/03	1769.62	28.61	1741.01	0*		(2)
		08/03/03	1769.62	29.27	1740.35	0*		(2)
		09/03/03	1769.62	29.97	1739.65	0 *	0*	(2)
		10/03/03	1769.62	30.56	1739.06	0*	-	(2)

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Point Elevation (ft, MSL)	Depth to Water (feet)	Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Bravo ASU	ES-21	11/03/03	1769.62	31.05	1738.57	0*		(2)
		12/03/03	1769.62	31.42	1738.20	0*	0*	(2)
	ES-22	01/07/03	1770.93	27.48	1743.45	0*		(1)
		-02/04/03	1770.93	27.90	1743.03	0*		(1)
		03/04/03	1770.93	25.43	1745.50	0*	0*	(1)
		04/08/03	1770.93	25.61	1745.32	0*		(1)
		05/06/03	1770.93	25.34	1745.59	0*		(1)
		06/04/03	1770.93	26.01	1744.92	0*	0*	(1)
		07/02/03	1770.93	25.98	1744.95	0*		(1)
		08/06/03	1770.93	30.34	1740.59	0*		` '
		09/03/03	1770.93	25.01	1745.92	0*	0*	(1)
		10/06/03	1770.93	24.96	1745.97	0*	_	(1)
		11/03/03	1770.93	12.22	1758.71	0*		(.,
		12/03/03	1770.93	24.79	1746.14	0*	0*	(1)
	RD-04	01/07/03	1883.85	UTM		0*		(1)
		02/04/03	1883.85	UTM		0*		(1)
		03/04/03	1883.85	UTM		0*	0*	(1)
		04/08/03	1883.85	UTM		0*	· ·	(1)
		05/06/03	1883.85	UTM		0*,		(1)
		06/04/03	1883.85	396.24	1487.61	0*	0*	(1)
		07/18/03	1883.85	389.42	1494.43	0*	·	(1)
		08/06/03	1883.85	340.76	1543.09	0*		(1)
		09/03/03	1883.85	385.64	1498.21	0*	0*	(1)
		10/06/03	1883.85	382.44	1501.41	0*	O	(1)
		11/04/03	1883.85	337.15	1546.70	0*		(1)
		12/03/03	1883.85	381.76	1502.09	0*	0*	(1)
	RD-09	01/07/03	1768.20	33.12	1735.08	0*		(1)
	1710-09	02/04/03	1768.20	32.95	1735.06	0*		
				32.95		0*	0*	(1)
		03/04/03	1768.20		1735.96		0*	(1)
		04/08/03 05/06/03	1768.20	33.61	1734.59	0* 0*		(1)
		06/10/03	1768.20	33.05	1735.15	0*	0.*	(1)
			1768.20	36.61	1731.59		0*	(1)
	•	07/02/03 08/06/03	1768.20	35.22	1732.98	0*		(1)
			1768.20	29.85	1738.35	0*	0.1	(4)
		09/03/03	1768.20	36.81	1731.39	0* 0*	0*	(1)
		10/10/03	1768.20	35.96	1732.24	0*		(1)
		11/04/03	1768.20	35.41	1732.79	0*	0.0	(1)
	14/0.00	12/03/03	1768.20	35.22	1732.98	0*	0*	(1)
	WS-09	01/07/03	1883.99	349.65	1534.34	0*		(1)
		02/04/03	1883.99	348.24	1535.75	0*		(1)
		03/04/03	1883.99	358.61	1525.38	0*	0*	(1)
		04/08/03	1883.99	358.42	1525.57	0*		(1)
		05/06/03	1883.99	357.98	1526.01	0*		(1)
		06/04/03	1883.99	356.41	1527.58	0*	0*	(1) (1)
		07/18/03	1883.99	357.21	1526.78	0*		

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Bravo ASU	WS-09	09/03/03	1883.99	359.18	1524.81	0*	0*	(1)
		10/06/03	1883.99	357.43	1526.56	0*		(1)
		11/05/03	1883.99	331.98	1552.01	0*		` '
		12/04/03	1883.99	356.86	1527.13	0*	0*	(1)
Area I Road ASU	ES-01	01/03/03	1782.20	DRY		0*		(2)
		02/03/03	1782.20	DRY		0*		(2)
		03/03/03	1782.20	21.82	1760.38	0*	0*	(2)
		04/03/03	1782.20	21.17	1761.03	0*		(2)
		05/03/03	1782.20	19.71	1762.49	0*		(2)
		06/03/03	1782.20	19.21	1762.99	0*	0*	(2)
		07/03/03	1782.20	19.32	1762.88	0*	-	(2)
		08/03/03	1782.20	19.98	1762.22	0*		(2)
		09/03/03	1782.20	20.46	1761.74	0*	0*	(2)
		10/03/03	1782.20	20.49	1761.71	0*	Ü	(2)
		11/03/03	1782.20	18.50	1763.70	0*		(2)
	•	12/03/03	1782.20	17.53	1764.67	0*	0*	(2)
	ES-03	01/07/03	1783.39	DRY	1704.07	0*	0	(1)
	23-03	02/04/03	1783.39	DRY		0*		
		03/04/03	1783.39	DRY	****	0*	0*	(1)
		04/08/03	1783.39	DRY		0*	U	(1)
		05/06/03	1783.39	DRY		0*		(1)
				DRY		0*	0*	(1)
		06/04/03	1783.39		***	0*	U	(1)
		07/02/03	1783.39	DRY	4704.00			(1)
		08/06/03	1783.39	21.43	1761.96	0*	0.1	(4)
		09/03/03	1783.39	DRY		0*	0*	(1)
		10/10/03	1783.39	DRY	4700.00	0*		(1)
		11/05/03	1783.39	19.71	1763.68	0*		
		12/03/03	1783.39	DRY		0*	0*	(1)
	ES-04	01/07/03	1817.24	DRY	***	0*		(1)
		02/04/03	1817.24	DRY		0*		(1)
		03/04/03	1817.24	DRY		0*	0*	(1)
		04/08/03	1817.24	DRY		0*		(1)
		04/29/03	1817.24	9.62	1807.62	0*		
		06/04/03	1817.24	DRY		0*	0*	(1)
		07/02/03	1817.24	DRY		0*		(1)
		08/06/03	1817.24	11.57	1805.67	0*	_	
		09/03/03	1817.24	DRY		0*	0*	(1)
		10/10/03	1817.24	DRY		0*		(1)
		11/04/03	1817.24	DRY		0*	_	
		12/03/03	1817.24	DRY		0*	0*	(1)
	ES-05	01/07/03	1818.13	DRY		0*		(1)
		02/04/03	1818.13	DRY		0*		(1)
		03/04/03	1818.13	DRY		0*	0*	(1)
		04/08/03	1818.13	DRY	***	0*		(1)
		04/29/03	1818.13	8.20	1809.93	0*		
		06/04/03	1818.13	DRY		0*	0*	(1)

VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Area I Road ASU	ES-05	07/02/03	1818.13	DRY		0*		(1)
		08/06/03	1818.13	11.26	1806.87	0*		(' /
		09/03/03	1818.13	DRY		Ō*	0*	(1)
		10/10/03	1818.13	DRY		0*	•	(1)
		11/04/03	1818.13	17.94	1800.19	0*		(.)
		12/03/03	1818.13	DRY		0*	0*	(1)
	ES-06	01/03/03	1825.41	DRY		0*		(2)
		02/03/03	1825.41	DRY		0*		(2)
		03/03/03	1825.41	16.87	1808.54	0*	0*	(2)
		04/03/03	1825.41	11.05	1814.36	0*	Ü	(2)
		05/03/03	1825.41	12.09	1813.32	0*		(2)
		06/03/03	1825.41	11.41	1814.00	0*	0*	(2)
		07/03/03	1825.41	12.84	1812.57	0*	•	(2)
		08/03/03	1825.41	14.67	1810.74	0*		(2)
		09/03/03	1825.41	17.14	1808.27	0*	0*	(2)
		10/03/03	1825.41	17.14	1807.75	0*	U	(2)
		11/03/03	1825.41	18.28	1807.73	0*		
		12/03/03	1825.41	22.19	1803.22	0*	0*	(2)
•	ES-07	01/07/03	1826.53	DRY		0*	<u> </u>	(2)
	E3-07	02/04/03	1826.53	DRY	***	0*		(1)
		03/04/03	1826.53			0*	0*	(1)
				DRY			U"	(1)
		04/08/03	1826.53	DRY		0*		(1)
		05/06/03	1826.53	DRY		0* 0*	0.0	(1)
		06/04/03	1826.53	DRY		0*	0*	(1)
		07/02/03	1826.53	DRY		0*		(1)
		08/06/03	1826.53	DRY		0*		
		09/03/03	1826.53	DRY		0*	0*	(1)
		10/10/03	1826.53	DRY		0*		(1)
		11/04/03	1826.53	DRY		0*		
		12/03/03	1826.53	DRY		0*	0*	(1)
	RD-01	01/07/03	1935.89	203.67	1732.22	0*		(1)
		02/04/03	1935.89	203.88	1732.01	0*		(1)
		03/04/03	1935.89	201.16	1734.73	0*	0*	(1)
		04/08/03	1935.89	200.93	1734.96	0*		(1)
		05/06/03	1935.89	201.33	1734.56	0*		(1)
		06/10/03	1935.89	200.74	1735.15	0*	0*	(1)
		07/02/03	1935.89	201.01	1734.88	0*		(1)
		08/05/03	1935.89	206.20	1729.69	0*		
		09/03/03	1935.89	204.84	1731.05	0*	0*	(1)
		10/10/03	1935.89	204.80	1731.09	0*		(1)
		11/04/03	1935.89	204.47	1731.42	0*		(1)
		12/03/03	1935.89	204.61	1731.28	0*	0*	(1)
	RD-02	01/07/03	1873.92	174.88	1699.04	0*		(1)
		02/04/03	1873.92	172.32	1701.60	0*		(1)
		03/04/03	1873.92	171.67	1702.25	0*	0*	(1)
		04/08/03	1873.92	171.43	1702.49	0*		(1)

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Area I Road ASU	RD-02	05/06/03	1873.92	170.79	1703.13	0*		(1)
		06/10/03	1873.92	172.36	1701.56	0*	0*	(1)
		07/02/03	1873.92	171.69	1702.23	0*		(1)
		08/06/03	1873.92	171.34	1702.58	0*		, ,
		09/03/03	1873.92	171.15	1702.77	0*	0*	(1)
		10/10/03	1873.92	172.11	1701.81	0*		(1)
		11/06/03	1873.92	171.15	1702.77	0*		` ,
/S-05 UV/H202 E		12/03/03	1873.92	171.52	1702.40	0*	0*	(1)
	ES-11	01/07/03	1835.07	DRY		0* -		(1)
	· •	02/04/03	1835.07	DRY		0*		(1)
		03/04/03	1835.07	DRY		0*	0*	(1)
		04/08/03	1835.07	DRY		0*	,	(1)
		04/29/03	1835.07	19.72	1815.35	0*		()
		06/04/03	1835.07	DRY		0*	0*	(1)
		07/02/03	1835.07	DRY		0*	Ü	(1)
		08/07/03	1835.07	DRY		0*		(1)
		09/03/03	1835.07	DRY		0*	0*	(1)
				DRY		0*	U	(1)
		10/10/03	1835.07			0*		(1)
		11/04/03	1835.07	DRY			0+	(4)
	TIAD 04	12/03/03	1835.07	DRY	4050.50	0*	0*	(1)
	HAR-04	01/07/03	1873.40	20.81	1852.59	0*		(1)
		02/04/03	1873.40	20.37	1853.03	0*		(1)
		03/04/03	1873.40	20.26	1853.14	0*	0*	(1)
		04/08/03	1873.40	21.30	1852.10	0*		(1)
		04/29/03	1873.40	16.72	1856.68	0*		
		06/04/03	1873.40	UTM		0*	0*	(1)
		07/02/03	1873.40	NA		0*		(1)
		08/05/03	1873.40	19.39	1854.01	0*		
		09/03/03	1873.40	18.77	1854.63	0*	0*	(1)
		10/10/03	1873.40	19.10	1854.30	0*		(1)
		11/04/03	1873.40	21.47	1851.93	0*		
		12/03/03	1873.40	19.02	1854.38	0*	0*	(1)
	HAR-16	01/07/03	1872.31	NA**		0*		
		02/04/03	1872.31	NA**		0*		
		03/04/03	1872.31	NA**		0*	0*	
		04/08/03	1872.31	NA**		0*		
		05/06/03	1872.31	NA**		0*		
		06/04/03	1872.31	NA**	***	0*	0*	
		07/02/03	1872.31	NA**		0*	•	
		08/05/03	1872.31	NA**	****	0*		
		09/03/03	1872.31	NA**	No service	0*	0*	
		10/06/03	1872.31	NA**		0*	-	
		11/03/03	1872.31	NA**		0*		
		12/03/03	1872.31	NA**		0*	0*	

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
WS-05 UV/H202	WS-05	01/07/03	1830.20	294.44	1535.76	0*		(1)(C)
		02/04/03	1830.20	292.17	1538.03	0*		(1)(C)
		03/04/03	1830.20	287.16	1543.04	0*	0*	(1)(C)
		04/08/03	1830.20	287.40	1542.80	0*		(1)(C)
		05/06/03	1830.20	286.22	1543.98	0*		(1)(C)
		06/04/03	1830.20	285.96	1544.24	0*	0*	(1)(C)
		07/02/03	1830.20	284.86	1545.34	0*		(1)(C)
		08/06/03	1830.20	284.73	1545.47	0*		(C)
		09/03/03	1830.20	284.00	1546.20	0*	0*	(1)(C)
	•	10/06/03	1830.20	284.34	1545.86	0*		(1)(C)
		11/04/03	1830.20	284.28	1545.92	0*		(1)(C)
		12/03/03	1830.20	283.97	1546.23	0*	0*	(1)(C)
STL-IV ASU	ECL FD	01/07/03		DRY		0*	 	(1)
3.2		02/04/03		DRY	***	0*		(1)
		03/04/03		DRY		0*	0*	(1)
		04/08/03		DRY		0*	v	(1)
		05/06/03	***	DRY		0*		(1)
		06/04/03		DRY		0*	0*	(1)
		07/02/03	***	DRY		0*	Ü	(1)
		08/13/03		DRY		0*		(1)
		09/03/03		DRY		0*	0*	(1)
		10/06/03		DRY		0*	U	(1)
		11/03/03		DRY		0*		
		12/03/03		DRY		0*	0*	(1) (1)
	ECL Sump	01/07/03		DRY		0*		
	LCL Sump	02/04/03		DRY		0*		(1)
		03/04/03		DRY		0*	0*	(1)
				DRY			0	(1)
		04/08/03				0*		(1)
		05/06/03		DRY DRY		0* 0*	O*	(1)
		06/04/03				0*	0*	(1)
		07/02/03		DRY		0*		(1)
		08/13/03		DRY			O*	(1)
		09/03/03		DRY		0*	0*	(1)
		10/06/03		DRY		0* 0*		(1)
		11/03/03		DRY		0* 0*	0.	(1)
	F0.44	12/03/03	4700.00	DRY		0*	0* .	(1)
	ES-14	01/07/03	1728.69	DRY		0*		(1)
		02/04/03	1728.69	DRY		0*		(1)
		03/04/03	1728.69	DRY		0*	0*	(1)
		04/08/03	1728.69	DRY		0*		(1)
		05/06/03	1728.69	DRY		0*		(1)
		06/04/03	1728.69	DRY		0*	0*	(1)
		07/02/03	1728.69	DRY		0*		(1)
		08/06/03	1728.69	DRY		0*		
		09/03/03	1728.69	DRY		0*	0*	(1)
		10/06/03	1728.69	DRY		0*		(1)

Measuring Water **Average** Average Water Level Depth to **Treatment** Extraction Point Level Monthly Quarterly Measurement Water **Footnotes** Well Elevation Elevation Flow Rate Flow Rate System Date (feet) (ft, MSL) (ft. MSL) (gpm) (gpm) ES-14 0* STL-IV ASU 11/04/03 1728.69 DRY ---(1)0* 12/03/03 1728.69 DRY 0* (1)0* ES-17 25.68 01/07/03 1713.63 1739.31 (1)0* 02/04/03 1739.31 24.87 1714.44 (1) 0* 0* 23.87 03/04/03 1739.31 1723.61 (1)04/08/03 1739.31 24.14 1715.17 0* (1) 05/06/03 1739.31 24.05 1715.26 0* (1) 0* 0* 06/04/03 1739.31 24.32 1723.61 (1)07/02/03 1739.31 24.14 0* (1) 1715.17 08/04/03 1739.31 21.04 1718.27 0* 09/03/03 1739.31 23.86 1715.45 0* 0* (1)10/06/03 23.98 1715.33 0* (1) 1739.31 11/03/03 1739.31 28.15 1711.16 0* 12/03/03 1739.31 23.69 1715.62 0* 0* (1)0* ES-23 01/07/03 1760.73 12.89 1747.84 (1) 02/04/03 1760.73 12.64 1748.09 0* (1) 03/04/03 1760.73 12.11 1748.62 0* 0* (1) 0* 04/08/03 1760.73 12.44 1748.29 (1) 05/06/03 1760.73 12.58 1748.15 0* (1) 0* 1760.73 12.64 0* (1) 06/04/03 1748.09 07/02/03 12.72 0* (1) 1760.73 1748.01 11.47 0* 08/05/03 1760.73 1749.26 0* 0* (1)09/03/03 1760.73 12.81 1747.92 10/06/03 1760.73 12.48 1748.25 0* (1) 11/06/03 1760.73 12.41 1748.32 0* 12/03/03 1760.73 12.74 1747.99 0* 0* (1)ES-24 01/03/03 DRY 0* (2)1728.67 0* DRY (2) 02/03/03 1728.67 0* 03/03/03 DRY 0* (2) 1728.67 04/03/03 0* (2) 1728.67 23.12 1705.55 0* 05/03/03 1728.67 21.48 1707.19 (2) 06/03/03 1728.67 21.21 1707.46 0* 0* (2) 0* (2) 07/03/03 1728.67 21.75 1706.92 08/03/03 1728.67 23.71 1704.96 0* (2) 09/03/03 25.78 1702.89 0* 0* (2) 1728.67 10/03/03 1728.67 25.95 1702.72 0* (2) 11/03/03 1728.67 DRY 0* (2) 12/03/03 1728.67 DRY 0* 0* (2) ES-26 01/07/03 29.18 1718.83 0* 1748.01 (1) 0* 02/04/03 1748.01 28.76 1719.25 (1) 1720.47 0* 0* 03/04/03 1748.01 27.54 (1) 04/08/03 1748.01 27.63 1720.38 0* (1) 0* 05/06/03 1748.01 28.14 1719.87 (1) 27.84 0* 0* 06/04/03 1748.01 (1) 1720.17 07/02/03 1748.01 28.04 1719.97 0* (1) 08/04/03 1748.01 20.46 1727.55 0*

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
STL-IV ASU	ES-26	09/03/03	1748.01	27.88	1720.13	0*	0*	(1)
0,2		10/06/03	1748.01	26.21	1721.80	0*		(1)
		11/03/03	1748.01	28.27	1719.74	0*		(-/
		12/03/03	1748.01	25.77	1722.24	0*	0*	(1)
	ES-27	01/07/03	1740.67	28.23	1712.44	0*		(1)
		02/04/03	1740.67	28.82	1711.85	0*		(1)
		03/04/03	1740.67	27.89	1724.37	0*	0*	(1)
		04/08/03	1740.67	28.08	1712.59	0*		(1)
		05/06/03	1740.67	27.83	1712.84	0*		(1)
		06/04/03	1740.67	27.23	1724.37	0*	0*	(1)
		07/02/03	1740.67	27.31	1713.36	0*	· ·	(1)
		08/04/03	1740.67	21.72	1718.95	0*		(')
		09/03/03	1740.67	28.24	1712.43	0*	0*	(1)
		10/06/03	1740.67	28.21	1712.46	0*	U	(1)
		11/03/03	1740.67	29.05	1712.40	0*		(1)
		12/03/03	1740.67	28.44	1711.02	0*	0*	(1)
	ES-30	01/07/03	1759.51	14.97	1744.54	0*	0	(1)
	LO-30	02/04/03	1759.51	14.65	1744.86	0*		
		03/04/03	1759.51	14.05	1744.00	0*	0*	(1)
		04/08/03	1759.51	15.11		0*	U	(1)
		05/06/03	1759.51 1759.51	15.11	1744.40	0*		(1)
					1744.02		0.*	(1)
		06/04/03	1759.51	15.68	1749.21	0* 0*	0*	(1)
		07/02/03	1759.51	15.59	1743.92	0* 0*		(1)
		08/05/03	1759.51	11.73	1747.78	0*	0.0	445
		09/03/03	1759.51	15.17	1744.34	0*	0*	(1)
		10/06/03	1759.51	15.32	1744.19	0*		(1)
		11/06/03	1759.51	12.50	1747.01	0*		445
		12/03/03	1759.51	15.38	1744.13	0*	0*	(1)
	ES-32	01/07/03	1740.65	DRY		0*		(1)
		02/04/03	1740.65	DRY		0*		(1)
		03/04/03	1740.65	DRY		0*	0*	(1)
		04/08/03	1740.65	DRY	4700.40	0*		(1)
		04/28/03	1740.65	11.53	1729.12	0*		
		06/04/03	1740.65	DRY		0*	0*	(1)
		07/02/03	1740.65	DRY		0*		(1)
		08/04/03	1740.65	19.66	1720.99	0*		
		09/03/03	1740.65	DRY		0*	0*	(1)
		10/06/03	1740.65	DRY		0*		(1)
		11/03/03	1740.65	DRY		0*		
		12/03/03	1740.65	DRY		0*	0*	(1)
	HAR-17	01/07/03	1711.59	30.09	1632.59	0.09		(1)
		02/04/03	1711.59	26.54	1685.05	0.06		(1)
		03/04/03	1711.59	23.97	1687.62	0.0	0.05	(1)
		04/08/03	1711.59	23.84	1632.59	0*		(1)
		05/06/03	1711.59	22.67	1688.92	0*		(1)
		06/04/03	1711.59	22.84	1688.75	0*	0*	(1)

TABLE XIV
SUMMARY OF EXTRACTION WELL WATER LEVELS AND FLOW RATES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
STL-IV ASU	HAR-17	07/18/03	1711.59	22.89	1632.59	0*		(1)
		08/06/03	1711.59	22.97	1688.62	0*		
		09/03/03	1711.59	24.15	1687.44	0*	0*	(1)
		10/06/03	1711.59	25.32	1686.27	0*		(1)
		11/03/03	1711.59	26.56	1685.03	0*		
		12/04/03	1711.59	27.11	1684.48	0*	0*	(1)
•	HAR-18	01/07/03	1749.41	31.25	1686.41	0*		(1)
		02/04/03	1749.41	29.78	1719.63	0*		(1)
		03/04/03	1749.41	28.92	1720.49	0*	0*	(1)
		04/08/03	1749.41	29.02	1686.41	0*		(1)
		05/06/03	1749.41	29.12	1720.29	0*		(1)
		06/04/03	1749.41	28.87	1720.54	0*	0*	(1)
		07/18/03	1749.41	29.31	1720.10	0*		(1)
		08/04/03	1749.41	22.65	1726.76	0*		
		09/03/03	1749.41	28.83	1720.58	0*	0*	(1)
		10/06/03	1749.41	28.65	1720.76	0*		(1)
		11/03/03	1749.41	25.86	1723.55	0*		
		12/04/03	1749.41	27.98	1721.43	0*	0*	(1)

(C)	=	Depth to water measured from top of casing. During the monitoring period, pumps had been removed from several wells to allow hydrogeologic testing.
gpm	=	Gallons per minute.
NA	=	Not available. Well was not monitored or transducer was inoperable.
MSL	=	Mean sea level.
()	=	No data available/not applicable.
(1)	=	Water level measured by EnviroSolve Corporation.
(2)	=	Water level measured by Montgomery Watson.
(*)	=	Several extraction wells were inactive due to ongoing Shallow Zone Groundwater Investigation (Ogden, 2000) and the Chatsworth Formation Operable Unit Investigation (Montgomery Watson, 2000b).
(**)	=	Well is currently equipped with a FLUTe discrete interval monitoring system. See Table II for data.
ASU	=	Air stripping unit.
UV/H2O2	=	Ultraviolet light/ peroxidation.
UTM	=	Unable to measure; obstruction in well.

TABLE XV SUMMARY OF 2003 PERMITTED GROUNDWATER REMEDIATION FACILITIES BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Page 1 of 1

								,	Gallons x 1,0	000					
Remediation		Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Total Annual Pumpage	Total Pumpage t
Extraction W															
Delta ASU	WS-09A	670.4	1,360.9	NR	292.1	496.0	15.0	465,1	214.8	499.7	38.5	265.9	314.2	4632.6	411771.
	HAR-07	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2789.
Alfa ASU	WS-08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	510871.
Bravo ASU	WS-09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	62693.
	RD-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40362.
	RD-09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6106.
	ES-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	461.
	ES-22	0,0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	682.
Area I Road	RD-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80122.0
ASU	RD-02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	71702.
	ES-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.4
	ES-03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	987.0
	ES-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	425.6
	ES-05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	308.9
	ES-06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	882.
	ES-07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	48.3
WS-5 Area	WS-05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	540394.
UV/H ₂ O ₂	ES-11	0.0	0.0	0.0	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	52.
	HAR-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	765.4
	HAR-16	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	1028.
STL-IV	ES-14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	73. -
ASU	ES-17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	277.1
	ES-23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	127.7
	ES-24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	97.8
	E\$-26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2430.4
	ES-27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	368.1
	ES-30	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1825.4
	ES-32	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	21.7
	HAR-17	4.1	2.6	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	3185.0
	HAR-18	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.1	726.3
	ECL Sump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	1081.0
	ECL FD	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	2792.7
Total System	•	674.5	1,363.6	0.0	292.1	496.0	15.0	465.1	214.8	499,7	38.5	265.9	314.2	4639.4	1745504.0

ASU = Air stripping unit NR=Data not reported

UV/H2O2 = Ultraviolet light/peroxidation

NOTES: Remediation system monitoring conducted by EnviroSolve Corporation. Pumpage data and cumulative pumpage provided by EnviroSolve Corporation. Several extraction wells were inactive due to ongoing Shallow Zone Groundwater Investigation (Ogden, 2000) and Chatsworth Formation Operable Unit investigation (Montgomery Watson, 2000b).

Page 1 of 1

Interim S	System	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total Annual
Extraction	on Well(s)					**-	(gailons x 1,	000)						Pumpage
RMHF	RD-63	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.8	13.8	28.9	28.1	85.6
FSDF	RD-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	RS-54	0.052	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
B/059	RD-24	22.8	24.5	31.2	25.7	34.8	UTM	UTM	UTM	10.3	24.4	23.1	24.8	221.6
	RD-25	7.8	8.0	9.1	7.2	8.8	UTM	UTM	UTM	9.9	UTM	UTM	0.3	51.1
	RD-28	6.2	6.0	9.0	7.5	9.7	UTM	UTM	UTM	10.6	UTM	UTM	0.4	49.4
	S-2 Sump	0.0	0.0	0.0	0.0	0.0	UTM	UTM	UTM	UTM	UTM	UTM	UTM	0.0
	B/056 Pit	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Int	erim System	36.9	38.5	49.3	40.4	53.3	0.0	0.0	0.0	45.6	38.2	52.0	53.6	407.8

Note: Remediation system monitoring conducted by EnviroSolve Corporation. Pumpage data and cumulative pumpage provided by EnviroSolve Corporation. UTM: Data not collected due to the B/059 demolition.

TABLE XVII
SUMMARY OF WATER QUALITY RESULTS
FOR PERMITTED GROUNDWATER REMEDIATION FACILITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				1,2-DCI	E (ug/l)			VOCs	Removed
Sample	Location	Date Sampled	TCE (ug/l)	cis	trans	Perchlorate (ug/l)	SVOCs (ug/l)	By Quarter (lbs)	To Date (lbs)
Delta ASU	Influent	01/15/03		N	lot Operating	ı*		 	1279.7
		02/04/03	150	66	5.0 U	4 U		1	1280.9
		03/10/03	3.9	6.7	0.27 U	4 U		1.3	1281.0
		04/23/03	6.5	2.1	0.5 U	4 U			1281.0
	ļ	05/06/03	0.65	0.5 U	5.0 U	4 U		7	1281.0
	ł	06/10/03	53	20	0.72	4 U		0.3	1281.3
		07/25/03	440	150	4.2	4 U			1283.7
		08/13/03	830	330	9	4 U			1286.4
	1	09/04/03	1300	390	11	4 U		5.8	1289.5
	ł	10/06/03	1700	540	15	4 U			1298.9
		11/25/03	1800	590	16	4 U]	1299.7
		12/04/03	1600	530	15	4 U		5.6	1304.5
	Primary	01/15/03		1	lot Operating	*			
	Effluent	02/04/03	0.5 U	0.6	0.5 U				;
	•	03/10/03	0.26 U	0.32 U	0.27 U				
		04/23/03	0.5 U	0.5 U	0.5 U	Ì			
		05/06/03	0.5 U	0.5 U	0.5 U				
		06/10/03	0.5 U	0.5 U	0.5 U				į
		07/25/03	0.5 U	0.5 U	0.5 U	ľ		1	į
	ŀ	08/13/03	0.59	0.5 U	0.5 U			j	
		09/04/03	1.4	0.91	0.5 U			1	
		10/06/03	0.61	0.5U	0.5 U				! !
	ļ	11/25/03	0.5U	0.5U	0.5U				<u> </u>
		12/04/03	0.55	0.5U	0.5U	<u> </u>			
	Secondary	01/15/03			ot Operating	<u> *</u>		4	
	Effluent	02/04/03	0.5 U	0.5 U	0.5 U				! !
	1	03/10/03	0.26 U	0.32 U	0.27 U				
	i	04/23/03	0.5 U	0.5 U	0.5 U			1	
		05/06/03	0.5 U	0.5 U	0.5 U			1	
	-	06/10/03	0.5 U	0.5 U	0.5 U				i !
	1	07/25/03	0.5 U	0.5 U	0.5 U				
	į	08/13/03 09/04/03	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U				
	1	10/06/03	0.5 U	0.5U	0.5 U				
		11/25/03	0.5U	0.5U	0.5U			1	
		12/04/03	0.58	0.5U	0.5U				į.
Alfa ASU	Influent	01/15/03	0.50	0.50	. 0.00				460.2
		02/04/03						ſ	460.2
		03/10/03						0.0	460.2
		04/23/03							460.2
	1	05/06/03						1	460.2
		06/10/03		1	lot Operating	*		0.0	460.2
	[07/25/03							460.2
		08/13/03							460.2
		09/04/03						0.0	460.2
		10/06/03							460.2
	1	11/25/03							460.2
		12/04/03						0.0	460.2
	Primary	01/15/03						1	
	Effluent	02/04/03							1
	1	03/10/03						1	-
		04/23/03 05/06/03			lat Oner-time	.*		į	İ
		เ นธ/บ6/นิวี โ		1	Not Operating	l"		Ī	i
					•			į.	1
		06/10/03							

TABLE XVII
SUMMARY OF WATER QUALITY RESULTS
FOR PERMITTED GROUNDWATER REMEDIATION FACILITIES, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				1,2-DC	E (ug/l)			VOCs	Removed
Sample	Location	Date Sampled	TCE (ug/l)	cis	trans	Perchlorate (ug/l)	SVOCs (ug/l)	By Quarter (lbs)	To Date (lbs)
Alfa ASU	Primary	10/06/03			Not Operating	1*			
	Effluent	11/25/03							
Į.		12/04/03						-	
1	Secondary Effluent	01/15/03 02/04/03							
l	Lindent	03/10/03							
		04/23/03							
		05/06/03							
ļ		06/10/03			Not Operating) *			
		07/25/03							
		08/13/03							
	•	09/04/03 10/06/03							
		11/25/03							
		12/04/03							
Bravo ASU	Influent	01/15/03							126.1
		02/04/03							126.1
		03/10/03 04/23/03						0.0	126.1 126.1
		05/06/03							126.1
		06/04/03	-		Not Operating	i*		0.0	126.1
	1	07/25/03				•			126.1
		08/13/03							126.1
	1	09/04/03						0.0	126.1
		10/06/03							126.1
		11/25/03 12/04/03						0.0	126.1 126.1
	Primary	01/15/03						1 0.0	120.1
	Effluent	02/04/03							
		03/10/03							
		04/23/03							
		05/06/03 06/04/03			Not Operating	,*			
		07/25/03		•	Not Operating				
1		08/13/03						1	
l		09/04/03							
		10/06/03							
]		11/25/03							
1	Secondary	12/04/03 01/15/03				· · · · ·	····		
1	Effluent	02/04/03							
İ		03/10/03							
		04/23/03							
		05/06/03				_			
		06/04/03		İ	Not Operating	J*		1	
		07/25/03 08/13/03							
		09/04/03							
		10/06/03						1	
		11/25/03						1	
MC F	1-6	12/04/03						 	225.0
	Influent	01/15/03						1	225.0 225.0
UV/H ₂ O ₂		02/04/03 03/10/03		1	Not Operating	,*		1 00	225.0 225.0
		04/23/03		1	NOL OPEIAUNG	ı		0.0	225.0
		05/06/03							225.0
1		06/04/03						0.0	225.0

				1,2-DC	E (ug/l)			VOCs	Removed
Sample	Location	Date Sampled	TCE (ug/l)	cis	trans	Perchlorate (ug/l)	SVOCs (ug/l)	By Quarter (lbs)	To Date (lbs)
WS-5	Influent	07/25/03							225.0
UV/H ₂ O ₂		08/13/03						1	225.0
		09/04/03			Not Operating	3 [*]		0.0	225.0
		10/06/03							225.0
		11/25/03							225.0
		12/04/03						0.0	225.0
	Effluent	01/15/03							[[
	1	02/04/03							
		03/10/03							
		04/23/03							
		05/06/03			N - 1 O 1'-				
Į		06/04/03			Not Operating) "			
1	ļ	07/25/03 08/13/03						İ	
	1	09/04/03							
		10/06/03							
		11/25/03]	
		12/04/03							İ
STL-IV	Influent	01/15/03	******		Not Operating	1*			81.6
ASU		02/04/03	140	37	10 U	4U		1	81.6
1.00		03/10/03		·				0.0	81.6
		04/23/03							81.6
		05/06/03							81.6
		06/04/03						0.0	81.6
		07/25/03		;	Not Operating)*			81.6
		08/13/03							81.6
		09/04/03						0.0	81.6
j		10/06/03						1	81.6
		11/25/03							81.6
		12/04/03						0.0	81.6
	Primary	01/15/03	0.511	0.511	Not Operating] *		_	į
]	Effluent	02/04/03 03/10/03	0.5 U	0.5 U	0.5 U			-	ļ
	1	04/23/03							
		05/06/03							
		06/04/03			Not Operating	*			
j	1	07/25/03			Not Operating	3		ļ	•
		08/13/03							
		09/04/03							
		10/06/03							
		11/25/03							
		12/04/03]
	Secondary	01/15/03			Not Operating	J*			
1	Effluent	02/04/03	0.5 U	0. <u>5</u> U	0.5 U				
}	1	03/10/03						1	
l	1	04/23/03							
1		05/06/03							1
1		06/04/03							
1	1	07/25/03			Not Operating	3 ~		ļ	•
		08/13/03							1
1		09/04/03						1	1
1		10/06/03 11/25/03							
1	1	12/04/03							1
L	1	12/04/03				 		_1	·

SVOCs	=	Semi-volatile organic compounds.
U	=	Not detected; numerical value is the reporting limit for that compound.
TCE	=	Trichloroethylene.
1,2-DCE	=	1,2-Dichloroethylene.
ug/l	=	Micrograms per liter.
lbs	=	Pounds.
ASU	=	Air stripping unit.
UV/H ₂ O ₂	=	Ultraviolet light/ peroxidation.
(*)	=	Several extraction wells were inactive due to the ongoing Shallow Zone
``		Groundwater Investigation (Ogden, 2000) and the Chatsworth Formation
		Operable Unit Investigation (Montgomery Watson, 2000b).
	=	Not analyzed.

NOTES:

Samples analyzed for TCE and 1,2-DCE by EPA Method 8010B or 8260B; perchlorate by modified EPA Method 300.0.

All Groundwater Remediation Facilities (GRF) water quality samples were collected by EnviroSolve Corporation personnel and analyzed by Del Mar Analytical.

APPENDIX A

Water Level Hydrographs

APPENDIX A WATER LEVEL HYDROGRAPHS

TABLE OF CONTENTS

<u>Table</u>

Construction Details of Discrete-Interval Monitoring Systems A-I

Figures

Water Level Hydrographs A-1 through A-234
FLUTe System Hydrographs A-235 through A-251

LIST OF HYDROGRAPHS

Shallow Wells

Figure	; ;	Well Identifier
A-1	through A-11	SH-01 through SH-11
A-12	through A-36	RS-01 through RS-25
A-37	through A-43	RS-27 through RS-32, and RS-54
A-44	through A-75	ES-01 through ES-32
A-76	through A-79	HAR-02 through HAR-04, and HAR-09
A-80	through A-84	HAR-11 through HAR-15
A-85	through A-92	HAR-27 through HAR-34

Chatsworth Formation Wells

Figure	Well Identifier
A-93 through A-96	RD-01 through RD-04
A-97 through A-99	RD-05A, RD-05B, RD-05C
A-100 through A-126	RD-06 through RD-32
A-127 through A-129	RD-33A, RD-33B, RD-33C
A-130 through A-132	RD-34A, RD-34B, RD-34C
A-133 through A-134	RD-35A, RD-35B
A-135 through A-139	RD-36A, RD-36B, RD-36C, RD-36D, and RD-37
A-140 through A-141	RD-38A, RD-38B
A-142 through A-144	RD-39A, RD-39B, and RD-40
A-145 through A-148	RD-41A, RD-41B, RD-41C, and RD-42
A-149 through A-152	RD-43A, RD-43B, RD-43C, and RD-44
A-153 through A-155	RD-45A, RD-45B, RD-45C
A-156 through A-158	RD-46A, RD-46B, and RD-47
A-159 through A-161	RD-48A, RD-48B, RD-48C
A-162 through A-165	RD-49A, RD-49B, RD-49C, and RD-50
A-166 through A-168	RD-51A, RD-51B, RD-51C
A-169 through A-172	RD-52A, RD-52B, RD-52C, and RD-53
A-173 through A-175	RD-54A, RD-54B, RD-54C
A-176 through A-177	RD-55A, RD-55B
A-178 through A-180	RD-56A, RD-56B, and RD-57
A-181 through A-183	RD-58A, RD-58B, RD-58C
A-184 through A-186	RD-59A, RD-59B, RD-59C
A-187 through A-194	RD-60 through RD-67

LIST OF HYDROGRAPHS

Chatsworth Formation Wells - continued

Figure		Well Identifier
A-195	through A-186	RD-68A, RD-68B
A-197	through A-202	RD-69 through RD-74
A-203	through A-207	HAR-01, and HAR-05 through HAR-08
A-208	through A-218	HAR-16 through HAR-26
A-219	through A-223	WS-04A through WS-08
A-224	through A-226	WS-09, WS-09A, WS-09B
A-227	through A-231	WS-11 through WS-14, and WS-SP
A-232	through A-234	OS-24 through OS-26

FLUTe System Hydrographs

Figure	Well Identifier
A-235	RD-10
A-236	RD-21
A-237	RD-22
A-238	RD-23
A-239	RD-31
A-240	RD-33A
A-241	RD-50
A-242	RD-53
A-243	RD-54A
A-244	RD-57
A-245	RD-64
A-246	RD-65
A-247	RD-72
A-248	RD-73
A-249	HAR-01
A-250	HAR-16
A-251	HAR-24

Note: FLUTe system hydrographs were not available for well RD-07 because the transducer was inoperable during 2003 and from OS-24 because a datalogger is not installed at the well.

TABLE A-I
CONSTRUCTION DETAILS OF DISCRETE-INTERVAL MONITORING SYSTEMS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	RD.	-07	RD.	-10	RD-	21	RD-	-22	
Date Liner Installed	04/2	04/29/02		03/18/02		01/14/03		02/18/03	
Date Liner Removed	N.	NA NA		, NA		NA		NA ·	
Top of Casing Elevation (ft msl)	1812	2.82	1904	1904.43		1866.96		3.41	
Open-hole Depth to Water (ft btc)	87.	87.03		195		90.3		305	
Hole Total Depth (ft btc)	299	.55	40	1	175	5.3	44	0	
	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	
Port 1	50 - 60	1757.82	171 - 181	1728.43	85-95	1776.96	310-320	1538.41	
Port 2	70 - 80	1737.82	191 - 201	1708.43	105-115	1756.96	330-340	1518.41	
Port 3	90 - 100	1717.82	211 - 221	1688.43	125-135	1736.96	350-360	1498.41	
Port 4	110 - 120	1697.82	231 - 241	1668.43	145-155	1716.96	370-380	1478.41	
Port 5	130 - 140	1677.82	251 - 261	1648.43	165-175	1696.96	390-400	1458.41	
Port 6	150 - 160	1657.82	271 - 281	1628.43			410-420	1438.41	
Port 7	170 - 180	1637.82	291 - 301	1608.43			430-440	1418.41	
Port 8	190 - 200	1617.82	311 - 321	1588.43					
Port 9	210 - 220	1597.82	331 - 341	1568.43					
Port 10	230 - 240	1577.82	351 - 361	1548.43					
Port 11	250 - 260	1557.82	371 - 381	1528.43					
Port 12	270 - 280	1537.82	391 - 401	1508.43					
Port 13	290 - 300	1517.82							
Port 14	_								
Port 15									

TABLE A-I
CONSTRUCTION DETAILS OF DISCRETE-INTERVAL MONITORING SYSTEMS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	RD.	RD-23		RD-31		RD-33A		RD-50	
Date Liner Installed	01/2	01/20/03		01/25/01		01/09/03		01/15/03	
Date Liner Removed	N	Ą	N	NA		NA NA		4	
Top of Casing Elevation (ft msl)	1838	3.19	1945	1945.02		1792.97		1914.88	
Open-hole Depth to Water (ft btc)	236	.15	116	.32	211	.58	113	113.31	
Hole Total Depth (ft btc)	443	3.2	178	3.5	321	.75	195	5.3	
	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	
Port 1	231-241	1602.19	48 - 58	1892.02	211 - 221	1576.97	106-116	1803.88	
Port 2	251-261	1582.19	68 - 78	1872.02	231 - 241	1556.97	126-136	1783.88	
Port 3	271-281	1562.19	88 - 98	1852.02	251 - 261	1536.97	146-156	1763.88	
Port 4	291-301	1542.19	108 - 118	1832.02	271 - 281	1516.97	166-176	1743.88	
Port 5	311-321	1522.19	128 - 138	1812.02	291 - 301	1496.97	186-196	1723.88	
Port 6	331-341	1502.19	148 - 158	1792.02	311 - 321	1476.97			
Port 7	351-361	1482.19	168 - 178	1772.02					
Port 8	371-381	1462.19							
Port 9	391-396	1444.69				••	_		
Port 10	-		-				-		
Port 11	-								
Port 12	-		-						
Port 13	_				-				
Port 14	_						-		
Port 15			-						

TABLE A-I
CONSTRUCTION DETAILS OF DISCRETE-INTERVAL MONITORING SYSTEMS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	RD	-53	RD-	54A	RD-	-57	RD.	-64	
Date Liner Installed	01/2	01/23/01		01/07/03		09/11/02		04/17/02	
Date Liner Removed	N	A	NA		NA NA		N.	Ą	
Top of Casing Elevation (ft msl)	1909	9.19	1841.72		1774.15		1857	7.04	
Open-hole Depth to Water (ft btc)	128	3.5	160	160.2		352.5		231.82	
Hole Total Depth (ft btc)	16	51	283	3.8	418	418.3		3.0	
	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	
Port 1	74 - 79	1832.69	150.5 - 160.5	1686.22	228 - 238	1541.15	170.5 - 180.5	1681.54	
Port 2	84 - 89	1822.69	170.5 - 180.5	1666.22	248 - 258	1521.15	190.5 - 200.5	1661.54	
Port 3	94 - 99	1812.69	190.5 - 200.5	1646.22	268 - 278	1501.15	210.5 - 220.5	1641.54	
Port 4	104 - 109	1802.69	210.5 - 220.5	1626.22	288 - 298	1481.15	230.5 - 240.5	1621.54	
Port 5	114 - 119	1792.69	230.5 - 240.5	1606.22	308 - 318	1461.15	250.5 - 260.5	1601.54	
Port 6	124 - 129	1782.69	250.5 - 260.5	1586.22	328 - 338	1441.15	270.5 - 280.5	1581.54	
Port 7	134 - 139	1772.69	270.5 - 280.5	1566.22	348 - 358	1421.15	290.5 - 300.5	1561.54	
Port 8	144 - 149	1762.69		m-	368 - 378	1401.15	310.5 - 320.5	1541.54	
Port 9	154 - 159	1752.69			388 - 398	1381.15	330.5 - 340.5	1521.54	
Port 10	-				408 - 418	1361.15	350.5 - 360.5	1501.54	
Port 11				***			370.5 - 380.5	1481.54	
Port 12			-				390.5 - 400.5	1461.54	
Port 13			-						
Port 14						no.			
Port 15									

TABLE A-I
CONSTRUCTION DETAILS OF DISCRETE-INTERVAL MONITORING SYSTEMS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	RD-	-65	RD	-72	RD-	-73	HAR		
Date Liner Installed	1	10/29/02		04/02/01		02/02/01		03/08/01	
Date Liner Removed	N.	A	NA		NA		N,	Ą	
Top of Casing Elevation (ft msl)	1819	9.14	1907	7.25	1901	1.60	1874	l.13	
Open-hole Depth to Water (ft btc)	22	.7	78.	78.82		70.08		31	
Hole Total Depth (ft btc)	39	7	18	34	14	.0	10	8	
	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	
Port 1	168.5-178.5	1645.64	45 - 55	1857.25	27 - 32	1872.1	13 - 18	1858.63	
Port 2	188.5-198.5	1625.64	65 - 75	1837.25	37 - 42	1862.1	23 - 28	1848.63	
Port 3	208.5-218.5	1605.64	85 - 95	1817.25	47 - 52	1852.1	33 - 38	1838.63	
Port 4	228.5-238.5	1585.64	105 - 115	1797.25	57 - 62	1842.1	43 - 48	1828.63	
Port 5	248.5-258.5	1565.64	125 - 135	1777,25	67 - 72	1832.1	53 - 58	1818.63	
Port 6	268.5-278.5	1545.64	145 - 155	1757.25	77 - 82	1822.1	63 - 68	1808.63	
Port 7	288.5-298.5	1525.64	165 - 175	1737.25	87 - 92	1812.1	73 - 78	1798.63	
Port 8	308.5-318.5	1505.64	185 - 195	1717.25	97 - 102	1802.1	83 - 88	1788.63	
Port 9	328.5-338.5	1485.64			107 - 112	1792.1	93 - 98	1778.63	
Port 10	348.5-358.5	1465.64	_		117 - 122	1782.1	103 - 108	1768.63	
Port 11	368.5-378.5	1445.64		**	127 - 132	1772.1			
Port 12	388.5-398.5	1425.64			137 - 140	1762.1			
Port 13									
Port 14		==							
Port 15									

TABLE A-I
CONSTRUCTION DETAILS OF DISCRETE-INTERVAL MONITORING SYSTEMS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	HAR	R-16	HAR	R-24	os-	24	
Date Liner Installed	06/1	06/19/01		04/06/01		07/09/01	
Date Liner Removed	N.	A	N.	A	NA NA		
Top of Casing Elevation (ft msl)	1872	2.31	1906	3.89	1947	'.30	
Open-hole Depth to Water (ft btc)	Unkn	iown	75	.3	28	285	
Hole Total Depth (ft btc)		4	112	2.5	51	3	
	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	Depth of Open Interval (ft btc)	Midpoint Monitoring Elevation (ft msl)	
Port 1	0 - 4	1870.31	37 - 42	1867.39	223 - 233	1719.3	
Port 2	9 - 14	1860.81	47 - 52	1857.39	243 - 253	1699.3	
Port 3	19 - 24	1850.81	57 - 62	1847.39	263 - 273	1679.3	
Port 4	29 - 34	1840.81	67 - 72	1837.39	283 - 293	1659.3	
Port 5	39 - 44	1830.81	77 - 82	1827.39	303 - 313	1639.3	
Port 6	49 - 54	1820.81	87 - 92	1817.39	323 - 333	1619.3	
Port 7	59 - 64	1810.81	97 - 102	1807.39	343 - 353	1599.3	
Port 8	69 - 74	1800.81	107 - 112	1797.39	363 - 373	1579.3	
Port 9	79 - 84	1790.81	ļ <u></u>		383 - 393	1559.3	
Port 10	89 - 94	1780.81			403 - 413	1539.3	
Port 11	99 - 104	1770.81			423 - 433	1519.3	
Port 12	109 - 114	1760.81			443 - 453	1499.3	
Port 13		***			463 - 473	1479.3	
Port 14	-				483 - 493	1459.3	
Port 15					503 - 513	1439.3	

TABLE A-I

FOOTNOTES AND EXPLANATIONS

ft btc = Feet below top of casing.

ft msi = Feet above mean sea level.

NA = Not applicable

-- = No FLUTe port installed.

HAR-01, HAR-16, HAR-24, RD-53, and RD-73 have alternating open and blank intervals at 5-foot frequencies (i.e., 5 feet open then 5 feet closed).

RD-07, RD-10, RD-21, RD-22, RD-23, RD-31, RD-33A, RD-50, RD-54A, RD-57, RD-64, RD-65, RD-72, and OS-24 have alternating open and blank intervals at 10-foot frequencies (i.e., 10 feet open then 10 feet closed).

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-1 Figure A-1

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-2 Figure A-2

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-3 Figure A-3

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-4 Figure A-4

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-5 Figure A-5

Shallow Zone Well SH-6 Figure A-6

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-7 Figure A-7

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-8 Figure A-8

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-9 Figure A-9

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-10 Figure A-10

WATER LEVEL HYDROGRAPH Shallow Zone Well SH-11 Figure A-11

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-1 Figure A-12

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-2 Figure A-13

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-3 Figure A-14

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-4 Figure A-15

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-5 Figure A-16

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-6 Figure A-17

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-7 Figure A-18

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-8 Figure A-19

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-9 Figure A-20

WATER LEVEL HYDROGRAPH Shallow Zone Well RS 10 Figure A-21

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-11 Figure A-22

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-12 Figure A-23

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-13 Figure A-24

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-14 Figure A-25

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-15 Figure A-26

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-16 Figure A-27

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-17 Figure A-28

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-18 Figure A-29

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-19 Figure A-30

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-20 Figure A-31

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-21 Figure A-32

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-22 Figure A-33

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-23 Figure A-34

WATER LEVEL HYDROGRAPH Shallow Zone Well RS 24 Figure A-35

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-27 Figure A-37

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-28 Figure A-38

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-29 Figure A-39

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-30 Figure A-40

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-31 Figure A-41

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-32 Figure A-42

WATER LEVEL HYDROGRAPH Shallow Zone Well RS-54 Figure A-43

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-1 Figure A-44

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-2 Figure A-45

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-3 Figure A-46

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-4 Figure A-47

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-5 Figure A-48

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-6 Figure A-49

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-7 Figure A-50

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-8 Figure A-51

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-9 Figure A-52

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-10 Figure A-53

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-11 Figure A-54

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-12 Figure A-55

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-13 Figure A-56

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-14 Figure A-57

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-15 Figure A-58

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-16 Figure A-59

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-17 Figure A-60

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-18 Figure A-61

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-19 Figure A-62

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-20 Figure A-63

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-21 Figure A-64

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-22 Figure A-65

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-23 Figure A-66

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-24 Figure A-67

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-25 Figure A-68

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-26 Figure A-69

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-27 Figure A-70

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-28 Figure A-71

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-29 Figure A-72

WATER LEVEL HYDROGRAPH Shallow Zone Well ES-32 Figure A-75

WATER LEVEL HYDROGRAPH Shallow Well HAR-3 Figure A-77

WATER LEVEL HYDROGRAPH Shallow Well HAR-4 Figure A-78

WATER LEVEL HYDROGRAPH Shallow Well HAR-11 Figure A-80

WATER LEVEL HYDROGRAPH Shallow Well HAR-12 Figure A-81

WATER LEVEL HYDROGRAPH Shallow Well HAR-13 Figure A-82

WATER LEVEL HYDROGRAPH Shallow Well HAR-14 Figure A-83

WATER LEVEL HYDROGRAPH Shallow Well HAR-15 Figure A-84

WATER LEVEL HYDRÖGRAPH Shallow Well HAR-27 Figure A-85

WATER LEVEL HYDROGRAPH Shallow Well HAR-28 Figure A-86

WATER LEVEL HYDROGRAPH Shallow Well HAR-29 Figure A-87

WATER LEVEL HYDROGRAPH Shallow Well HAR-32 Figure A-90

WATER LEVEL HYDROGRAPH Shallow Well HAR-33 Figure A-91

WATER LEVEL HYDROGRAPH Shallow Well HAR-34 Figure A-92

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-3 Figure A-95

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-4 Figure A-96

* Well known as RD-5 pnor to 05/93

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-5C Figure A-99

<u>.</u>..

2.

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-9 Figure A-103

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-10 Figure A-104

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-11 Figure A-105

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-12 Figure A-106

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-14 Figure A-108

Figure A-110

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-17 Figure A-111

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-18 Figure A-112

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-19 Figure A-113

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-20 Figure A-114

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-21 Figure A-115

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-22 Figure A-116

Chatsworth Formation Well RD-26 Haley & Aldrich, Inc. Figure A-120 g:\projects\26472-roctreports\m442\app A\RD17-30(wl).xls

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-27 Figure A-121

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-28 Figure A-122

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-29 Figure A-123

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-30 Figure A-124

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-31 Figure A-125

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-32 Figure A-126

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-33A Figure A-127

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-33B Figure A-128

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-33C Figure A-129

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-34A Figure A-130

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-34B Figure A-131

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-34C Figure A-132

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-35A Figure A-133

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-358 Figure A-134

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-36A Figure A-135

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-36B Figure A-136

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-37 Figure A-139

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-38A Figure A-140

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-38B Figure A-141

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-39B Figure A-143

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-40 Figure A-144

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-41A Figure A-145

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-41B Figure A-146

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-41C Figure A-147

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-42 Figure A-148

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-43A Figure A-149

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-43B Figure A-150

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-43C Figure A-151

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-44 Figure A-152

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-45A Figure A-153

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-45B Figure A-154

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-45C Figure A-155

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-46A Figure A-156

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-46B Figure A-157

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-47 Figure A-158

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-48A Figure A-159

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-48B Figure A-160

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-48C Figure A-161

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-49A Figure A-162

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-49B Figure A-163

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-49C Figure A-164

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-50 Figure A-165

Haley & Aldrich, Inc. g:\projects\26472-roc\reports\m442\app A\rd48-74(wi).xis

Figure A-166

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-518 Figure A-167

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-51C Figure A-168

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-52A Figure A-169

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-52B Figure A-170

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-52C Figure A-171

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-53 Figure A-172

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-54A Figure A-173

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-548 Figure A-174

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-54C Figure A-175

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-55A Figure A-176

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-55B Figure A-177

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-56B Figure A-179

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-57 Figure A-180

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-58A Figure A-181

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-58B Figure A-182

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-58C Figure A-183

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-59A Figure A-184

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-59B Figure A-185

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-60 Figure A-187

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-61 Figure A-188

2.2

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-62 Figure A-189

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-63 Figure A-190

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-64 Figure A-191

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-65 Figure A-192

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-66 Figure A-193

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-67 Figure A-194

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-68A Figure A-195

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-68B Figure A-196

g.;

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-69 Figure A-197

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-70 Figure A-198

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-71 Figure A-199

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-72 Figure A-200

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-73 Figure A-201

WATER LEVEL HYDROGRAPH Chatsworth Formation Well RD-74 Figure A-202

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-1 Figure A-203

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-5 Figure A-204

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-6 Figure A-205

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-7 Figure A-206

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-8 Figure A-207

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-16 Figure A-208

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-17 Figure A-209

Haley & Aldrich, Inc. g:\projects\26472-roc\reports\m442\app A\harwsos(wl).xls

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-19 Figure A-211

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-20 Figure A-212

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-21 Figure A-213

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-22 Figure A-214

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-23 Figure A-215

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-24 Figure A-216

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-25 Figure A-217

WATER LEVEL HYDROGRAPH Chatsworth Formation Well HAR-26 Figure A-218

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-4A

Figure A-219

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-5

Figure A-220

Jan-85jan-86jan-87jan-88jan-89jan-90jan-91jan-92jan-93jan-94jan-95jan-96jan-97jan-98jan-99jan-00jan-01jan-02jan-03jan-04
WATER LEVEL HYDROGRAPH
Chatsworth Formation Well WS-6

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-7 Figure A-222

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-8 Figure A-223

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-9 Figure A-224

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-9A Figure A-225

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-9B Figure A-226

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-11 Figure A-227

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-12 Figure A-228

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-13 Figure A-229

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-14 Figure A-230

WATER LEVEL HYDROGRAPH Chatsworth Formation Well WS-SP Figure A-231

WATER LEVEL HYDROGRAPH Chatsworth Formation Well OS-24 Figure A-232

WATER LEVEL HYDROGRAPH Chatsworth Formation Well OS-25 Figure A-233

WATER LEVEL HYDROGRAPH Chatsworth Formation Well OS-26

Figure A-234

Figure A-235
Chatsworth Formation Well RD-10 FLUTe Transducer Measurements

Figure A-236
Chatsworth Formation Well RD-21 FLUTe Transducer Measurements

Figure A-237
Chatsworth Formation Well RD-22 FLUTe Transducer Measurements

Figure A-238
Chatsworth Formation Well RD-23 FLUTe Transducer Measurements

Figure A-239
Chatsworth Formation Well RD-31 FLUTe Transducer Measurements

Figure A-240
Chatsworth Formation Well RD-33A FLUTe Transducer Measurements

Figure A-241
Chatsworth Formation Well RD-50 FLUTe Transducer Measurements

Figure A-242
Chatsworth Formation Well RD-53 FLUTe Transducer Measurements

Figure A-243
Chatsworth Formation Well RD-54A FLUTe Transducer Measurements

Figure A-244
Chatsworth Formation Well RD-57 FLUTe Transducer Measurements

Figure A-245
Chatsworth Formation Well RD-64 FLUTe Transducer Measurements

Figure A-246
Chatsworth Formation Well RD-65 FLUTe Transducer Measurements

Figure A-247
Chatsworth Formation Well RD-72 FLUTe Transducer Measurements

Figure A-248
Chatsworth Formation Well RD-73 FLUTe Transducer Measurements

Figure A-249
Chatsworth Formation Well HAR-01 FLUTe Transducer Measurements

Figure A-250
Chatsworth Formation Well HAR-16 FLUTe Transducer Measurements

Figure A-251
Chatsworth Formation Well HAR-24 FLUTe Transducer Measurements

Appendix B

APPENDIX B

Groundwater Monitoring Schedule

APPENDIX B GROUNDWATER MONITORING SCHEDULE

B-III 2004 Annual Monitoring Schedule

TABLE OF CONTENTS

Ground	Iwater Monitoring Schedule
Tables	
B-I	2003 Annual Monitoring Schedule
B-II	Summary of Sampling and Analyses for Wells and Springs, Quarterly Groundwater Monitoring Program, 2003

APPENDIX B

GROUNDWATER MONITORING SCHEDULE

Groundwater Monitoring in 2003

The groundwater monitoring schedule for 2003 was initially presented in the 2002 Annual Groundwater Monitoring Report (Haley & Aldrich, Inc., Report on Annual Groundwater Monitoring, 2002, Santa Susana Field Laboratory, Ventura County, California, February 28, 2003). The proposed 2003 schedule (Table B-I) was subsequently modified and expanded during each sampling period in response to new data collected each quarter. Table B-II presents a summary of the actual analytical program conducted on the quarterly groundwater samples in 2003. The actual program varies from the proposed schedule due to groundwater level changes and requested additions to the monitoring schedule.

2004 Groundwater Monitoring Schedule

The 2004 schedule (**Table B-III**) reflects the programs in place to address numerous regulatory programs at the SSFL Facility, including surface impoundment closure, underground storage tank monitoring, evaluation monitoring, point of compliance monitoring, detection monitoring, background wells and interim corrective measures. The schedule also contains wells to be monitored as part of the general site characterization.

1

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				ANALYTICA	L METHODS		
Well ID	Area	Sponsor	First	Second	Third	Fourth	 Monitoring Program
		<u> </u>	Quarter	Quarter	Quarter	Quarter	Monitoring Program
SHALLOW							
SH-1	111	R		<u> </u>			
SH-2	111	R					
SH-3	111	R	8260		8260		Evaluation monitoring
SH-4	111	R		App IX		8260	Point of compliance
SH-5	Ш	R					
SH-6	111	R				<u> </u>	
SH-7	111	R					
SH-8	111	R					
SH-9	111	R					
SH-10	111	R					
SH-11	Ш	R	8260 Perchlorate		8260		Evaluation monitoring
ECL French-	Ш	R	8260		8260		Interim corrective action
drain					İ		
SHALLOW	PS WELL		.L	.1	<u> </u>	<u> </u>	<u> </u>
RS-1	NO VILLE	N	8260	T	8260	1	Evaluation monitoring
NO-1	•	14	8015		8015		B/351
			Perchlorate				
RS-2	<u> </u>	N	Perchlorate	<u> </u>			
RS-3		R					<u> </u>
RS-4	ı	N		<u> </u>			<u> </u>
RS-5		N					
RS-6	<u> </u>	R	Perchlorate				
RS-7	<u> </u>	N	8260		8260		Evaluation monitoring
RS-8	II	N		App IX		8260	Point of compliance
RS-9	III	R		<u> </u>			
RS-10	11	N	8260 Perchlorate		8260		Evaluation monitoring
RS-11	IV .	D	8260 Perchlorate 900.0 901.1 906.0		8260		Evaluation monitoring
RS-12	111	R					
RS-13	11	N	8260 Perchlorate		8260		Evaluation monitoring
RS-14	111	R	1		1		
RS-15	111	N		1			1
RS-16	iV	D	8260 Perchlorate 900.0 906.0				B/056 landfill
RS-17	[[[R	300.0	 	+	 	
110-11	111	17	I	1		_1	

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				_			
Well ID	Area	Sponsor	First	Second	Third	Fourth	Monitoring Program
			Quarter	Quarter	Quarter	Quarter	
RS-18	IV	D	8260		8260		FSDF
			Perchlorate		900.0		
			900.0		901.1		
			901.1		906.0		
			906.0		U,Th		1
			TM				
			U, Th				1
RS-19		N	8260		8260		Evaluation monitoring
	·	• •	Perchlorate				J
RS-20	1	R	. 01011151111				
RS-21	- i	R	8260		8260		Evaluation monitoring
RS-22	11	R	02.00		02.00		Evaluation monitoring
RS-23	 	<u>``</u>	8260				
110-20	1 7	U	8015		1		
			Perchlorate				
			900.0				
			901.1				
			906.0				
			U				
RS-24	IV	D	Perchlorate				
			900.0				1
			901.1				
			906.0				1
			U				
RS-25	IV	D	Perchlorate				
			900.0				
			901.1]
			906.0				
			U				
RS-27	IV	D	Perchlorate				
RS-28	IV	D	8260				RMHF
			Perchlorate				
			900.0				1
			901.1				
			906.0				1
RS-29	11	R					
RS-30	i	R	8260		8260		B/351
	,	• • • • • • • • • • • • • • • • • • • •	8015		8015		12.001
			Perchlorate		00.0		
RS-31	1	R	8260		8260		B/351
	,	11	8015		8015		15,000
RS-32	1	R	8260		8260		B/351
110-02	'	T\	8015		8015		0/331
RS-54	IV	D					FSDF
RO-04	١V	U	8260		8260		ורפטר
			TM		TM		
			Perchlorate		Perchlorate		
			900.0		900.0		
			901.1		901.1		
			906.0, U, Th		906.0, U, Th		<u></u>

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

. —				ANALYTICA			
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Monitoring Program
SHALLOW	ES WELLS						
ES-1	I	R	8260		8260		Interim corrective action
ES-2	Ī	R	8260				
			Perchlorate	i			
ES-3	I	R	8260		8260		Interim corrective action
ES-4		R	8260		8260		Interim corrective action
ES-5	j	R	8260		8260		Interim corrective action
ES-6	1	R	8260		8260		Interim corrective action
ES-7	1	R	8260		8260		Interim corrective action
ES-8		R					
ES-9	I	R	8260				
			Perchlorate				1
ES-10	1	R	8260				
			Perchlorate		})	
ES-11	ı	R	8260		8260		Interim corrective action
ES-12		R	8260		 		
			Perchiorate		İ		1
ES-13	1	R					
S-14	111	R	8260	·	8260		Interim corrective action
S-15	111	R					
S-16	111	R					
S-17	111	R	8260		8260		Interim corrective action
ES-18	11	R					
S-19	11	R					
S-20	11	R					
ES-21	II.	R	8260		8260		Interim corrective action
ES-22	11	R	8260		8260		Interim corrective action
ES-23	111	R	8260		8260		Interim corrective action
ES-24	111	R	8260		8260		Interim corrective action
			Perchlorate			j	į
S-25	111	R					
ES-26	111	R	8260		8260		Interim corrective action
S-27	111	R	8260		8260		Interim corrective action
S-28	[[]	R				1	
ES-29	111	R					
ES-30	111	R	8260		8260		Interim corrective action
ES-31	IV	D	8260				
			Perchlorate				
			900.0		1		
			901.1				
			906.0		1		
ES-32	111	R	8260		8260		Interim corrective action
SHALLOW	HAR WELL	S					
HAR-2		R					
IAR-3	1	R	8260		8260		Evaluation monitoring
HAR-4		R	8260		8260		Interim corrective action
HAR-9	il	N					
HAR-11	ll l	N	8260		8260		Evaluation monitoring
			8015	i	1		

See last page of Table B-I for footnotes and explanations.
Haley & Aldrich, Inc.
G:\Projects\26472 - ROC\Reports\M-442 Annual\App B\M442.B1.xls

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				ANALYTICA	_		
Well ID	Area	Sponsor	First	Second	Third	Fourth	Monitoring Program
			Quarter	Quarter	Quarter	Quarter	
HAR-12		N					
HAR-13	!!	N		 	<u> </u>	<u> </u>	
HAR-14	1	N		App IX		8260	Point of compliance
HAR-15		N		App IX		8260	Point of compliance
HAR-27		N	8260		8260		Evaluation monitoring
HAR-28		N				ļ <u>.</u>	
HAR-29		R					
HAR-30	<u> </u>	N				<u> </u>	
HAR-31		N					
HAR-32	1/1	R					
HAR-33	H	R					
HAR-34	111	R					
CHATSWO	RTH FORM	ATION RD V	VELLS				
RD-1	l l	R	8260		8260	T	Interim corrective action
			Perchlorate		Perchlorate		
RD-2	l l	R	8260		8260		Interim corrective action
RD-3	I	N	8260		8260		Evaluation monitoring
RD-4	11	R	8260		8260		Interim corrective action
RD-5A	UL, S of	N	8260		8260		Evaluation monitoring
	Area II			1	1		
RD-5B	UL, S of	N	8260	8260	8260	8260	Detection monitoring
	Area II				İ		
RD-5C	UL, S of	N	8260	8260	8260	8260	Detection monitoring
	Area II			1			
RD-6	UL, S of	N	8260	8260	8260	8260	Background
	Area II				1	1	
RD-7	IV	D	8260		8260		B/056 landfill
			900.0	1	900.0		FLUTe sampling system
			901.1		906.0		"""
			906.0, U, Th				1
RD-8	111	R					
RD-9	11	R	8260		8260		Interim corrective action
RD-10		N	8260	 	8260	1	Evaluation monitoring
			Perchlorate		Perchlorate		FLUTe sampling system
RD-11	111	R	1				
RD-12	iii	R	 			1	
RD-13	- IV	D D	8260	8260	8260	8260	Background
RD-14	- IV	D	8260	1===	1	1	1 =
	. •	-	Perchlorate	ļ			
RD-15	IV	D	8260		 		
	• • •		TM			1	
			Perchlorate				
			900.0		1	1	
			901.1				
			906.0				
			U				
	IV	D	8260	8260		8260	Detection monitoring

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				ANALYTICA	_		
Well ID	Area	Sponsor	First	Second	Third	Fourth	Monitoring Program
			Quarter	Quarter	Quarter	Quarter	
RD-17	IV	D	8260				RMHF
			Perchlorate	İ		1	
			900.0			1	
			901.1		1		
			906.0	<u> </u>			
RD-18	IV	D	8260	8260	8260	8260	Perimeter well
			Perchlorate	<u> </u>			
RD-19	IV	D	8260	8260	8260	8260	Perimeter well
			Perchlorate				
RD-20	IV	D	8260				
			Perchlorate				
RD-21	IV	D	8260		8260	1	FSDF
			TM	1	TM	1	FLUTe sampling system
			900.0			1	
			901.1				
	•		906.0		1	1	
RD-22	IV	D	8260,	8260	8260	8260	FSDF
			TM, CN				Perimeter well
			900.0			-	
			901.1			ļ	
			906.0				
RD-23	IV	D	8260		8260		FSDF
	•••	_	TM		TM	1.	FLUTe sampling system
			900.0		1		1 20 to oampling oyotom
			901.1			1	
			906.0	1	1	1	
RD-24	IV	D	8260	 	8260	 	B/059
	••		Perchlorate		900.0	Ì	15,000
			900.0	ľ	901.1	1	
			901.1		906.0		Ì
			906.0		300.0	}	j
RD-25	IV	D	8260	-	8260		B/059
20	•••		Perchlorate		900.0		2,000
			900.0		901.1	1	1
			901.1	1	906.0		
			906.0		300.0		
RD-26	11	N	8260	 	8260		Evaluation monitoring
ND-20	11	14	Perchlorate		0200		Evaluation monitoring
RD-27	IV	D		 	10000	 	IDMUE
NU-41	IV	U	8260 Perchlorate		8260 900.0		RMHF
						1	
			900.0		901.1	1	
			901.1	İ	906.0		
55.00			906.0		 	 	10.050
RD-28	IV	D	8260		8260	1	B/059
			Perchlorate	1	900.0		
			900.0	1	901.1	1	1
			901.1	1	906.0	1	
			906.0, U, Th	1		1	

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				ANALYTICA	_		
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Monitoring Program
RD-29	IV	D	8260 Perchlorate 900.0 901.1 906.0 U				
RD-30	IV	D	8260 Perchlorate 900.0 901.1 906.0		8260 900.0 901.1 906.0		RMHF .
RD-31		N	8260 Perchlorate				FLUTe sampling system
RD-32	Off-site, NE of Area I	N	8260 8015	8260	8260 8015	8260	Detection monitoring B/351
RD-33A	UL, NW of Area IV	D	8260 TM CN 900.0 901.1 906.0		8260		FSDF FLUTe sampling system
RD-33B	UL, NW of Area IV	D	8260 TM CN 900.0 901.1 906.0	8260	8260 906.0	8260	FSDF Perimeter well
RD-33C	UL, NW of Area IV	· D	8260 TM CN 900.0 901.1 906.0	8260	8260 906.0	8260	FSDF Perimeter well
RD-34A	UL, NW of Area IV	D	8260 TM CN 900.0 901.1 906.0, U, Th		8260 906.0		RMHF
RD-34B	UL, NW of Area IV	D	8260 TM CN 900.0 901.1 906.0		8260 906.0		RMHF

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

			ANALYTICAL METHODS							
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Monitoring Program			
RD-34C	UL,	D	8260	Quarter	8260	Guarter	RMHF			
10-040	NW	D	TM	1	906.0					
			1		1900.0		1			
	of		CN		ľ					
	Area IV		900.0	J	}					
			901.1							
			906.0			 				
RD-35A		N	8260							
RD-35B		N	8260		<u> </u>	<u> </u>				
RD-36A	Off-	N	8260		8260	1	Evaluation monitoring			
	site,		8015		8015		B/351			
	NE of		ľ	1	1	1	1			
	Area I			1	İ					
RD-36B	Off-	N	8260		8260	1	Evaluation monitoring			
	site,		8015		8015	1	B/351			
	NE of		100.10		10010	1	15.00			
			İ		1	i				
20.200	Area I	\$.1	0200	 	10000	+	Evaluation			
RD-36C	Off-	N	8260		8260		Evaluation monitoring			
	site,		8015	1	8015	1	B/351			
	NE of			ì	1					
	Area I									
₹D-36D	Off-	N	8260	1	8260	1	B/351			
	site,		8015		8015					
	NE of						1			
	Area I			1		1				
₹D-37	Off-	N	8260	8260	8260	8260	Detection monitoring			
	site,		8015		8015		B/351			
	NE of									
	Area I			Ì	i					
RD-38A	Off-	N	8260	1	8260		Evaluation monitoring			
ND-SOA	site,		8015		8015		B/351			
	NE of		10013	l l	10015	į.	B/331			
					1					
5 005	Area I	4.		 		10000	0/05/			
₹D-38B	Off-	N	8260	8260	8260	8260	B/351			
	site,		8015	1	8015					
	NE of			1		İ	ſ			
	Area I						<u> </u>			
RD-39A	Off-	N	8260	8260	8260	8260	Detection monitoring			
	site,									
	NE of			1						
	Area I			1	1	Ì				
D-39B	Off-	N	8260	8260	8260	8260	Perimeter well			
-	site,			1		[
	NE of		}	1	1		1			
	Area I			1		İ				
₹D-40	II	N	8260		8260	 	Evaluation monitoring			
~∪~∪	**	14	Perchlorate	}	10200		L-valuation monitoring			
RD-41A	11	N	8260	 	- 	 				
W-4 IA	"	1.4								
- 			Perchlorate		1		 			
RD-41B	11	N	8260		1	1	i			
			Perchlorate			<u>.L</u>				

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

			ANALYTICAL METHODS					
Well ID	Area	Sponsor	First	Second	Third	Fourth	 Monitoring Program	
weilin	Aica	Sponsor	Quarter	Quarter	Quarter	Quarter		
RD-41C	II	N	8260					
			Perchlorate	<u> </u>				
RD-42	11	N	8260					
			Perchlorate					
RD-43A	Off-site,	N	8260	8260	8260	8260	Detection monitoring	
	Near		Perchlorate		1	-		
	Area I							
RD-43B	Off-site,	N	8260	8260	8260	8260	Detection monitoring	
	Near		Perchlorate	1			1	
	Area I			l				
RD-43C	Off-site,	N	8260	8260	8260	8260	Detection monitoring	
	Near		Perchlorate			1	·	
	Area I							
RD-44	I	N	8260	8260	8260	8260	Detection monitoring	
RD-45A	ı	N	8260		8260		Evaluation monitoring	
RD-45B	ı	N	8260		8260		Evaluation monitoring	
RD-45C	l	N	8260		8260		Evaluation monitoring	
RD-46A	1	N	8260		8260		Evaluation monitoring	
			Perchlorate	1		ļ		
RD-46B	1	N	8260		8260			
RD-47	ı	N	8260		8260		Evaluation monitoring	
			Perchlorate					
RD-48A	UL, SW of	N	8260	8260	8260	8260	Background	
	Area I		<u> </u>	_i				
RD-48B	UL, SW	N	8260	8260	8260	8260	Background	
	of Area I			<u> </u>				
RD-48C	UL, SW	N	8260	8260	8260	8260	Background	
	of Area I							
RD-49A	11	N	8260					
RD-49B	11	N	8260					
RD-49C		N	8260					
RD-50	IV	D	8260		8260		Perimeter well	
			8015				FLUTe sampling system	
RD-51A	11	N	8260		8260		Evaluation monitoring	
			Perchlorate					
RD-51B	11	N	8260		8260		Evaluation monitoring	
			Perchlorate					
RD-51C	11	N	8260	8260	8260	8260	Detection monitoring	
RD-52A	I	N	8260		8260		Evaluation monitoring	
			Perchlorate		<u> </u>			
RD-52B	1	N	8260		8260		Evaluation monitoring	
			Perchlorate		1	<u> </u>		
RD-52C		N	8260	8260	8260	8260	Detection monitoring	
RD-53	1	N	8260		8260		B/351	
			8015		8015	1	FLUTe sampling system	
			Perchlorate		l			

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

			ANALYTICAL METHODS				_
Weil ID	Area	Sponsor	First	Second	Third	Fourth	 Monitoring Program
			Quarter	Quarter	Quarter	Quarter	
RD-54A	IV	D	8260		8260		FSDF
			TM		TM		FLUTe sampling system
			900.0		906.0		ĺ
			901.1				
			906.0, U, Th				
RD-54B	IV	D	8260		8260		FSDF
			TM	1	TM		
			900.0		906.0	1	į
			901.1	1		f	
			906.0				
RD-54C	IV	D	8260	1	8260	1	FSDF
		_	TM	ĺ	TM	1	
			900.0		906.0		
			901.1				1
			906.0				
RD-55A	III	N	8260	 	8260	 	Evaluation monitoring
ND 00A	•••	13	Perchlorate		10200	1	
RD-55B	111	N	8260	 	8260	 	Evaluation monitoring
1.D-00D	•••	• •	Perchlorate		10200		Laddadon monitoring
RD-56A	UL, N of	N	8260	 	1	 	
ND-30A	Area III	IX	0200				
RD-56B	UL, N of	N	8260	8260	8260	8260	Perimeter well
ND-30B	Area III	14	6200	0200	TM	0200	Ferinieter weit
RD-57	UL, NW	D	8260	8260	8260	8260	FSDF
ND-31	of	U	TM	0200	906.0	0200	Perimeter well
	Area IV		900.0		1900.0	}	1
	Alealv		900.0				FLUTe sampling system
			906.0				
RD-58A	101	N	8260	-} -	8260	 	Evaluation monitoring
RD-58B		N	8260	8260	8260	8260	Detection monitoring
RD-58C	III	N	8260	0200	18260	0200	Evaluation monitoring
RD-59A	Off-	D	8260	8260	8260	8260	FSDF & RMHF
ND-09A		U		1	TM	Perchlorate	Perimeter well
	site, W of		TM	Perchlorate		Perchiorate	Perimeter weil
			Perchlorate		Perchlorate	j	1
	Area IV		900.0		906.0		-
			901.1				
DD SOD	04		906.0	10000	10000	10000	LEODE & DIALIE
RD-59B	Off-	D	8260	8260	8260	8260	FSDF & RMHF
	site,		TM		TM	1	Perimeter well
	W of		Perchiorate	1	Perchlorate		1
	Area IV		900.0		906.0		
			901.1				
DD 600	~~~		906.0	10000	10000	10000	FODE & DAME
RD-59C	Off-	D	8260	8260	8260	8260	FSDF & RMHF
	site,		TM		TM		Perimeter well
	W of		Perchlorate		Perchlorate		
	Area IV		900.0	1	906.0	1	1
			901.1				
			906.0		1	<u> </u>	
RD-60	111	N	8260		8260	1	Evaluation monitoring

TABLE B-I2003 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

					L METHODS		<u>. </u>
Well ID	Area	Sponsor	First	Second	Third	Fourth	Monitoring Program
			Quarter	Quarter	Quarter	Quarter	
RD-61		N	8260	8260	8260	8260	Detection monitoring
RD-62	UL, S of Area I	N	8260	8260	8260	8260	Detection monitoring
RD-63	١٧	D	8260		8260		RMHF Area IV
			900.0	1		[extraction
			901.1			į.	
•			906.0				
RD-64	IV	D	8260				FSDF
			900.0		1	1	FLUTe sampling system
			901.1		į		
			906.0				ļ
			U	1			
RD-65	īV	D	8260	<u> </u>			FSDF
10 00	•••		10200	}		1	FLUTe sampling system
RD-66	Off-site,	N	8260	8260	8260	8260	Perimeter well
	NE of	••		0200	10200	0200	
	Area I		1	1			
RD-67	UL, S of	N	8260	┨╴──	8260		Perimeter well
	Area IV	.,	10200	1	10200	ļ	T Chineter Well
RD-68A	Off-site,	N	8260	8260	8260	8260	Perimeter well
ND-OOM	N of	14	0200	0200	0200	0200	l climeter wen
	Area III						
RD-68B	Off-site,	N	8260	8260	8260	8260	Perimeter well
(D-00B	N of	in .	0200	0200	0200	0200	r enmeter wen
	Area III						
RD-69	I I	N	8260	 	8260	 	Perimeter well
RD-70	UL, N of	N	8260	8260	8260	8260	Perimeter well
(D-70	Area II		0200	0200	10200	0200	l chineter well
RD-71	Off-site,	N	8260	8260	8260	8260	Perimeter well
(D-7)	NE of	11	0200	0200	0200	0200	r enimeter wen
	Area I		1				
RD-72	Aleai	N	8260			-	FLUTe sampling system
RD-73		R	8260	 			UT 37
ND-13	•	K	8015		1		ľ
							FLUTe sampling system
RD-74	IV	D	Perchlorate 8260	8260	10000	0000	B/056
	RTH FORM			10200	8260	8260	IB/036
HAR-1	I	R	Perchlorate		1		FLUTe sampling system
HAR-5	11	R	Perchlorate	 	 		Love sampling system
HAR-6		N	8260	1		+	
1/11\-U	11	IN	Perchlorate				
140.7	11	R	reichiorate	Anniy		8260	Point of compliance
	11	N N	 	App IX	+	10200	r oint of compliance
HAR-7		IV.		App IX	 	8260	Point of compliance
IAR-8		P	1		5	10200	It out of compliance
IAR-8	i i	R		Whh IV			El LiTe gomeline aveter
IAR-8 IAR-16	l				<u> </u>	9260	
HAR-8 HAR-16 HAR-17	l Il	R	9360	App IX	9360	8260	Point of compliance
HAR-8 HAR-16 HAR-17 HAR-18 HAR-19	l		8260 8260		8260	8260	FLUTe sampling system Point of compliance Interim corrective action

TABLE B-I 2003 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				ANALYTICA			
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Monitoring Program
HAR-21	l)	R	8260 Perchlorate				
HAR-22	11	N	8260 Perchlorate		8260		Evaluation monitoring
HAŖ-23	III	R	8260 Perchlorate		8260		Evaluation monitoring
HAR-24	ſ	R	8260		8260		Evaluation monitoring FLUTe sampling system
HAR-25	I	N	8260 Perchlorate				
HAR-26	111	R	8260		8260		Evaluation monitoring
	RTH FORM	ATION WS		<u> </u>			
WS-4A	1	N	8260	8260	8260	8260	Detection monitoring
WS-5	1	R	8260	1	8260	1	Interim corrective action
WS-6	1	R	8260	T	8260	 	Interim corrective action
WS-7	IV	D		1	1	1	
WS-8		R				1	
WS-9	11	R	8260	†	8260	1	Interim corrective action
WS-9A	11	R	8260	1	8260	1	Interim corrective action
WS-9B	[]	R		1			
WS-11	111	R	1	1		1	
WS-12	1	R					
WS-13	11	R		1			
WS-14	l	R	1	1			
WS-SP	- 11	N					
OFF-SITE O	S WELLS	AND SPRING	3S				
OS-2	Off-Site	R	8260	1		T	
			Perchlorate			1	
OS-3	Off-Site	R	Perchlorate				
OS-4	Off-Site	R	8260 Perchlorate				
OS-5	Off-Site	R	Perchlorate			 	
OS-8	Off-Site	N	8260 Perchlorate				
OS-10	Off-Site	R	Perchlorate		1	T	
OS-12	Off-Site	N	Perchlorate		1	1	
OS-13	Off-Site	N	8260 Perchlorate		8260		
OS-15	Off-Site	N	8260 Perchlorate				
OS-16	Off-Site	N	8260 Perchlorate		8260 Perchlorate		
OS-17	Off-Site	N	8260 Perchlorate		8260 Perchlorate		
OS-21	Off-Site	R	8260 Perchlorate	1			
OS-24	Off-Site	N	8260		8260	1	FLUTe sampling system
OS-25	Off-Site	N	8260		8260	 	1

ANALYTICAL METHODS							
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Monitoring Program
OS-26	Off-Site	N	8260		8260		
			Perchlorate				
OS-27	Off-Site	N	8260				
			Perchlorate				

ANALYTICAL METHODS 2003 MONITORING SCHEDULE

Analytes/EPA Methodology

8260 = EPA method 8260 for volatile organic compounds (most recent version). 8270 = EPA method 8270 for base/neutral and acid organic compounds.

8015 = EPA method 8015 modified for fuel hydrocarbons.

CN = Cyanide, EPA method 9012.

TM = Trace metals, including antimony, arsenic, barium, beryllium, cadmium,

chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc using EPA methods 6010

and 6020.

Perchlorate = EPA method 314.0.

Appendix IX

Note: The laboratory uses the most current methods which may be updated from methods listed in Appendix IX (Code of Federal Regulations, Title 40, Part 264, Appendix IX, Ground-water Monitoring List).

8081 = EPA method 8081 for pesticides. 8082 = EPA method 8082 for PCBs. 8141A = EPA method 8141A for organophosphorus pesticides.

6 14 1A = EPA method 6 14 1A for organophosphorus pesticid

8151A = EPA method 8151A for herbicides.

EPA method 8260 for expanded list of volatile organic compounds.

EPA method 8270 for base/neutral and acid organic compounds.

8290 = EPA method 8290 for dioxins and furans.

Metals = EPA method 6020 series for metals.

CN = EPA method 9012 for cyanide.

Sulfide = EPA method 376.2 for sulfide.

Radiochemical Parameters

900.0 = EPA method 900.0 for gross alpha and beta radioactivity
901.1 = EPA method 901.1 for gamma-emitting radionuclides
906.0 = EPA method 906.0 for tritium
U = EPA method 907.0 for isotopic uranium
Th = EPA method 907.0 for isotopic thorium

Note: An equivalent or superior in-house laboratory procedure will be considered acceptable for EPA methodology. Lab will use the most current promulgated version of each EPA method.

Evaluation Monitoring

Evaluation monitoring wells, including the point of compliance wells, will be sampled at least annually for EPA method 8260, which will detect the constituents specified in Table 5 of the post-closure permit: tetrachloroethene, trichloroethene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethane, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride, methylene chloride, chloroform, 2-butanone, benzene, toluene, xylenes, and ethylbenzene.

Point of compliance wells also will be sampled at least every other year for a full suite of Appendix IX parameters. The sampling schedule will be 1993, 1995, 1997...etc., for all wells. The analytical parameters are listed in 40 CFR 264, Appendix IX. During off-years, wells will be sampled for a modified Appendix IX list annually (standard list of constituents for EPA methods 8260 and 8270, plus 1,4-dioxane, nitrobenzene, 1,3-dinitrobenzene, and N-nitrosodimethylamine).

Detection Monitoring

Detection monitoring wells will be sampled quarterly for EPA method 8260, which will detect the constituents specified in Table 6 of the post-closure permit: tetrachloroethene, trichloroethene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, 1,1-dichloroethane, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride, methylene chloride, and chloroform.

Interim Corrective Action Monitoring

All extraction wells will be included in the interim corrective action monitoring. These wells will be sampled annually for EPA method 8260, which will detect the constituents specified in Table 5 of the post-closure permit. The constituents are listed above under "Evaluation Monitoring."

Area IV Monitoring

Area IV sampling schedule subject to revision.

Note: U = Isotopic uranium, to be analyzed using EPA method 907.0

Th = Isotopic thorium, to be analyzed using EPA method 907.0

Background Monitoring

The five background wells will be sampled quarterly for the expanded list of monitoring parameters (EPA method 8260) specified in Table 5 of the post-closure permit.

Background wells are sampled every five years for the constituents of concern (Table 3 of the post closure permit) on a schedule that will follow 1994, 1999, ... etc. The background wells and the detection monitoring wells were all sampled for constituents of concern in 1996. The background wells were sampled again for constituents of concern in 1999. Background wells and detection monitoring wells were sampled for constituents of concern in 2000.

Notes: F = Fluoride, EPA method 300.0

8270 = EPA method 8270 for acid and base/neutral semi-volatile compounds,

including N-nitrosodimethylamine (NDMA), nitrobenzene, and

1,3-dinitrobenzene

Ammonia = Ammonia, EPA method 350.2 Formaldehyde = Formaldehyde, EPA method 8315

NO₃ = Nitrate, EPA method 300.0

1,4-dioxane = 1,4-dioxane, EPA method 8260SIM for volatile organic compounds

FLUTe Sampling System

FLUTe sampling system - indicates wells that currently are, or will be, equipped with FLUTe multi-port sampling systems in 2003. Samples will be collected from the FLUTe multi-port sampling systems per the previously approved workplan(s).

Laboratory Services

Laboratories will be certified by the State of California for the appropriate analytical methods.

During sampling, the field parameters of turbidity, pH, temperature and specific conductance will be measured.

REFERENCES USED IN PREPARING 2003 MONITORING SCHEDULE

- 1. California Department of Toxic Substances Control, 1994. Correspondence to Rocketdyne Environmental Protection Department, Request for Modification of Analytical Parameters for Appendix IX Sampling EPA ID Numbers CAD093365435 and CA18000900100 Santa Susana Field Laboratory (SSFL) Rocketdyne Division Facility, Santa Susana, California. 13 September 1994.
- 2. ----- 1995. Hazardous Waste Facility Post-Closure Permit, Regional Permit No. PC-94/95-3-02 and PC-94/95-3-03. Permits for Areas I and III and Area II, effective 11 May 1995.
- 3. 40 CFR 264. Code of Federal Regulations, Title 40, Part 264, Appendix IX, *Groundwater Monitoring List* and Part 265, §265.92, Sampling and Analysis.

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
Shallow Wells				
SH-03		05/02/03	8260B	Primary
SH-04		04/14/03	App IX	Primary
SH-04		04/14/03	8260B	Split
SH-11		02/21/03	314.0	Primary
SH-11		02/21/03	8260B	Primary
SH-11		08/25/03	8260B	Primary
SH-11		08/25/03	8260B	Dup
RS-07		02/21/03	314.0	Primary
RS-07		02/21/03	8260B	Primary
RS-07		08/22/03	8260B	Primary
RS-08		04/14/03	App IX	Primary
RS-08		04/14/03	8260B	Split
RS-10		02/26/03	314.0	Primary
		02/26/03		Primary
RS-10			8260B	
RS-10		02/26/03	8260B	Dup
RS-11 RS-11		05/01/03	314.0	Primary
		05/01/03	8260B	Primary
RS-11		05/01/03	900.0	Primary
RS-11		05/01/03	901.1	Primary
RS-11		05/01/03	906.0	Primary
RS-11		05/01/03	8260B	Dup
RS-13		02/21/03	314.0	Primary
RS-13		02/21/03	8260B	Primary
RS-13		02/21/03	8260B	Dup
RS-15		02/26/03	314.0	Primary
RS-17		02/26/03	314.0	Primary
RS-18		05/02/03	314.0	Primary
RS-18		05/02/03	6020	Primary
RS-18		05/02/03	7470A	Primary
RS-18		05/02/03	8260B	Primary
RS-18		05/02/03	900.0	Primary
RS-18		05/02/03	901.1	Primary
RS-18		05/02/03	906.0	Primary
RS-18		05/02/03	907.0-Th	Primary
RS-18		05/02/03	908.0-U	Primary
RS-19		05/01/03	314.0	Primary
RS-19		05/01/03	8260B	Primary
RS-25		02/25/03	314.0	Primary
RS-25		02/25/03	900.0	Primary
RS-25		02/25/03	901.1	Primary
RS-25		02/25/03	906.0	Primary
RS-25		02/25/03	908.0-U	Primary
RS-25		05/01/03	314.0	Primary
RS-25		05/01/03	314.0	Split
RS-25		05/01/03	314.0	Dup
RS-30		05/01/03	314.0	Primary
RS-30		05/01/03	8015	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
ldentifier	Number	Sampled	_	Туре
RS-30		05/01/03	8260B	Primary
RS-31		05/01/03	8015	Primary
RS-31		05/01/03	8260B	Primary
RS-32		02/25/03	8015	Primary
RS-32		02/25/03	82 60B	Primary
ES-03		12/10/03	8260B	Primary
ES-04		05/14/03	8260B	Primary
ES-05		05/14/03	8260B	Primary
ES-06		05/14/03	8260B	Primary
ES-09		05/01/03	314.0	Primary
ES-09		05/01/03	8260B	Primary
ES-10		05/01/03	314.0	Primary
ES-10		05/01/03	8260B	Primary
ES-11		05/14/03	8260B	Primary
ES-12		02/27/03	314.0	Primary
ES-12		02/27/03	8260B	Primary
ES-17		05/16/03	8260B	Primary
ES-17		08/25/03	8260B	Primary
ES-22		12/10/03	8260B	Primary
ES-23		02/20/03	8260B	Primary
ES-23		08/25/03	8260B	Primary
ES-26		02/20/03	8260B	Primary
ES-26		08/25/03	8260B	Primary
ES-27		02/20/03	8260B	Primary
ES-27		08/25/03	8260B	Primary
ES-30		02/20/03	8260B	Primary
ES-30		02/20/03	8260B	Split
ES-30		08/25/03	8260B	Primary
ES-31		02/19/03	314.0	Primary
ES-31		02/19/03	8260B	Primary
ES-31		02/19/03	900.0	Primary
ES-31		02/19/03	901.1	Primary
ES-31		02/19/03	906.0	Primary
ES-32		05/16/03	8260B	Primary
HAR-03		02/13/03	8260B	Primary
HAR-04		05/14/03	8260B	Primary
HAR-11		02/27/03	8015	Primary
HAR-11		02/27/03	8260B	Primary
HAR-11		08/25/03	8260B	Primary
HAR-14		04/15/03	App IX	Primary
HAR-14		04/15/03	8260SIM	Split
HAR-14		12/03/03	8260B	Primary
HAR-15		04/15/03	App IX	Primary
HAR-15		12/03/03	8260B	Primary
HAR-15		12/03/03	8260B	Dup
HAR-27		02/13/03	8260B	Primary
HAR-27		12/09/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Sample I	Port Date	Analysis	Sample
Identifier Number	Sampled		Type
Near Surface Groundwate			
PZ-012 E	12/09/03	314.0	Primary
PZ-012 F	12/09/03	314.0	Primary
Chatsworth Formation We			
RD-01	05/07/03	314.0	Primary
RD-01	05/07/03	COCs	Primary
RD-02	02/04/03	314.0	Primary
RD-02	02/04/03	COCs	Primary
RD-02	05/05/03	314.0	Primary
RD-02	05/05/03	COCs	Primary
RD-02	08/11/03	314.0	Primary
RD-02	08/11/03	8260SIM	Primary
RD-02	08/11/03	COCs	Primary
RD-02	11/19/03	314.0	Primary
RD-02	11/19/03	COCs	Primary
RD-02	11/19/03	8260B	Dup
RD-03	02/18/03	314.0	Primary
RD-03	02/18/03	8260B	Primary
RD-03	02/18/03	8260B	Dup
RD-03	08/15/03	8260B	Primary
RD-04	02/03/03	314.0	Primary
RD-04	02/03/03	COCs	Primary
RD-04	05/07/03	COCs	Primary
RD-04	05/07/03	314.0	Primary
RD-04	05/07/03	8260SIM	Split
RD-04	08/20/03	314.0	Primary
RD-04	08/20/03	COCs	Primary
RD-04	11/20/03	314.0	Primary
RD-04	11/20/03	COCs	Primary
RD-05A	01/31/03	8260B	Primary
RD-05A	08/07/03	8260B	Primary
RD-05B	01/31/03	8260B	Primary
RD-05B	05/09/03	8260B	Primary
RD-05B	05/09/03	8260B	Dup
RD-05B	08/08/03	8260B	Primary
RD-05B	11/10/03	8260B	Primary
RD-05B	11/10/03	8260B	Split
RD-05B	11/10/03	8260B	Dup
RD-05C	01/31/03	8260B	Primary Primary
RD-05C	05/09/03	8260B	Primary
RD-05C	08/08/03	8260B	Primary
RD-05C	11/11/03	8260B	Primary
RD-06	02/18/03	8260B	Primary
RD-06	05/09/03	8260B	Primary
RD-06	08/20/03	8260B	Primary
RD-07 Z3	01/29/03	908.0-U	Primary
RD-07 Z3	01/29/03	8260B	Primary
RD-07 Z3	01/29/03	900.0	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled	•	Туре
RD-07	Z3	01/29/03	901.1	Primary
RD-07	Z 3	01/29/03	906.0	Primary
RD-07	Z3	01/29/03	907.0-Th	Primary
RD-07	Z13	08/28/03	8260B	Primary
RD-07	Z13	08/28/03	900.0	Primary
RD-07	Z13	08/28/03	903.1	Primary
RD-07	Z13	08/28/03	904.0	Primary
RD-07	Z13	08/28/03	906.0	Primary
RD-09	213	02/26/03	8260B	Primary
	Co			· ·
RD-10	Comp	01/28/03	314.0	Primary
RD-10	Comp	01/28/03	COCs	Primary
RD-10	Comp	04/30/03	314.0	Primary
RD-10	Comp	04/30/03	COCs	Primary
RD-13		02/07/03	8260B	Primary
RD-13		02/07/03	82 60B	Dup
RD-13		05/13/03	8260B	Primary
RD-13		11/12/03	8260B	Primary
RD-13		11/12/03	8260B	Split
RD-14		02/26/03	314.0	Primary
RD-14		02/26/03	8260B	Primary
RD-15		02/26/03	314.0	Primary
RD-15		02/26/03	6020	Primary
RD-15		02/26/03	7470A	Primary
RD-15		02/26/03	8260B	Primary
RD-15		02/26/03	900.0	Primary
RD-15		02/26/03	901.1	Primary
RD-15		02/26/03	906.0	Primary
RD-15		02/26/03	908.0-U	Primary
RD-16		02/26/03	8260B	Primary
RD-16		05/13/03	8260B	Primary
RD-16		05/13/03	8260B	Split
RD-16		08/15/03	8260B	Primary
RD-16		11/10/03	8260B	Primary
RD-10		02/24/03	314.0	Primary
RD-17		02/24/03	8260B	Primary
RD-17		02/24/03	900.0	Primary
RD-17		02/24/03	901.1	Primary
RD-17		02/24/03	906.0	Primary
RD-18		02/17/03	314.0	Primary
RD-18		02/17/03	8260B	Primary
RD-18		05/13/03	8260B	Primary
RD-18		08/14/03	8260B	Primary
RD-18		11/19/03	8260B	Primary
RD-19		02/26/03	314.0	Primary
RD-19		02/26/03	8260B	Primary
RD-19		05/06/03	8260B	Primary
RD-19		05/06/03	8260B	Dup
RD-19		08/14/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-19		12/10/03	8260B	Primary
RD-20		02/14/03	314.0	Primary
RD-20		02/14/03	8260B	Primary
RD-21	Z2	02/25/03	6020	Primary
RD-21	Z2	02/25/03	7470A	Primary
RD-21	Z2	02/25/03	8260B	Primary
RD-21	Z2	02/25/03	900.0	Primary
RD-21	Z2	02/25/03	901.1	Primary
RD-21	Z2	02/25/03	906.0	Primary
RD-21	Z2	08/28/03	6020	Primary
RD-21	Z2	08/28/03	7470A	Primary
RD-21	Z2	08/28/03	8260B	Primary
RD-21	Z2	11/17/03	8260B	Primary
RD-21	Z2	11/17/03	8260B	Split
RD-21	Z2	11/17/03	8260B	Dup
RD-22	Z2	02/24/03	6020	Primary
RD-22	Z2	02/24/03	7470A	Primary
RD-22	Z2	02/24/03	8260B	Primary
RD-22	Z2	02/24/03	8260B	Split
RD-22	Z2	02/24/03	900.0	Primary
RD-22	Z2 Z2	02/24/03	901.1	Primary
RD-22	Z2 Z2	02/24/03	9014	Primary
RD-22	Z2 Z2	02/24/03	906.0	Primary
RD-22	Z2 Z2	04/30/03	8260B	Primary
RD-22	Z2 Z2	04/30/03	8260B	Dup
RD-22	Z2 Z2	06/02/03	6020-Arsenic	Primary
RD-22	Z2	08/27/03	8260B	Primary
RD-22	Z2 Z2	11/17/03	8260B	Primary
RD-23	Z1	02/26/03	6020	Primary
RD-23	Z1	02/26/03	7470A	Primary
RD-23	Z1	02/26/03	8260B	•
RD-23	Z1	02/26/03	900.0	Primary Primary
RD-23	Z1	02/26/03	901.1	Primary
RD-23	Z1	02/26/03	906.0	Primary
RD-23	Z1	08/26/03	6020	Primary
RD-23	Z1	08/26/03	7470A	Primary
RD-23	Z1	08/26/03	8260B	· ·
RD-23	21	02/12/03	314.0	Primary Primary
RD-24		02/12/03	8260B	Primary
RD-24				•
RD-24		02/12/03 02/12/03	900.0	Primary
RD-24		02/12/03	901.1 906.0	Primary Primary
RD-24				Primary Primary
RD-24 RD-24		11/14/03	900.0	Primary
RD-24		11/14/03	900.0	Split Priman
		11/14/03	901.1	Primary
RD-24		11/14/03	901.1	Split Primary
RD-24		11/14/03	903.1	Primary
RD-24		11/14/03	903.1	Split

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled	•	Type
RD-24		11/14/03	904.0	Primary
RD-24		11/14/03	904.0	Split
RD-24		11/14/03	906.0	Primary
RD-24		11/14/03	906.0	Split
RD-24		11/14/03	8260B	Primary
RD-25		02/24/03	314.0	Primary
RD-25		02/24/03	8260B	Primary
RD-25		02/24/03	900.0	Primary
RD-25		02/24/03	901.1	Primary
RD-25		02/24/03	906.0	Primary
RD-25		11/13/03	8260B	Primary
RD-25		11/13/03	900.0	Primary
RD-25		11/13/03	901.1	Primary
RD-25		11/13/03	903.1	Primary
RD-25		11/13/03	904.0	Primary
RD-25		11/13/03	906.0	Primary
RD-25		05/15/03		Primary
			314.0	· · · · · · · · · · · · · · · · · · ·
RD-26		05/15/03	8260B	Primary
RD-26		08/21/03	8260B	Primary
RD-26		08/21/03	8260B	Dup
RD-27		02/21/03	314.0	Primary
RD-27		02/21/03	8260B	Primary
RD-27		02/21/03	906.0	Primary
RD-27		05/14/03	900.0	Primary
RD-27		05/14/03	901.1	Primary
RD-27		11/14/03	900.0	Primary
RD-27		11/14/03	900.0	Split
RD-27		11/14/03	901.1	Primary
RD-27		11/14/03	901.1	Split
RD-27		11/14/03	906.0	Primary
RD-27		11/14/03	906.0	Split
RD-27		11/14/03	8260B	Primary
RD-28		02/24/03	908.0-U	Primary
RD-28		02/24/03	314.0	Primary
RD-28		02/24/03	8260 B	Primary
RD-28		02/24/03	900.0	Primary
RD-28		02/24/03	901.1	Primary
RD-28		02/24/03	906.0	Primary
RD-28		02/24/03	907.0-Th	Primary
RD-28		11/14/03	900.0	Primary
RD-28		11/14/03	901.1	Primary
RD-28		11/14/03	903.1	Primary
RD-28		11/14/03	904.0	Primary
RD-28		11/14/03	906.0	Primary
RD-28		11/14/03	8260B	Primary
RD-29		05/13/03	314.0	Primary
RD-29		05/13/03	82 60B	Primary
RD-29		05/13/03	900.0	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-29		05/13/03	901.1	Primary
RD-29		05/13/03	906.0	Primary
RD-29		05/13/03	908.0-U	Primary
RD-30		02/07/03	314.0	Primary
RD-30		02/07/03	8260B	Primary
RD-30		02/07/03	900.0	Primary
RD-30		02/07/03	901.1	Primary
RD-30		02/07/03	906.0	Primary
RD-30		11/14/03	900.0	Primary
RD-30		11/14/03	901.1	Primary
RD-30		11/14/03	903.1	Primary
RD-30		11/14/03	904.0	Primary
RD-30		11/14/03	906.0	Primary
RD-30		11/14/03	8260B	Primary
RD-31	Z 5	01/27/03	314.0	Primary
RD-31	Z6	01/27/03	314.0	Primary
RD-31	Z7	01/27/03	314.0	Primary
RD-31	Z7	01/27/03	8260B	-
RD-31	21			Primary
RD-32		02/21/03	314.0	Primary
RD-32		02/21/03	8015	Primary
		02/21/03	8260B	Primary
RD-32	74	05/13/03	8260B	Primary
RD-33A	Z4	01/30/03	6020	Primary
RD-33A	Z4	01/30/03	7470A	Primary
RD-33A	Z4	01/30/03	8260B	Primary
RD-33A	Z4	01/30/03	900.0	Primary
RD-33A	Z4	01/30/03	901.1	Primary
RD-33A	Z4	01/30/03	9014	Primary
RD-33A	Z4	01/30/03	906.0	Primary
RD-33A	Z4	01/30/03	8260B	Dup .
RD-33A	Z4	08/27/03	8260B	Primary
RD-33B		02/11/03	6020	Primary
RD-33B		02/11/03	7470A	Primary
RD-33B	•	02/11/03	8260B	Primary
RD-33B		02/11/03	900.0	Primary
RD-33B		02/11/03	901.1	Primary
RD-33B		02/11/03	9014	Primary
RD-33B	,	02/11/03	906.0	Primary
RD-33B		05/14/03	8260B	Primary
RD-33B		11/13/03	8260B	Primary
RD-33B		11/13/03	906.0	Primary
RD-33C		02/10/03	6020	Primary
RD-33C		02/10/03	7470A	Primary
RD-33C		02/10/03	8260B	Primary
RD-33C		02/10/03	900.0	Primary
RD-33C		02/10/03	901.1	Primary
RD-33C		02/10/03	9014	Primary
RD-33C		02/10/03	906.0	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-33C		05/13/03	8260B	Primary
RD-33C		11/13/03	8260B	Primary
RD-33C		11/13/03	906.0	Primary
RD-33C		11/13/03	906.0	Split
RD-34A		05/16/03	908.0-U	Primary
RD-34A		05/16/03	6020	Primary
RD-34A		05/16/03	7470A	Primary
RD-34A		05/16/03	8260B	Primary
RD-34A		05/16/03	900.0	Primary
RD-34A		05/16/03	901.1	Primary
RD-34A		05/16/03	9014	Primary
RD-34A		05/16/03	906.0	Primary
RD-34A		05/16/03	907.0-Th	Primary
RD-34B		02/06/03	6020	Primary
RD-34B		02/06/03	7470A	Primary
RD-34B		02/06/03	8260B	Primary
RD-34B		02/06/03	900.0	Primary
RD-34B		02/06/03	901.1	Primary
RD-34B		02/06/03	9014	Primary
RD-34B		02/06/03	906.0	Primary
RD-34B		11/13/03	906.0	Primary
RD-34B		11/13/03	8260B	Primary
RD-34C		02/06/03	6020	Primary
RD-34C		02/06/03	7470A	Primary
RD-34C		02/06/03	8260B	Primary
RD-34C		02/06/03	900.0	Primary
RD-34C		02/06/03	901.1	Primary
RD-34C		02/06/03	9014	Primary
RD-34C		02/06/03	906.0	Primary
RD-34C		11/13/03	906.0	Primary
RD-34C		11/13/03	8260B	Primary
RD-34C		11/13/03	8260B	Dup
RD-35A		02/14/03	8260B	Primary
RD-35B		02/19/03	8260B	Primary
RD-36B		02/12/03	314.0	Primary
RD-36B		02/12/03	8015	Primary
RD-36B		02/12/03	8260B	Primary
RD-36C		02/13/03	314.0	Primary
RD-36C		02/13/03	8015	Primary
RD-36C		02/13/03	8260B	Primary
RD-36D		02/13/03	314.0	Primary
RD-36D		02/13/03	8015	Primary
RD-36D		02/13/03	8260B	Primary
RD-37		02/14/03	314.0	Primary
RD-37		02/14/03	8015	Primary
RD-37		02/14/03	8260B	Primary
RD-37		02/17/03	8260B	Primary
RD-37		02/17/03	8260B	Split

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled	·	Туре
RD-37		05/06/03	8260B	Primary
RD-38A		02/13/03	314.0	Primary
RD-38A		02/13/03	8015	Primary
RD-38A		02/13/03	8260B	Primary
RD-38B		02/13/03	314.0	Primary
RD-38B		02/13/03	8015	Primary
RD-38B		02/13/03	8260B	Primary
RD-38B		05/02/03	8260B	Primary
RD-39B		02/13/03	314.0	Primary
RD-39B		02/13/03	8260B	Primary
RD-39B		05/01/03	8260B	Primary
RD-40		05/08/03	314.0	Primary
RD-40		05/08/03	8260B	Primary
RD-40		05/08/03	8260B	Dup
RD-41A		02/06/03	314.0	Primary
RD-41A		02/06/03	8260B	Primary
RD-41B		02/06/03	314.0	Primary
RD-41B		02/06/03	8260B	Primary
RD-41C		02/06/03	314.0	Primary
RD-41C		02/06/03	8260B	Primary
RD-41C		02/06/03	8260B	Split
RD-42		02/07/03	314.0	Primary
RD-42		02/07/03	8260B	Primary
RD-43A		02/17/03	314.0	Primary
RD-43A	•	02/17/03	8260B	Primary
RD-43A		05/02/03	8260B	Primary
RD-43B		02/11/03	314.0	Primary
RD-43B		02/11/03	8260B	Primary
RD-43B		05/01/03	8260B	Primary
RD-43B		08/13/03	8260B	Primary
RD-43B		08/13/03	8260B	Dup
RD-43C		02/17/03	314.0	Primary
RD-43C		02/17/03	8260B	Primary
RD-43C		05/02/03	8260B	Primary
RD-43C		08/13/03	8260B	Primary
RD-44		02/04/03	COCs	Primary
RD-44		02/04/03	314.0	Primary
RD-44		02/04/03	8260SIM	Dup
RD-44		05/06/03	314.0	Primary
RD-44		05/06/03	COCs	Primary
RD-44		08/11/03	314.0	Primary
RD-44		08/11/03	COCs	Primary
RD-45B		02/05/03	8260B	Primary
RD-45C		02/07/03	8260B	Primary
RD-46A		02/18/03	314.0	Primary
RD-46A		02/18/03	8260B	Primary
RD-46A		08/13/03	8260B	Primary
RD-46B		02/18/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-46B		08/13/03	8260B	Primary
RD-47		02/06/03	314.0	Primary
RD-47		02/06/03	8260B	Primary
RD-48B		02/18/03	8260B	Primary
RD-48B		02/18/03	8260B	Split
RD-48B		02/18/03	8260B	Dup
RD-48B		05/15/03	8260B	Primary
RD-48B		09/03/03	8260B	Primary
RD-48B		09/03/03	8260B	Dup
		09/03/03		Split
RD-48B	•		8260B	·
RD-48B		11/20/03	8260B	Primary
RD-48C		02/18/03	8260B	Primary
RD-48C		05/13/03	8260B	Primary
RD-48C		08/20/03	8260B	Primary
RD-48C		11/21/03	8260B	Primary
RD-49A		02/04/03	COCs	Primary
RD-49A		02/04/03	314.0	Primary
RD-49A		02/04/03	8260B	Dup
RD-49A		05/07/03	314.0	Primary
RD-49A		05/07/03	COCs	Primary
RD-49A		05/07/03	8260SIM	Split
RD-49A		08/11/03	314.0	Primary
RD-49A		08/11/03	COCs	Primary
RD-49A		11/18/03	314.0	Primary
RD-49A		11/18/03	COCs	Primary
RD-49B		02/03/03	314.0	Primary
RD-49B		02/03/03	COCs	Primary
RD-49B		05/06/03	COCs	Primary
RD-49B		05/06/03	314.0	Primary
RD-49B		05/06/03	8260SIM	· · · · · · · · · · · · · · · · · · ·
				Split
RD-49B		08/11/03	314.0	Primary
RD-49B		08/11/03	COCs	Primary
RD-49B		11/17/03	314.0	Primary
RD-49B		11/17/03	8260SIM	Dup
RD-49B		11/17/03	8260SIM	Split
RD-49B		11/17/03	COCs	Primary
RD-49C		02/04/03	314.0	Primary
RD-49C		02/04/03	COCs	Primary
RD-49C		05/06/03	314.0	Primary
RD-49C		05/06/03	COCs	Primary
RD-49C		08/19/03	314.0	Primary
RD-49C		08/19/03	COCs	Primary
RD-49C		11/18/03	314.0	Primary
RD-49C		11/18/03	8260SIM	Dup
RD-49C		11/18/03	COCs	Primary
RD-50	Z2	02/17/03	8015	Primary
RD-50	Z2	02/17/03	8260B	Primary
RD-50	 Z2	08/28/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Weil	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled	•	Туре
RD-51B		02/12/03	314.0	Primary
RD-51B		02/12/03	8260B	Primary
RD-51B		08/21/03	8260B	Primary
RD-51B		11/06/03	314.0	Primary
RD-51B		11/06/03	314.0	Split
RD-51B		11/06/03	General Minerals	Primary
RD-51C		02/13/03	8260B	Primary
RD-51C		02/13/03	8260B	Split
RD-51C		05/08/03	8260B	Primary
RD-51C		08/19/03	8260B	
				Primary
RD-51C		11/07/03	314.0	Primary
RD-51C		11/07/03	314.0	Split
RD-51C		11/07/03	8260B	Primary
RD-51C		11/07/03	8260B	Split
RD-51C		11/07/03	General Minerals	Primary
RD-52B		02/11/03	314.0	Primary
RD-52B		02/11/03	8260B	Primary
RD-52B		08/14/03	8260B	Primary
RD-52B		11/18/03	314.0	Primary
RD-52B		11/18/03	General Minerals	Primary
RD-52C		02/17/03	8260B	Primary
RD-52C		05/14/03	8260B	Primary
RD-52C		05/14/03	8260B	Dup
RD-52C		08/12/03	8260B	Primary
RD-52C		11/19/03	314.0	Primary
RD-52C		11/19/03	8260B	Primary
RD-52C		11/19/03	General Minerals	Primary
RD-54A	Z2	02/18/03	6020	Primary
RD-54A	Z2	02/18/03	7470A	Primary
RD-54A	Z2	02/18/03	8260B	Primary
RD-54A	Z2	02/18/03	900.0	Primary
RD-54A	Z2	02/18/03	901.1	Primary
RD-54A	Z2	02/18/03	906.0	Primary
RD-54A	Z2	02/18/03	907.0-Th	Primary
RD-54A	Z2	02/18/03	908.0-U	Primary
RD-54A	Z2	08/26/03	6020	Primary
RD-54A	Z2	08/26/03	7470A	Primary
RD-54A	Z2	08/26/03	8260B	Primary
RD-54A	Z2	08/26/03	906.0	Primary
RD-54B		02/26/03	6020	Primary
RD-54B		02/26/03	7470A	Primary
RD-54B		02/26/03	8260B	Primary
RD-54B		02/26/03	900.0	Primary
RD-54B		02/26/03	901.1	Primary
RD-54B		02/26/03	906.0	Primary
RD-54B		08/07/03	6020	Primary
RD-54B		08/07/03	7470A	Primary
RD-54B		08/07/03		Primary
ハル-340		00/07/03	8260B	Filmary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled	·	Туре
RD-54B		08/07/03	906.0	Primary
RD-54B		08/07/03	8260B	Dup
RD-54C		02/26/03	6020	Prim ary
RD-54C		02/26/03	7470A	Primary
RD-54C		02/26/03	8260B	Primary
RD-54C		02/26/03	900.0	Primary
RD-54C		02/26/03	901.1	Primary
RD-54C		02/26/03	906.0	Primary
RD-54C		08/26/03	6020	Primary
RD-54C		08/26/03	7470A	Primary
RD-54C		08/26/03	8260B	Primary
		08/26/03	906.0	•
RD-54C				Primary
RD-55A		02/13/03	314.0	Primary
RD-55A		02/13/03	8260B	Primary
RD-55A		02/13/03	8260B	Split
RD-55A		02/13/03	8260B	Dup
RD-55A		05/05/03	8260B	Primary
RD-55A		05/05/03	8260B	Dup
RD-55A		08/18/03	8260B	Primary
RD-55A		08/18/03	8260B	Split
RD-55A		08/18/03	8260B	Dup
RD-55B		02/19/03	314.0	Primary
RD-55B		02/19/03	8260B	Primary
RD-55B		05/06/03	8260B	Primary
RD-55B		05/06/03	8260B	Dup
RD-55B		08/22/03	8260B	Primary
RD-55B		08/22/03	8260B	Split
RD-55B		08/22/03	8260B	Dup
RD-56A		02/24/03	8260B	Primary
RD-56B		02/19/03	8260B	Primary
RD-56B		08/12/03	6020	Primary Primary
RD-56B		08/12/03	7470A	Primary
RD-56B		08/12/03	8260B	Primary
RD-56B		11/11/03	8260B	Primary
RD-56B		11/11/03	8260B	Dup
RD-56B		11/11/03	8260B	Split
RD-57	Z 8	01/29/03	6020	Primary
RD-57	Z8	01/29/03	7470A	Primary
RD-57	Z8	01/29/03	8260B	Primary
RD-57	Z8	01/29/03	900.0	Primary
RD-57	Z8	01/29/03	901.1	Primary
RD-57	Z8	01/29/03	906.0	Primary
RD-57	Z8	04/30/03	6020	Primary
RD-57	Z8	04/30/03	7470A	Primary
RD-57	Z8	04/30/03	8260B	Primary
RD-57	Z8			•
		04/30/03	900.0	Primary Primary
RD-57	Z8	04/30/03	901.1	Primary
RD-57	Z8	04/30/03	906.0	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-57	Z8	08/27/03	8260B	Primary
RD-57	Z8	08/27/03	906.0	Primary
RD-57	Z8	11/18/03	8260B	Primary
RD-58A		02/03/03	8260B	Primary
RD-58A		12/09/03	8260B	Primary
RD-58B	•	01/31/03	8260B	Primary
RD-58B		05/05/03	8260B	Primary
RD-58B		08/19/03	8260B	Primary
RD-58B		11/19/03	8260B	Primary
RD-58C		02/03/03	8260B	Primary .
RD-58C		08/18/03	8260B	Primary
RD-59A		01/31/03	314.0	Primary
RD-59A		01/31/03	6020	Primary
RD-59A		01/31/03	7470A	Primary
RD-59A		01/31/03	8260B	
RD-59A		01/31/03	900.0	Primary
RD-59A				Primary
RD-59A		01/31/03	901.1	Primary
		01/31/03	906.0	Primary
RD-59A		05/15/03	314.0	Primary
RD-59A		05/15/03	8260B	Primary
RD-59A		05/15/03	900.0	Primary
RD-59A		05/15/03	900.0	Split
RD-59A		05/15/03	901.1	Primary
RD-59A		05/15/03	901.1	Split
RD-59A		05/15/03	906.0	Primary
RD-59A		05/15/03	906.0	Split
RD-59A		08/08/03	906.0	Split
RD-59A		08/08/03	314.0	Primary
RD-59A		08/08/03	6020	Primary
RD-59A		08/08/03	7470A	Primary
RD-59A		08/08/03	8260B	Primary
RD-59A		08/08/03	906.0	Primary
RD-59A		11/14/03	906.0	Primary
RD-59A		11/14/03	906.0	Split
RD-59A		11/14/03	314.0	Primary
RD-59A		11/14/03	8260B	Primary
RD-59A		11/14/03	General Minerals	Primary
RD-59B		01/31/03	314.0	Primary
RD-59B		01/31/03	6020	Primary
RD-59B		01/31/03	7470A	Primary
RD-59B		01/31/03	8260B	Primary
RD-59B		01/31/03	900.0	Primary
RD-59B		01/31/03	901.1	Primary
RD-59B		01/31/03	906.0	Primary
RD-59B		05/15/03	8260B	Primary
RD-59B		08/08/03	314.0	Primary
RD-59B		08/08/03	6020	Primary
RD-59B		08/08/03	7470A	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-59B		08/08/03	8260B	Primary
RD-59B		08/08/03	906.0	Primary
RD-59B		12/04/03	314.0	Primary
RD-59B		12/04/03	8260B	Primary
RD-59B	•	12/04/03	General Minerals	Primary
RD-59C		01/31/03	314.0	Primary
RD-59C		01/31/03	6020	Primary
RD-59C		01/31/03	7470A	Primary
RD-59C		01/31/03	8260B	Primary
RD-59C		01/31/03	900.0	Primary
RD-59C		01/31/03	901.1	Primary
RD-59C		01/31/03	906.0	Primary
RD-59C		05/15/03	8260B	Primary
RD-59C		08/08/03	314.0	Primary
RD-59C		08/08/03	6020	Primary
RD-59C		08/08/03	7470A	Primary
RD-59C		08/08/03	8260B	Primary
		08/08/03	906.0	
RD-59C		12/04/03		Primary
RD-59C			314.0 8260B	Primary
RD-59C		12/04/03		Primary
RD-59C		12/04/03	General Minerals	Primary
RD-60		05/15/03	8260B	Primary
RD-60		08/26/03	8260B	Primary
RD-61		02/14/03	8260B	Primary
RD-61		05/08/03	8260B	Primary
RD-61		08/26/03	8260B	Primary
RD-61		12/03/03	8260B	Split
RD-61		12/03/03	8260B	Primary
RD-61		12/03/03	8260B	Dup
RD-62		02/10/03	8260B	Primary
RD-62		05/02/03	8260B	Primary
RD-62		11/21/03	8260B	Primary
RD-63		02/05/03	8260B	Primary
RD-63		02/05/03	900.0	Primary
RD-63		02/05/03	901.1	Primary
RD-63		02/05/03	906.0	Primary
RD-63		08/26/03	8260B.	Primary
RD-64	Z 6	01/29/03	8260B	Primary
RD-64	Z 6	01/29/03	900.0	Primary
RD-64	Z6	01/29/03	901.1	Primary
RD-64	Z 6	01/29/03	906.0	Primary
RD-64	Z6	01/29/03	908.0-U	Primary
RD-65	Z4	01/28/03	8260B	Primary
RD-66		02/10/03	314.0	Primary
RD-66		02/10/03	8260B	Primary
RD-66		05/08/03	8260B	Primary
RD-66		05/08/03	8260B	Dup
RD-67		02/19/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUÁRTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Weli	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
RD-67		08/21/03	8260B	Primary
RD-68A		02/04/03	314.0	Primary
RD-68A		02/04/03	8260B	Primary
RD-68A		05/15/03	8260B	Primary
RD-68A		08/07/03	8260B	Primary
RD-68A	•	12/04/03	314.0	Primary
RD-68A		12/04/03	8260B	Primary
RD-68A		12/04/03	General Minerals	Primary
RD-68B		02/04/03	314.0	Primary
RD-68B		02/04/03	8260B	Primary
RD-68B		05/15/03	8260B	Primary
RD-68B		08/07/03	8260B	Primary
RD-68B		12/04/03	8260B	Split
RD-68B		12/04/03	314.0	Primary
RD-68B		12/04/03	8260B	Primary
RD-68B		12/04/03	General Minerals	Primary
RD-669		02/11/03	8260B	
RD-69		08/26/03		Primary
			8260B	Primary
RD-70		02/05/03	8260B	Primary
RD-70		05/01/03	8260B	Primary
RD-71		02/10/03	314.0	Primary
RD-71		02/10/03	8260B	Primary
RD-71		05/08/03	8260B	Primary
RD-72	Z7	01/27/03	8260B	Primary
RD-73	Z 9	01/27/03	8260B	Primary
HAR-01		01/27/03	314.0	Primary
HAR-05		02/21/03	314.0	Primary
HAR-06		02/21/03	314.0	Primary
HAR-06		02/21/03	8260B	Primary
HAR-07		04/16/03	App IX	Primary
HAR-07		04/16/03	1625M	Dup
HAR-07		04/16/03	1625M	Split
HAR-07		04/16/03	314.0	Primary
HAR-07		04/16/03	8260SIM	Split
HAR-07		11/21/03	8260B	Primary
HAR-16	Comp	04/17/03	App IX (only 8260B, CN, Sulfide, 8270, 504.1, 1625M)	Primary
HAR-17		04/16/03	App IX	Primary
HAR-17		04/16/03	314.0	Primary
HAR-17		04/16/03	8260B	Dup
HAR-17		11/21/03	8260B	Primary
HAR-18		02/25/03	8260B	Primary
HAR-18		05/16/03	314.0	Primary
HAR-18		08/26/03	8260B	Primary
HAR-21		02/27/03	314.0	Primary
HAR-21		02/27/03	8260B	Primary
HAR-22		02/26/03	314.0	Primary
HAR-22		02/26/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
HAR-22		08/21/03	8260B	Primary
HAR-23		02/27/03	314.0	Prim ary
HAR-23		02/27/03	8260B	Primary
HAR-23		08/26/03	8260B	Primary
HAR-25		02/27/03	314.0	Primary
HAR-25		02/27/03	8260B	Primary
HAR-26		02/26/03	8260B	Primary
HAR-26		05/15/03	314.0	Primary
HAR-26		05/15/03	8260B	Primary
HAR-26		05/15/03	8260B	Dup
HAR-26		08/26/03	8260B	Primary
WS-04A		02/19/03	8260B	Primary
WS-04A		02/19/03	8260B	Split
WS-04A		02/19/03	8260B	Dup
WS-04A		05/09/03	8260B	Primary
WS-04A		05/09/03	8260B	Dup
WS-04A		12/03/03	8260B	Split
WS-04A		12/03/03	314.0	Primary
WS-04A		12/03/03	8260B	Primary
WS-04A		12/03/03	General Minerals	Primary
WS-04A		12/03/03	8260B	Dup
WS-05		02/04/03	314.0	Primary
WS-05		02/04/03	COCs	Primary
WS-05		05/05/03	COCs	Primary
WS-05		05/05/03	314.0	Primary
WS-05		05/05/03	8260SIM	Split
WS-06		02/03/03	314.0	Primary
WS-06		02/03/03	COCs	Primary
WS-06		05/07/03	314.0	Primary
WS-06		05/07/03	COCs	Primary
WS-06		08/19/03	314.0	Primary
WS-06		08/19/03	COCs	Primary
WS-06		11/19/03	314.0	Primary
WS-06		11/19/03	COCs	Primary
WS-09		02/03/03	314.0	Primary
WS-09		02/03/03	COCs	Primary
WS-09		05/07/03	314.0	Primary
WS-09		05/07/03	COCs	Primary
WS-09A		02/12/03	8260B	Primary
WS-09A		05/01/03	8260B	Primary
WS-09A		08/26/03	8260B	Primary
WS-09A		12/03/03	8260B	Split
WS-09A		12/03/03	8260B	Primary
WS-09A		12/03/03	8260B	Dup
WS-09B		11/06/03	314.0	Primary
WS-09B		11/06/03	General Minerals	Primary
WS-12		08/13/03	314.0	Primary
WS-12		08/13/03	COCs	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
WS-13		08/20/03	314.0	Primary
WS-13		08/20/03	COCs	Primary
OS-02		01/31/03	314.0	Primary
OS-02		01/31/03	8260B	Primary
OS-02		12/09/03	314.0	Primary
OS-02		12/09/03	General Minerals	Primary
OS-03		01/31/03	314.0	Primary
OS-03		12/09/03	314.0	Primary
OS-03		12/09/03	General Minerals	Primary
OS-04		08/08/03	314.0	Primary
OS-04		08/08/03	8260B	Primary
OS-04		12/09/03	314.0	Primary
OS-04		12/09/03	General Minerals	Primary
OS-05		01/31/03	314.0	Primary
OS-05		12/09/03	314.0	Primary
OS-05		12/09/03	General Minerals	Primary
OS-08		01/31/03	314.0	Primary
OS-08		01/31/03	8260B	Primary
OS-08				·
OS-08		12/09/03	314.0	Primary
OS-08		12/09/03	314.0	Split
		12/09/03	General Minerals	Primary
OS-09		07/02/03	314.0	Primary
OS-09		07/02/03	314.0	Split
OS-09		07/02/03	Deuterium	Primary
OS-09		07/02/03	General Minerals	Primary
OS-09		07/02/03	Oxygen-18	Primary
OS-09		07/10/03	314.0	Primary
OS-09		07/10/03	314.0	Split
OS-09		07/10/03	General Minerals	Primary
OS-09		07/10/03	314.0	Dup
OS-09		07/10/03	314.0	Split Sample Dup
OS-09		07/17/03	314.0	Primary
OS-09		07/17/03	314.0	Split
OS-09		07/17/03	Deuterium	Primary
OS-09		07/17/03	General Minerals	Primary
OS-09		07/17/03	Oxygen-18	Primary
OS-09		07/17/03	314.0	Dup
OS-09		07/24/03	314.0	Primary
OS-09		07/24/03	314.0	Split
OS-09		07/24/03	General Minerals	Primary
OS-09		07/24/03	314.0	Dup
OS-09		07/24/03	314.0	Split Sample Dup
OS-09		07/31/03	314.0	Primary
OS-09		07/31/03	314.0	Split - AMA
OS-09		07/31/03	General Minerals	Primary
OS-09		07/31/03	314.0	Dup
OS-09		07/31/03	314.0	Split - Ceimic
OS-09		07/31/03	314.0	Split Sample Dup - AMA

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
ldentifier	Number	Sampled		Type
OS-09		07/31/03	314.0	Split Sample Dup - Ceimic
OS-09		08/07/03	314.0	Primary
OS-09		08/07/03	314.0	Split
OS-09		08/07/03	General Minerals	Primary
OS-09		08/07/03	314.0	Dup
OS-09		08/07/03	314.0	Split Sample Dup
OS-09		08/12/03	314.0	Primary
OS-09		08/12/03	General Minerals	Primary
OS-09		08/12/03	314.0	Dup
OS-09		08/12/03	314.0	Split
OS-09		08/12/03	314.0	Split Sample Dup
OS-09		08/21/03	314.0	Primary
OS-09		08/21/03	314.0	Split
)S-09		08/21/03	General Minerals	Primary
)S-09)S-09		08/21/03	314.0	Dup
)S-09		08/21/03	314.0	Split Sample Dup
DS-09		08/28/03	314.0	Primary
OS-09		08/28/03	Deuterium	Primary
OS-09		08/28/03	General Minerals	Primary
OS-09		08/28/03	Oxygen-18	Primary
OS-09		08/28/03	314.0	Split
OS-09		08/28/03	314.0	Dup
OS-09		08/28/03	314.0	Split Sample Dup
OS-09		09/04/03	314.0	Primary
OS-09		09/04/03	314.0	Split
DS-09		09/04/03	General Minerals	Primary
OS-09		09/04/03	314.0	Dup
OS-09		09/04/03	314.0	Split Sample Dup
OS-09		09/11/03	314.0	Primary
OS-09		09/11/03	314.0	Split
OS-09		09/11/03	General Minerals	Primary
)S-09		09/11/03	314.0	Dup
OS-09		09/11/03	314.0	Split Sample Dup
OS-09		09/18/03	314.0	Primary
OS-09		09/18/03	314.0	Split
OS-09		09/18/03	General Minerals	Primary
OS-09		09/18/03	314.0	Dup
OS-09		09/18/03	314.0	Split Sample Dup
OS-09		09/25/03	314.0	Primary
OS-09		09/25/03	314.0	Split
OS-09		09/25/03	Deuterium	Primary
OS-09		09/25/03	General Minerals	Primary
OS-09		09/25/03	Oxygen-18	Primary
OS-09		09/25/03	314.0	Dup
DS-09		09/25/03	314.0	Split Sample Dup
DS-09		10/02/03	314.0	Primary
DS-09		10/02/03	314.0	Split
OS-09		10/02/03	General Minerals	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample
Identifier	Number	Sampled		Туре
OS-09		10/02/03	314.0	Dup
OS-09		10/02/03	314.0	Split Sample Dup
OS-09		11/06/03	314.0	Primary
OS-09		11/06/03	314.0	Split
OS-09		11/06/03	8260B	Primary
OS-09		11/06/03	8260B	Split
OS-09		11/06/03	General Minerals	Primary
OS-09		11/06/03	314.0	Dup
OS-09		11/06/03	314.0	Split Sample Dup
OS-09		11/06/03	8260B	Dup
OS-09		11/13/03	314.0	Primary
OS-09		11/13/03	314.0	Split
OS-09		11/13/03	General Minerals	Primary
OS-09		11/13/03	314.0	Dup
OS-09		11/13/03	314.0	Split Sample Dup
OS-09		11/20/03	314.0	Primary
OS-09		11/20/03	General Minerals	Primary
OS-09		11/24/03	314.0	Primary
OS-09			- · · · · -	Primary
		11/24/03	General Minerals	•
OS-09		12/04/03	314.0	Primary
OS-09		12/04/03	314.0	Split
OS-09		12/04/03	Deuterium	Primary
OS-09		12/04/03	General Minerals	Primary
OS-09		12/04/03	Oxygen-18	Primary
OS-09		12/11/03	314.0	Primary
OS-09		12/11/03	General Minerals	Primary
OS-09		12/18/03	314.0	Primary
OS-09		12/18/03	General Minerals	Primary
OS-09		12/23/03	314.0	Primary
OS-09		12/23/03	General Minerals	Primary
OS-09		12/30/03	314.0	Primary
OS-09		12/30/03	General Minerals	Primary
OS-10		01/31/03	314.0	Primary
OS-10		12/09/03	314.0	Primary
OS-10		12/09/03	314.0	Split
OS-10		12/09/03	General Minerals	Primary
OS-16		01/30/03	314.0	Primary
OS-16		01/30/03	8260B	Primary
OS-17		02/25/03	314.0	Primary
OS-17		02/25/03	8260B	Primary
OS-21		09/03/03	314.0	Primary
OS-21		09/03/03	8260B	Primary
OS-21		12/02/03	314.0	Primary
OS-21		12/02/03	314.0	Split
OS-21		12/02/03	General Minerals	Primary
OS-24	Z15	01/28/03	8260B	Primary
OS-26		02/04/03	314.0	Primary
OS-26		02/04/03	8260B	Primary

TABLE B-II
SUMMARY OF SAMPLING AND ANALYSES FOR WELLS AND SPRINGS
QUARTERLY GROUNDWATER MONITORING PROGRAM, 2003
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well	Sample Port	Date	Analysis	Sample	
Identifier	Number	Sampled		Туре	
OS-26		02/04/03	8260B	Dup	
OS-26		12/02/03	314.0	Primary	
OS-26		12/02/03	8260B	Primary	
OS-26		12/02/03	General Minerals	Primary	
OS-28		08/22/03	1625M	Primary	
OS-28		08/22/03	1625M	Dup	
OS-28		08/22/03	314.0	Primary	
OS-28		08/22/03	7470A	Primary	
OS-28		08/22/03	8260B	Primary	
OS-28		08/22/03	8260B	Dup	
OS-28		08/22/03	8260SIM	Primary	
OS-28		08/22/03	8260SIM	Dup	
OS-28		08/22/03	8270C	Primary	
OS-28		08/22/03	General Minerals	Primary	
OS-28		08/22/03	General Minerals	Dup	
OS-28		09/18/03	8270C	Primary	
OS-28		09/18/03	1625M	Primary	
OS-28		09/18/03	314.0	Primary	
OS-28		09/18/03	8260B	Primary	
OS-28		09/18/03	1625M	Dup	
OS-28		12/16/03	1625M	Primary	
OS-28		12/16/03	1625M	Dup	
OS-28		12/16/03	1625M	Split	

TABLE B-II FOOTNOTES AND EXPLANATIONS

AMA = American Analytics of Chatsworth, California.

Ceimic = Ceimic Corporation of Narrangansett, R.I.

Primary = Primary sample.

Dup = Sample duplicate.

Split = Sample split.

Split Sample Dup = Sample duplicate analyzed by the split laboratory.

Comp = Sample composite from FLUTe ports. RD-10 samples were composited from FLUTe

ports 3, 6, and 9. HAR-16 samples were composited from FLUTe ports 7 through 12.

Z = FLUTe sample port number.

ANALYTICAL METHODS

314.0 = Perchlorate, EPA method 314.0. 1625M = N-Nitrosodimethylamine, modified EPA method 1625.

6020 = Trace metals, including antimony, arsenic, barium, beryllium, cadmium,

chromium, cobalt, copper, iron, lead, manganese, molybdenum,

nickel, selenium, silver, thallium, vanadium and zinc using EPA method 6020.

7470A = Mercury, EPA method 7470A.

8015 = EPA method 8015 modified for fuel hydrocarbons.

8260B = EPA method 8260 for volatile organic compounds (most recent version).

8260SIM = 1,4-Dioxane, EPA method 8260SIM.

8270C = EPA method 8270C for base/neutral and acid organic compounds.

9014 = Cyanide, EPA method 9014. App IX = Appendix IX, see below.

COCs = Constituents of concern (table 3 of post-closure permits plus 1,3-dinitrobenzene).

Includes EPA methods 8260B, 8260SIM, 8270, 1625M, 8315 for formaldehyde,

300.0 for nitrate and fluoride, and 350.3 for ammonia.

Deuterium = Mass spectrometry of stable isotope deuterium.

General = General minerals, including calcium, magnesium, potassium, sodium, bicarbonate, minerals carbonate, chloride, nitrate, sulfate, TDS, iron, pH, and specific conductance.

Includes EPA methods 6010B, 300.0, 160.1, 150.1, 120.1 and method SM2320B.

Oxygen-18 = Mass spectrometry of stable isotope oxygen-18.

APPENDIX IX CONSTITUENTS

The laboratory uses the most current methods which may be updated from methods listed in Appendix IX (Code of Federal Regulations, Title 40, Part 264, Appendix IX, Ground-water Monitoring List).

APPENDIX IX analyses include:

EPA method 8260 for volatile organic compounds

EPA method 8270 for base/neutral and acid organic compounds

EPA method 8081 for organochlorine pesticides

EPA method 8082 for polychlorinated biphenyls (PCBs)

EPA method 8141 for organophosphorous pesticides

EPA method 8151 for chlorinated herbicides

EPA method 6010/6020 for metals (Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, Sn, V, Zn)

EPA method 504.1 for 1,2,3-trichloropropane, 1,2-dibromoethane, 1,2-dibromo-3-chloropropane EPA method 7470 for mercury EPA method 9014 for total cyanide EPA method 376.2 for sulfide Modified EPA method 8270 for pentachlorophenol Modified EPA method 1625 for N-nitrosodimethylamine

Radiochemical Parameters

EPA method 8290 for dioxins and furans

900.0	=	EPA method 900.0 for gross alpha and beta radioactivity
901.1	=	EPA method 901.1 for gamma-emitting radionuclides
903.1	=	EPA method 903.1 for Ra-226
904.0	=	EPA method 904.0 for Ra-228
905.0	=	EPA method 905.0 for Sr-90
906.0	=	EPA method 906.0 for tritium
907.0-Th	=	EPA method 907.0 for isotopic thorium
908.0-U	=	EPA method 908.0 for isotopic uranium

Note: An equivalent or superior in-house laboratory procedure is considered acceptable for EPA methodology. Lab used the most current promulgated version of each EPA method.

Select radiochemistry analyses were performed per EPA drinking water regulations beginning in the third quarter 2003:

- 1) if gross alpha activity exceeded 5 picoCuries per liter (pCi/l), then Ra-226 and Ra-228 were analyzed by EPA methods 903.1 and 904.0, respectively;
- 2) if gross alpha activity exceeded 15 pCi/l, then isotopic uranium was analyzed by EPA method 908.0;
- 3) if gross beta activity exceeded 50 pCi/l, then K-40 and Sr-90 were analyzed by EPA methods 901.1 and 905.0, respectively.

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL			
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
SHALLOW SH	WELLS						
SH-1	III	R					
SH-2	111	R				1	
SH-3	111	R	8260		8260	1	Evaluation monitoring
SH-4	111	R		App IX		8260	Point of compliance
SH-5	111	R					
SH-6	ttt	R			<u> </u>		
SH-7	111	R					
SH-8	111	R				1	
SH-9	III	R	<u> </u>		<u> </u>		
SH-10	111	R				1	
SH-11	111	R	8260 Perchlorate		8260		Evaluation monitoring
ECL French- drain	111	R	8260		8260		Interim corrective action
SHALLOW RS	WELLS		1				-
RS-1	1	N	8260	T	8260		Evaluation monitoring
	·		8015 Perchlorate		8015		B/351
RS-2	1	N	Perchlorate				
RS-3	1	R					
RS-4	ı	N					
RS-5	1	N	1				
RS-6		R	Perchlorate	··			
RS-7		N	8260		8260	·	Evaluation monitoring
RS-8	11	N		App IX		8260	Point of compliance
RS-9	III	R	t	1 11 1 1			
RS-10	11	N	8260 Perchlorate		8260		Evaluation monitoring
RS-11	IV	D	8260 Perchlorate 900.0 901.1 906.0		8260		Evaluation monitoring
RS-12	111	R					
RS-13	ii –	N	8260 Perchlorate		8260		Evaluation monitoring
RS-14	111	R					
RS-15	111	N					
RS-16	IV	D	8260 Perchlorate 900.0 906.0				B/056 landfill
RS-17	111	R					
RS-18	IV	D	8260 Perchlorate 900.0 901.1 906.0 TM		8260 900.0 901.1 906.0 U,Th		FSDF
RS-19	ı	N	U, Th 8260 Perchlorate		8260	 	Evaluation monitoring

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

***************************************				ANALYTICAL	METHODS		
Weli ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
RS-20		R					
RS-21		R	8260		8260		Evaluation monitoring
RS-22		R					
RS-23	IV	D	8260 8015 Perchlorate 900.0 901.1 906.0 U				
RS-24	IV	D	Perchlorate 900.0 901.1 906.0 U	-			
RS-25	IV	Đ	Perchlorate 900.0 901.1 906.0 U				
RS-27	IV	D	Perchlorate				
RS-28	IV	D	8260 Perchlorate 900.0 901.1 906.0		·		RMHF
RS-29	li .	R					
RS-30	ı	R	8260 8015 Perchlorate		8260 8015		B/351
RS-31	1	R	8260 8015		8260 8015		B/351
RS-32	į	R	8260 8015		8260 8015		B/351
RS-54	ΙV	D	8260 TM Perchlorate 900.0 901.1 906.0, U, Th		8260 TM Perchlorate 900.0 901.1 906.0, U, Th		FSDF
SHALLOW ES	S WELLS						
ES-1	ī	R	8260		8260		Interim corrective action
ES-2	Ī	R	8260 Perchlorate				
ES-3	Ī	R	8260		8260		Interim corrective action
ES-4	1	R	8260		8260		Interim corrective action
ES-5	Ī	R	8260		8260		Interim corrective action
ES-6	i	R	8260		8260		Interim corrective action
ES-7		R	8260		8260		Interim corrective action
ES-8		R	0200		10200		intentiti Corrective action
ES-9	l I	R	8260 Perchlorate				
ES-10	ı	R	8260 Perchlorate				

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL		-T	_
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
ES-11	1	R	8260		8260		Interim corrective action
S-12	I	R	8260 Perchlorate				
ES-13	1	R					
S-14	111	R	8260		8260		Interim corrective action
S-15	111	R					
S-16	111	R					
S-17	111	R	8260		8260		Interim corrective action
S-18	11	R					
S-19	II	R					
S-20	11	R					
S-21	H	R	8260		8260		Interim corrective action
S-22	II	R	8260		8260		Interim corrective action
S-23	111	R	8260		8260		Interim corrective action
S-24	Ш	R	8260 Perchlorate		8260		Interim corrective action
S-25	III	R	, sisiliorate				
S-26	111	R	8260		8260		Interim corrective action
S-27	101	R	8260		8260		Interim corrective action
S-28	111	R	 				
S-29	111	R	 		1		
S-30	111	R	8260	-	8260		Interim corrective action
S-31	IV	D	8260		10-00		
			Perchlorate 900.0				
			901.1 906.0				
S-32	111	R	8260		8260		Interim corrective action
HALLOW HA	R WELLS				<u>. L.</u>	<u> </u>	-1
IAR-2	1	R				1	
IAR-3			8260		8260		Evaluation monitoring
		R					
AR-4	1	R R	8260		18260		Interim corrective action
			8260		8260		Interim corrective action
IAR-9	Ĺ	R	8260		8260		Evaluation monitoring
IAR-9 IAR-11	1	R N					
IAR-9 IAR-11 IAR-12	l 11	R N N	8260				
IAR-9 IAR-11 IAR-12 IAR-13	I II III II	R N N	8260	App IX		8260	Evaluation monitoring
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14	I 11 11	R N N	8260	App IX App IX		8260 8260	Evaluation monitoring Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15	11 11 11 11	R N N N	8260	App IX App IX	8260	8260 8260	Evaluation monitoring
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27	11 11 11 11 11	R N N N N N	8260 8015				Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28	11 11 11 11 11	R N N N N N N	8260 8015		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29		R N N N N N N	8260 8015		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30	11 11 11 11 11 11 11	R N N N N N N N	8260 8015		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30 IAR-31	11 11 11 11 11 11 11 11	R N N N N N N N N	8260 8015		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30 IAR-31 IAR-31	11 11 11 11 11 11 11 11	R N N N N N N N R N	8260 8015		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30 IAR-31 IAR-31 IAR-32	11	R N N N N N N N R	8260 8015		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30 IAR-31 IAR-31 IAR-32 IAR-33 IAR-34	11	R N N N N N N R N R R	8260 8015 8260		8260		Evaluation monitoring Point of compliance Point of compliance
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30 IAR-31 IAR-32 IAR-32 IAR-33 IAR-34 CHATSWORT	11	R N N N N N N R N R	8260 8015 8260		8260 8260	8260	Evaluation monitoring Point of compliance Point of compliance
HAR-4 HAR-9 HAR-11 HAR-12 HAR-13 HAR-14 HAR-15 HAR-27 HAR-28 HAR-29 HAR-30 HAR-31 HAR-31 HAR-32 HAR-33 HAR-34 CHATSWORT	11	R N N N N N N N N R N R R R R R ON RD WELLS	8260 8015 8260 8260	App IX	8260 8260 COCs	8260 COCs	Point of compliance Point of compliance Evaluation monitoring Interim corrective action
IAR-9 IAR-11 IAR-12 IAR-13 IAR-14 IAR-15 IAR-27 IAR-28 IAR-29 IAR-30 IAR-31 IAR-32 IAR-32 IAR-33 IAR-34 CHATSWORT	11	R N N N N N N N N R N R R R R R ON RD WELLS	8260 8015 8260	App IX	8260 8260	8260	Point of compliance Point of compliance Evaluation monitoring

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL			
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
RD-4	11	R	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	Interim corrective action CFOU investigation
RD-5A	UL, S of Area II	N	8260	reichlorate	8260	reicillorate	Evaluation monitoring
RD-5B	UL, S of Area II	N	8260	8260	8260	8260	Detection monitoring
RD-5C	UL, S of Area II	N	8260	8260	8260	8260	Detection monitoring
RD-6	UL, S of Area II	N	8260	8260	8260	8260	Background
RD-7	IV	D	8260 900.0 901.1 906.0, U, Th		8260 900.0 906.0		B/056 landfill FLUTe sampling system
RD-8	111	R					
RD-9	11	R	8260		8260		Interim corrective action
RD-10	ı	N	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	Evaluation monitoring FLUTe sampling system CFOU investigation
RD-11	III	R					
RD-12	111	R					
RD-13	IV	D	8260	8260	8260	8260	Background
RD-14 RD-15	IV IV	D	8260 Perchlorate				
	ï	D	8260 TM Perchlorate 900.0 901.1 906.0 U				
RD-16	IV	D	8260	8260	8260	8260	Detection monitoring
RD-17	IV	D	8260 Perchlorate 900.0 901.1 906.0				RMHF
RD-18	IV	D	8260 Perchlorate	8260	8260	8260	Perimeter well
RD-19	IV	D	8260 Perchlorate	8260	8260	8260	Perimeter well
RD-20	IV	D	8260 Perchlorate				
RD-21	IV	D	8260 TM 900.0 901.1 906.0		8260 TM		FSDF FLUTe sampling system
RD-22	IV	D	8260, TM, CN 900.0 901.1 906.0	8260	8260	8260	FSDF Perimeter well

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

			_				
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
RD-23	IV	D	8260	Quarter	8260	Quarter	FSDF
10 20	••	J	TM		TM		FLUTe sampling system
			900.0	1	\		The state of the s
			901.1		-		1
			906.0				
RD-24	IV	D	8260	 	8260		B/059
ND-24	IV	D	Perchlorate		900.0		B/039
			900.0	ļ	901.1		
			1	1	906.0		
			901.1		906.0		1
22.05	13.7		906.0		10000		0,050
RD-25	IV	D	8260	1	8260	1	B/059
			Perchlorate		900.0	-	
			900.0		901.1		1
			901.1		906.0		
			906.0				
RD-26	II	N	8260		8260		Evaluation monitoring
			Perchlorate				
RD-27	IV	D	8260		8260		RMHF
			Perchlorate	1	900.0		
			900.0		901.1		1
		901.1		906.0			
		906.0	<u> </u>		<u> </u>		
RD-28	IV	D	8260		8260		B/059
			Perchlorate		900.0		
			900.0	1	901.1		
			901.1	1	906.0		
		906.0, U, Th					
RD-29	IV	D	8260				
			Perchlorate		ļ		}
			900.0				İ
	-		901.1	1	1	1	
			906.0				
			u	1			
RD-30	IV	D	8260		8260		RMHF
(D-50	10	U	Perchlorate		900.0		Kivitis
			900.0	1	901.1	1	
			900.0		906.0		
				j	906.0		`
RD-31		NI NI	906.0	 			El litta complica customs
KD-31	1	N	8260	i	ļ		FLUTe sampling system
DD 00	06.3		Perchlorate	10000			B / //
RD-32	Off-site,	N	8260	8260	8260	8260	Detection monitoring
DD 224	NE of		8015	 	8015		B/351
RD-33A	UL,	D	8260	1	8260	1	FSDF
	NW		TM	}			FLUTe sampling system
	of		CN	1			1
	Area IV		900.0	ſ			1
			901.1	}			1
			906.0	1			
RD-33B	UL,	D	8260	8260	8260	8260	FSDF
	NW		TM	1	906.0		Perimeter well
	of		CN				
	Area IV		900.0	1		1	1
			901.1	1	Ĭ		1
			906.0	ı		i	

2004 ANNUAL MONITORING SCHEDULE BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

				ANALYTICAL			_
Well ID	Area	Sponsor	First	Second	Third	Fourth	Existing Sampling Plan
			Quarter	Quarter	Quarter	Quarter	
RD-33C	UL,	D	8260	8260	8260	8260	FSDF
	NW		TM		906.0		Perimeter well
	of		CN				
	Area IV		900.0				1
			901.1				
			906.0				
RD-34A	UL,	D	8260		8260	}	RMHF
	NW		TM		906.0		
	of		CN				
	Area IV		900.0				
			901.1				
			906.0, U, Th				
RD-34B	UL,	D	8260		8260		RMHF
	NW		TM		906.0		į
	of		CN				
	Area IV		900.0	1	1]	
			901.1				
			906.0	į			
RD-34C	UL,	D	8260		8260	1	RMHF
	NW		TM		906.0	1	
	of		CN				
	Area IV		900.0		}		1
7110414			901.1				Į.
			906.0				
RD-35A	I	N	8260		- 		-
RD-35B	i	N	8260	 		1	
RD-36A	Off-site, NE	N N	8260		8260	-	Evaluation monitoring
110-00/1	of Area I	.,	8015		8015		B/351
RD-36B	Off-site, NE	N	8260		8260		Evaluation monitoring
ND 00D	of Area I	••	8015		8015		B/351
RD-36C	Off-site, NE	N	8260		8260		Evaluation monitoring
ND-300	of Area I	14	8015		8015		B/351
RD-36D	Off-site, NE	N	8260	- 	8260		B/351
ND-30D	of Area I	14	8015	1	8015		B/331
RD-37	Off-site, NE	N	8260	8260	8260	8260	Detection monitoring
ND-37	of Area I	IN	8015	0200	8015	0200	
RD-38A		A1				-	B/351
ND-SOA	Off-site, NE	N	8260		8260		Evaluation monitoring
DD 200	of Area I	ķi	8015 8260	9260	8015 8260	10260	B/351
RD-38B	Off-site, NE	N		8260		8260	B/351
DD 204	of Area I	h.;	8015	0000	8015	0260	Data ella a manife i m
RD-39A	Off-site, NE	N	8260	8260	8260	8260	Detection monitoring
DD 000	of Area I		10000	10000	10000	-	
RD-39B	Off-site, NE	N	8260	8260	8260	8260	Perimeter well
	of Area I		<u> </u>	.			
RD-40	11	N	8260	j	8260	J	Evaluation monitoring
			Perchlorate				
RD-41A	11	N	8260				
			Perchlorate				
RD-41B	II .	N	8260				1
			Perchlorate				
RD-41C	II	N	8260				
			Perchlorate	1			
RD-42	11	N	8260				
			Perchlorate	1	l	ł	1

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL			
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
RD-43A	Off-site,	N	8260	8260	8260	8260	Detection monitoring
	Near Area I		Perchlorate				1
RD-43B	Off-site,	N	8260	8260	8260	8260	Detection monitoring
	Near Area I		Perchlorate	}			
RD-43C	Off-site.	N	8260	8260	8260	8260	Detection monitoring
	Near Area I	• •	Perchiorate	10-00			
RD-44	1	· N	COCs	COCs	COCs	COCs	Detection monitoring
	•		Perchlorate	Perchlorate	Perchlorate	Perchiorate	CFOU investigation
RD-45A	1	N	8260		8260		Evaluation monitoring
RD-45B	i	N	8260		8260		Evaluation monitoring
RD-45C	1	N	8260		8260		Evaluation monitoring
RD-46A	i	N	8260		8260		Evaluation monitoring
10-40/1	•	• • • • • • • • • • • • • • • • • • • •	Perchlorate		0200	1	L-addadon montoning
RD-46B		N	8260	-	8260		
RD-47		N	8260		8260	 	Evaluation monitoring
10-71	•	14	Perchlorate		10200		valuation monitoring
RD-48A	UL, SW of	N	8260	8260	8260	8260	Background
NO-HOM	Area I	14	10200	0200	10200	10200	Dackground
RD-48B	UL, SW	N	8260	8260	8260	8260	Background
KU-40B	of Area I	N	0200	0200	0200	0200	Background
RD-48C	UL, SW	N	8260	8260	8260	8260	Background
₹D-46C		IA	0200	0200	0200	0200	Background
of Area I RD-49A II	N	COCs	COCs	COCs	COCs	OFOIL Investigation	
	N					CFOU investigation	
20.400			Perchlorate	Perchlorate	Perchlorate	Perchlorate	105011
RD-49B	ii .	N	COCs	COCs	COCs	COCs	CFOU investigation
			Perchlorate	Perchlorate	Perchlorate	Perchlorate	
RD-49C	11	N	COCs	COCs	COCs	COCs	CFOU investigation
			Perchlorate	Perchlorate	Perchlorate	Perchlorate	
RD-50	IV	D	8260		8260		Perimeter well
			8015				FLUTe sampling system
RD-51A	II	N	8260		8260		Evaluation monitoring
			Perchiorate	<u> </u>			
RD-51 B	11	N	8260		8260		Evaluation monitoring
	·		Perchlorate				
RD-51C	11	N	8260	8260	8260	8260	Detection monitoring
RD-52 A	1	N	8260		8260		Evaluation monitoring
			Perchlorate				
RD-52 B	1	N	8260		8260		Evaluation monitoring
			Perchlorate				
RD-52C	1	N	8260	8260	8260	8260	Detection monitoring
RD-53	1	N	8260		8260		B/351
			8015		8015		FLUTe sampling system
			Perchlorate				
RD-54A	IV	D	8260		8260		FSDF
			TM		TM	1	FLUTe sampling system
			0.00e		906.0		
			901.1				
			906.0, U, Th				
RD-54B	IV	D	8260		8260	1	FSDF
-	_	_	ТМ		TM	1	1
			900.0		906.0	1	
			901.1				1
			906.0	1	ı	1	Ī

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL	MC111000		_
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
RD-54C	IV	D	8260		8260		FSDF
			TM	1	TM		1
			900.0		906.0		
			901.1				
			906.0	İ	j	}	
RD-55A	111	. N	8260		8260	1	Evaluation monitoring
(D-33A	***	• • • • • • • • • • • • • • • • • • • •	Perchlorate	ł	10200	1	Evaluation monitoring
RD-55B	111	N	8260		8260		Evaluation monitoring
<i>10-336</i>	111	14			10200	İ	Evaluation monitoring
			Perchlorate	-			
RD-56A	UL, N of	N	8260	l			
	Area III						<u> </u>
RD-56B	UL, N of	N	8260	8260	8260	8260	Perimeter well
	Area III		<u> </u>	_	TM		1
RD-57	UL, NW	D	8260	8260	8260	8260	FSDF
	of		TM		906.0	1	Perimeter well
	Area IV		900.0	ļ	1		FLUTe sampling system
			901.1			1	
			906.0				
RD-58A	111	N	8260		8260	 	Evaluation monitoring
RD-58B	111	N	8260	8260	8260	8260	Detection monitoring
RD-58C		N N	8260	10200	8260	10200	
				0000		9000	Evaluation monitoring
RD-59A Off- site,		D	8260	8260	8260	8260	FSDF & RMHF
			TM	}	TM	1	Perimeter well
	W of		Perchlorate		Perchlorate		
	Area IV		900.0	İ	906.0		1
			901.1		1	1	}
			906.0				
RD-59B	Off-	D	8260	8260	8260	8260	FSDF & RMHF
	site,		ТМ		ТМ		Perimeter well
	W of		Perchlorate		Perchlorate	1	1
	Area IV		900.0		906.0		
			901.1	ļ	1000.0	1	1
			906.0	i	İ	İ	
RD-59C	Off-	D	8260	8260	8260	8260	FSDF & RMHF
10-390		U	TM	0200	L Company	0200	Perimeter well
	site,		4		TM	1	Perimeter well
	W of		Perchlorate		Perchlorate		
	Area IV		900.0		906.0		
			901.1	1	1		
			906.0				
RD-60	111	N	8260		8260		Evaluation monitoring
RD-61	1	N	8260	8260	8260	8260	Detection monitoring
RD-62	UL, S of	N	8260	8260	8260	8260	Detection monitoring
	Area I		1			L	
RD-63	IV	D	8260		8260		RMHF Area IV
			900.0				extraction
			901.1	1	1		1
			906.0	1			1
RD-64	IV	D	8260	+	 	 	FSDF
\ 	14	J	900.0		1		FLUTe sampling system
				1			LOTE sampling system
			901.1	1	1	1	
			906.0				ł
			U		-		
RD-65	IV	D	8260	1		j	FSDF
				1	1		FLUTe sampling system

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL			_
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
RD-66	Off-site, NE of Area I	N	8260	8260	8260	8260	Perimeter well
RD-67	UL, S of Area IV	N	8260		8260		Perimeter well
RD-68A	Off-site, N of Area III	N	8260	8260	8260	8260	Perimeter well
RD-68B	Off-site, N of Area III	N	8260	8260	8260	8260	Perimeter well
RD-69	l l	N	8260		8260		Perimeter well
RD-70	UL, N of Area II	N	8260	8260	8260	8260	Perimeter well
RD-71	Off-site, NE of Area I	N	8260	8260	8260	8260	Perimeter well
RD-72	1	N	8260				FLUTe sampling system
RD-73	ı	R	8260 8015 Perchlorate				UT 37 FLUTe sampling system
RD-74	IV	D	8260	8260	8260	8260	B/056
CHATSWOR	RTH FORMATIO	N HAR WEL	LS			···•	
HAR-1	1	R	Perchlorate	T	1	1	FLUTe sampling system
HAR-5	II	R	Perchlorate	1			
HAR-6	II	N	8260 Perchlorate				
HAR-7	11	R	1	App IX		8260	Point of compliance
HAR-8	11	N					
HAR-16	 	R		App IX		8260	Point of compliance FLUTe sampling system
HAR-17	11	R		App IX		8260	Point of compliance
HAR-18	111	R	8260		8260		Interim corrective action
HAR-19		R	8260			<u> </u>	
HAR-20		N	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	CFOU investigation
HAR-21	11	R	8260 Perchlorate				
HAR-22		N	8260 Perchlorate		8260		Evaluation monitoring
HAR-23	111	R	8260 Perchlorate		8260		Evaluation monitoring
HAR-24	<u> </u>	R	8260		8260		Evaluation monitoring FLUTe sampling system
HAR-25	· · · · · · · · · · · · · · · · · · ·	N	8260 Perchlorate				
HAR-26	111	R	8260	1	8260	<u> </u>	Evaluation monitoring
	RTH FORMATIO			looco	looco	Tooco	Data et
NS-4A NS-5	<u> </u>	N R	8260 COCs	8260 COCs	8260 COCs	8260 COCs	Detection monitoring Interim corrective action
	· · · · · · · · · · · · · · · · · · ·		Perchlorate	Perchlorate	Perchlorate	Perchlorate	CFOU investigation
WS-6		R	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	Interim corrective action CFOU investigation
WS-7	IV	D	 	-	<u> </u>	 	
WS-8		R	1000-	1000-	000-	1000=	Intoring correction action
WS-9	II	R	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	COCs Perchlorate	Interim corrective action CFOU investigation

TABLE B-III
2004 ANNUAL MONITORING SCHEDULE
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

				ANALYTICAL			_
Well ID	Area	Sponsor	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Existing Sampling Plan
WS-9A	11	R	8260		8260		Interim corrective action
WS-9B	ll II	R					
WS-11	111	R			- 		
WS-12	<u> </u>	R					
WS-13		R					
WS-14	1	R	1				
WS-SP	ll II	N	1				
OFF-SITE OS	WELLS AND	SPRINGS		<u>. </u>			<u> </u>
OS-2	Off-Site	R	8260	<u> </u>			
			Perchlorate		}		į
OS-3	Off-Site	R	Perchlorate				
OS-4	Off-Site	R	8260				
			Perchlorate				
OS-5	Off-Site	R	Perchlorate				
OS-8	Off-Site	N	8260				
			Perchlorate				
OS-9	Off-Site	R					See Perchlorate Characterization Work Plan (MWH, 2003d)
OS-10	Off-Site	R	Perchiorate		 		Vecini laii (MVVII, 20000)
OS-12	Off-Site	N	Perchlorate				
OS-13	Off-Site	N	8260	 	8260		
00 10	011 0110	••	Perchlorate		000		
OS-15	Off-Site	N	8260			·	
00 10	0 0	.,	Perchlorate		1		J
OS-16	Off-Site	N	8260		8260		
	J., J.,	.,	Perchlorate		Perchlorate		
OS-17	Off-Site	N	8260		8260		
	· · · · · · · · ·		Perchlorate		Perchlorate		1
OS-21	Off-Site	R	8260				
	• · · • · · ·	.,	Perchlorate				
OS-24	Off-Site	N	8260		8260		FLUTe sampling system
OS-25	Off-Site	N	8260		8260		, , , , , , , , , , , , , , , , , , ,
			Perchlorate				ı
OS-26	Off-Site	N	8260		8260		
			Perchiorate	ļ			1
OS-27	Off-Site	N	8260				
			Perchlorate				j
OS-28	Off-Site	N	8260		8260		
			Perchlorate		Perchiorate		1

ANALYTICAL METHODS

Analytes/EPA Methodology

8260	= EPA method 8260 for volatile organic compounds (most recent version).
8270	 EPA method 8270 for base/neutral and acid organic compounds.
8015	 EPA method 8015 modified for fuel hydrocarbons.

CN = Cyanide, EPA method 9012.

COCs = Constituents of concern (table 3 of post-closure permits plus 1,3-dinitrobenzene).

Deuterium = Mass spectrometry of stable isotope deuterium.

GM = General minerals, including calcium, magnesium, potassium, sodium, bicarbonate,

carbonate, chloride, nitrate, sulfate, TDS, iron, pH, and specific conductance.

Oxygen-18 = Mass spectrometry of stable isotope oxygen-18.

Perchlorate = EPA method 314.0.

TM = Trace metals, including antimony, arsenic, barium, beryllium, cadmium,

chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc using EPA methods 6010

and 6020.

Appendix IX

Note: The laboratory uses the most current methods which may be updated from methods listed in Appendix IX (Code of Federal Regulations, Title 40, Part 264, Appendix IX, Ground-water Monitoring List).

8081	=	EPA method 8081 for pesticides.
8082	=	EPA method 8082 for PCBs.
8141A	=	EPA method 8141A for organophosphorus pesticides.
8151A	=	EPA method 8151A for herbicides.
8260	=	EPA method 8260 for expanded list of volatile organic compounds.
8270	=	EPA method 8270 for base/neutral and acid organic compounds.
8290	=	EPA method 8290 for dioxins and furans.
Metals	=	EPA method 6020 series for metals.
CN	=	EPA method 9012 for cyanide.
Sulfide	=	EPA method 376.2 for sulfide.

Radiochemical Parameters

900.0	=	EPA method 900.0 for gross alpha and beta radioactivity
901.1	=	EPA method 901.1 for gamma-emitting radionuclides
906.0	=	EPA method 906.0 for tritium
U	=	EPA method 908.0 for isotopic uranium

U = EPA method 908.0 for isotopic uranium
Th = EPA method 907.0 for isotopic thorium

Note: An equivalent or superior in-house laboratory procedure will be considered acceptable for EPA methodology. Lab will use the most current promulgated version of each EPA method. Additional radiochemistry analyses may be performed per EPA drinking water regulations:

- 1) if gross alpha activity exceeds 5 picoCuries per liter (pCi/l), then Ra-226 and Ra-228 will be analyzed by EPA methods 903.1 and 904.0, respectively;
- 2) if gross alpha activity exceeds 15 pCi/l, then isotopic uranium will be analyzed by EPA method 908.0;
- 3) if gross beta activity exceeds 50 pCi/l, then K-40 and Sr-90 will be analyzed by EPA methods 901.1 and 905.0, respectively.

Evaluation Monitoring

Evaluation monitoring wells, including the point of compliance wells, will be sampled at least annually for EPA method 8260, which will detect the constituents specified in Table 5 of the post-closure permit: tetrachloroethylene, trichloroethylene, 1,1-trichloroethane, 1,1-trichloroethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride, methylene chloride, chloroform, methyl ethyl ketone, benzene, toluene, xylenes, and ethylbenzene.

Point of compliance wells also will be sampled every other year for a full suite of Appendix IX parameters. The sampling schedule will be 1993, 1995, 1997...etc., for all wells. The analytical parameters are listed in 40 CFR 264, Appendix IX. During off-years, wells will be sampled for a modified Appendix IX list annually (standard list of constituents for EPA methods 8260 and 8270, plus 1,4-dioxane, nitrobenzene, 1,3-dinitrobenzene, and N-nitrosodimethylamine).

Detection Monitoring

Detection monitoring wells will be sampled quarterly for EPA method 8260, which will detect the constituents specified in Table 6 of the post-closure permit: tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, 1,1,1-trichloroethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride, methylene chloride, and chloroform.

Interim Corrective Action Monitoring

All extraction wells will be included in the interim corrective action monitoring. These wells will be sampled annually for EPA method 8260, which will detect the constituents specified in Table 5 of the post-closure permit. The constituents are listed above under "Evaluation Monitoring."

Area IV Monitoring

Area IV sampling schedule subject to revision.

Background Monitoring

The five background wells will be sampled quarterly for the expanded list of monitoring parameters (EPA method 8260) specified in Table 5 of the post-closure permit.

Background wells are sampled every five years for the constituents of concern (Table 3 of the post closure permit) on a schedule that will follow 1994, 1999, ... etc. The background wells and the detection monitoring wells were all sampled for constituents of concern in 1996. The background wells were sampled again for constituents of concern in 1999. Background wells and detection monitoring wells were sampled for constituents of concern in 2000.

Notes:

r

Fluoride, EPA method 340.2

8270

EPA method 8270 for acid and base/neutral semi-volatile compounds,

including nitrobenzene, and 1,3-dinitrobenzene.

Ammonia

= Ammonia, EPA method 350.2

Formaldehyde

= Formaldehyde, EPA method 8315

NDMA

N-nitrosodimethylamine, modified EPA method 1625

NO₃

= Nitrate, EPA method 353.2

1,4-dioxane

= 1,4-dioxane, modified EPA method 8260 or 8260 SIM

FLUTe Sampling System

FLUTe sampling system - indicates wells that currently are, or will be, equipped with FLUTe multi-port sampling systems in 2004. Samples will be collected from the FLUTe multi-port sampling systems per the previously approved workplan(s).

Laboratory Services

Laboratories will be certified by the State of California for the appropriate analytical methods.

=

During sampling, the field parameters of turbidity, pH, temperature and specific conductance will be measured.

REFERENCES USED IN PREPARING 2004 MONITORING SCHEDULE

- 1. California Department of Toxic Substances Control, 1994. Correspondence to Rocketdyne Environmental Protection Department, Request for Modification of Analytical Parameters for Appendix IX Sampling EPA ID Numbers CAD093365435 and CA18000900100 Santa Susana Field Laboratory (SSFL) Rocketdyne Division Facility, Santa Susana, California. September 13, 1994.
- 2. ----- 1995. Hazardous Waste Facility Post-Closure Permit, Regional Permit No. PC-94/95-3-02 and PC-94/95-3-03. Permits for Areas I and III and Area II, effective May 11, 1995. 22 California Code of Regulations, Chapter 15, Article 6.
- 3. 40 CFR 264. Code of Federal Regulations, Title 40, Part 264, Appendix IX, *Groundwater Monitoring List* and Part 265, §265.92, Sampling and Analysis.

Appendix C

APPENDIX C

Monitor Well and Piezometer Construction Data

APPENDIX C MONITOR WELL AND PIEZOMETER CONSTRUCTION DATA

TABLE OF CONTENTS

Tables

C-I Well Construction Data

C-II Piezometer Construction Data

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	В	orehole	C	asing	Cooled	Danfanakad	Measuring	D-4-
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Sealed interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
Shallow We	ells									
SH-01	111	10	16	0 - 10.0	4	0 - 10.0	0 - 5.0	5.5 - 10.0	1772.84	12/11/84
SH-02	111	10.6	16	0 - 10.6	4	0 - 10.6	0 - 5.0	6.0 - 10.6	1762.76	12/11/84
SH-03	111	9.5	16	0 - 9.5	4	0 - 9.5	0 - 4.6	5.0 - 9.5	1762.53	12/12/84
SH-04	111	17	16	0 - 17.0	4	0 - 13.0	0 - 8.0	9.0 - 13.0	1765.08	12/12/84
SH-05	111	10.5	16	0 - 10.5	4	0 - 10.5	0 - 5.6	6.0 - 10.5	1762.97	12/13/84
SH-06	III	11.5	16	0 - 11.5	4	0 - 11.5	0 - 6.2	7.0 - 11.5	1776.99	12/17/84
SH-07		13.5	16	0 - 13.5	4	0 - 13.5	0 - 8.5	9.5 - 13.5	1775.11	01/16/85
SH-08	- 111	12	16	0 - 12.0	4	0 - 11.4	0 - 5.2	5.9 - 11.4	1763.25	01/17/85
SH-09	111	9	16	0 - 9.0	4	0 - 9.0	0 - 3.5	4.0 - 9.0	1761.19	01/18/85
SH-10		8	16	0 - 8.0	4	0 - 7.5	0 - 2.0	3.0 - 7.5	1757.69	01/18/85
SH-11	111	17.5	16	0 - 17.5	4	0 - 17.5	0 - 11.0	13.0 - 17.5	1756.00	01/16/85
RS-01	1	24.5	16	0 - 24.5	4	0 - 24.5	0 - 12.5	14.5 - 24.5	1879.68	06/08/85
RS-02		26	16	0 - 26.0	4	0 - 26.0	0 - 15.0	16.0 - 26.0	1901.08	06/08/85
RS-03	1	21	16	0 - 21.0	4	0 - 21.0	0 - 10.0	11.0 - 21.0	1834.22	06/08/85
RS-04	ı	30	16	0 - 30.0	4	0 - 30.0	0 - 18.0	20.0 - 30.0	1826.56	06/08/85
RS-05	1	20	16	0 - 20.0	4	0 - 20.0	0 - 7.5	10.0 - 20.0	1783.73	06/07/85
RS-06		18	16	0 - 18.0	4	0 - 18.0	0 - 7.0	8.0 - 18.0	1757.43	06/07/85
RS-07	Ī	7.5	16	0 - 7.5	4	0 - 7.5	0 - 1.6	2.5 - 7.5	1732.27	06/07/85
RS-08	ll l	12.5	16	0 - 12.5	4	0 - 12.5	0 - 5.0	7.0 - 12.5	1821.57	06/09/85
RS-09	111	26.2	16	0 - 26.2	4	0 - 26.2	0 - 14.2	16.0 - 26.2	1735.52	09/11/85
RS-10	II	17	16	0 - 17.0	4	0 - 17.0	0 - 6.0	7.3 - 17.0	1762.08	06/10/85
R\$-11	IV	17.5	16	0 - 17.5	4	0 - 17.5	0 - 9.0	10.0 - 17.5	1790.39	06/10/85
RS-12	111	15.3	16	0 - 15.3	4	0 - 15.3	0 - 4.0	5.0 - 15.3	1727.48	06/09/85
RS-13	11	22.8	16	0 - 22.8	4	0 - 22.8	0 - 15.0	17.0 - 22.8	1644.20	06/11/85
RS-14	111	16	16	0 - 16.0	4	0 - 16.0	0 - 5.0	6.0 - 16.0	1734.78	06/09/85
RS-15	111	12	16	0 - 12.0	4	0 - 12.0	0 - 4.5	5.0 - 12.0	1764.86	06/10/85
RS-16	IV	20.5	16	0 - 20.5	4	0 - 20.5	0 - 14.5	16.5 - 20.5	1811.05	06/11/85
RS-17	- 111	16	16	0 - 16.0	4	0 - 16.0	0 - 4.0	6.4 - 16.0	1766.52	06/10/85
RS-18	IV	13	16	0 - 13.0	4	0 - 13.0	0 - 6.0	7.5 - 13.0	1802.86	06/12/85

TABLE C-I WELL CONSTRUCTION DATA **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

		Effective	В	orehole	С	asing	011	D . C	Measuring	-
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RS-19	Ī	15	16	0 - 15.0	4	0 - 15.0	0 - 4.8	4.8 - 15.0	1812.42	09/12/85
RS-20	ı	20.5	16	0 - 20.5	4	0 - 20.5	0 - 8.5	10.5 - 20.5	1823.77	09/12/85
RS-21	II.	29	16	0 - 29.0	4	0 - 24.6	0 - 3.5	14.5 - 24.6	1767.36	10/23/85
RS-22	11	31	16	0 - 31.0	4	0 - 31.0	0 - 4.0	21.0 - 31.0	1771.23	10/23/85
RS-23	IV	13	12	0 - 13.0	4	0 - 13.0	0 - 6.8	8.0 - 13.0	1887.25	08/23/88
RS-24	١V	8.5	12	0 - 8.5	4	0 - 8.5	0 - 3.0	4.0 - 8.5	1809.24	08/25/88
RS-25	IV	13.5	Trenched	0 - 13.5	4	0 - 13.5	0 - 2.0	8.5 - 13.5	1862.71	08/25/88
RS-26	Destro	yed July 198	39 During So	oils Removal						
RS-27	IV	9	8	0 - 9.0	4	0 - 9.0	0 - 3.0	5.0 - 9.0	1804.78	08/02/88
RS-28	IV	19	8	0 - 19.0	4	0 - 19.0	0 - 9.0	14.0 - 19.0	1768.59	08/17/89
RS-29	11	38	9-7/8	0 - 38.0	4	0 - 37.5	0 - 17.0	27.0 - 37.5	1833.09	02/20/93
RS-30	1	23	12	0 - 23.0	4	0 - 21.0	0 - 9.0	10.5 - 21.0	1909.01	03/20/91
RS-31	ı	18	12	0 - 18.0	4	0 - 17.5	0 - 6.0	7.0 - 17.5	1909.03	03/19/91
RS-32	1	18	12	0 - 18.0	4	0 - 17.0	0 - 6.0	6.5 - 17.0	1908.99	03/19/91
RS-54	IV	38	11-1/4	0 - 7.0	6-1/4	0 – 7.0	0 - 7.0		1846.66	08/09/93
			5-7/8	7.0 - 38.0				Open Hole		
ES-01	1	26	15	0 - 26.0	6	(v)1.3 - 25.5	0 - 6.0	15.5 - 25.5	1782.20	10/20/86
ES-02	1	17.5	15	0 - 17.5	6	(v)1.5 - 16.7	0 - 4.8	6.7 - 16.7	1814.60	10/20/86
ES-03	1	27	15	0 - 27.0	6	(v)1.3 - 27.0	0 - 9.4	17.0 - 27.0	1783.39	10/21/86
ES-04	ı	20	15	0 - 20.0	6	(v)1.4 - 20.0	0 - 4.0	5.8 - 20.0	1817.24	10/21/86
ES-05	1	19	15	0 - 19.0	6	(v)1.3 - 19.0	0 - 5.8	9.0 - 19.0	1818.13	10/21/86
ES-06	1	25	15	0 - 25.0	6	0 - 25.0	0 - 5.6	11.6 - 25.0	1825.41	11/04/86
ES-07	1	23.2	15	0 - 23.2	6	0 - 23.2	0 - 6.5	8.5 - 23.2	1826.53	11/05/86
ES-08]	24.1	15	0 - 24.1	6	0.6 - 24.1	0 - 4.7	12.1 - 24.1	1826.60	11/05/86
ES-09	ı	24.2	15	0 - 24.2	6	0 - 24.2	0 - 3.4	11.9 - 24.2	1827.80	11/05/86
ES-10	ı	20	15	0 - 20.0	6	0 - 20.0	0 - 5.0	9.7 - 20.0	1829.46	11/05/86
ES-11		27	15	0 - 27.0	6	0 - 27.0	0 - 4.2	7.2 - 27.0	1835.07	11/06/86
ES-12	ı	22.5	15	0 - 22.5	6	0 - 22.5	0 - 6.9	10.9 - 22.5	1838.19	11/06/86
ES-13	l	30	15	0 - 30.0	6	(v)1.2 - 23.6	0 - 3.1	6.0 - 23.6	1782.58	11/06/86
ES-14		24.6	15	0 - 24.6	6	0 - 23.5	0 - 9.4	12.9 - 23.5	1728.69	11/10/86

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	В	orehole	C	asing	المامام	Desferentes	Measuring	D-4-
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
ES-15	111	24	15	0 - 24.0	6	0 - 24.0	0 -10.8	13.5 - 24.0	1730.21	11/10/86
ES-16	III	24.8	15	0 - 24.8	6	0 - 24.8	0 - 4.3	8.1 - 24.8	1737.90	11/10/86
ES-17	- 111	28	15	0 - 28.0	6	0 - 28.0	0 - 7.9	10.4 - 28.0	1739.31	11/11/86
ES-18	ll l	35	15	0 - 35.0	6	0 - 26.9	0 - 9.1	12.9 - 26.9	1770.25	11/11/86
ES-19]]	33	15	0 - 33.0	6	0 - 26.3	0 - 6.3	10.3 - 26.3	1769.44	11/11/86
ES-20	11	35	15	0 - 35.0	6	0 - 23.0	0 - 3.5	9.8 - 23.0	1770.58	11/13/86
ES-21		35	12	0 - 35.0	6	0 - 35.0	0 - 2.2	15.8 - 35.0	1769.62	01/26/87
ES-22	11	35.5	12	0 - 35.5	6	0 - 35.5	0 - 5.2	17.5 - 35.5	1770.93	01/27/87
ES-23	111	20	12	0 - 20.0	6	0 - 20.0	0 - 2.4	10.6 - 20.0	1760.73	01/27/87
ES-24	111	30	12	0 - 30.0	6	0 - 30.0	0 -11.7	18.3 - 30.0	1728.67	01/28/87
ES-25	111	35	12	0 - 35.0	6	0 - 35.0	0 - 9.2	19.5 - 35.0	1737.78	01/28/87
ES-26	111	35	12	0 - 35.0	6	0 - 34.5	0 - 8.7	17.5 - 34.5	1748.01	01/28/87
ES-27	111	35	12	0 - 35.0	6	0 - 35.0	0 - 9.5	15.3 - 35.0	1740.67	01/28/87
ES-28	111	21	12	0 - 21.0	6	0 - 21.0	0 - 1.7	8.9 - 21.0	1759.15	01/28/87
ES-29	111	28	12	0 - 28.0	6	0 - 28.0	0 - 8.4	11.6 - 28.0	1760.47	01/29/87
ES-30	111	25	12	0 - 25.0	6	0 - 25.0	0 - 5.5	10.1 - 25.0	1759.51	01/29/87
ES-31	IV	25	12	0 - 25.0	6	0 - 25.0	0 - 9.7	11.6 - 25.0	1787.01	01/29/87
ES-32	111	25	12	0 - 25.0	6	0 - 21.5	0 - 4.6	7.5 - 21.5	1740.65	01/29/87
HAR-02	ſ	30	8	0 - 30.0	/ 4	(v)1.1 - 30.0	0 - 6.2	15.4 - 30.0	1886.38	05/12/87
HAR-03	1	30	8	0 - 30.0	4	0 - 30.0	0 - 6.2	14.7 - 30.0	1875.48	05/13/87
HAR-04	ı	29	8	0 - 29.0	4	0 - 29.0	0 - 6.4	12.1 - 29.0	1873.40	05/13/87
HAR-09	11	30.5	8	0 - 30.5	4	0 - 30.5	0 - 5.9	16.1 - 30.5	1820.62	05/16/87
HAR-11	II	31	8	0 - 31.0	4	0 - 31.0	0 - 5.0	11.2 - 31.0	1827.90	05/16/87
HAR-12	111	30.5	8	0 - 30.5	4	0 - 30.5	0 - 3.5	15.5 - 30.5	1796.73	05/17/87
HAR-13	III	31.6	8	0 - 31.6	4	0 - 31.6	0 - 5.5	17.4 - 31.6	1801.18	05/17/87
HAR-14	111	40	8	0 - 40.0	4	0 - 40.0	0 - 5.5	11.8 - 40.0	1797.02	05/19/87
HAR-15	11	40	8	0 - 40.0	4	0 - 40.0	0 - 5.0	10.2 - 40.0	1809.69	05/19/87
HAR-27	11	40	8	0 - 40.0	4	0 - 40.0	0 - 3.0	21 - 40.0	1719.39	06/14/87
HAR-28	11	40	8	0 - 40.0	4	0 - 40.0	0 - 6.0	20 - 40.0	1720.17	06/14/87
HAR-29		40.2	8	0 - 40.2	4	0 - 40.2	0 - 7.0	20 - 40.2	1724.13	06/14/87

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	Bo	orehole	С	asing	Cooled	Douboud	Measuring	Dete
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	(feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
HAR-30		35	8	0 - 35.0	4	0 - 35.0	0 - 6.5	14 - 35.0	1806.47	06/15/87
HAR-31	11	40	8	0 - 40.0	4	0 - 40.0	0 - 6.0	22 - 40.0	1812.45	06/15/87
HAR-32	111	40	8	0 - 40.0	4	0 - 40.0	0 - 6.0	21 - 40.0	1736.58	06/17/87
HAR-33	III	35	8	0 - 35.0	4	0 - 35.0	0 - 6.0	18 - 35.0	1744.66	06/17/87
HAR-34	111	23	8	0 - 23.0	4	0 - 23.0	0 - 3.0	9 - 23.0	1751.17	06/17/87
CHATSWOR	RTH FORI	NATION								
RD-01	l	506	15	0 - 26.0	10-1/8	0 - 26.0	0 - 26.0		1935.89	01/09/86
			8-5/8	26.0 - 506.0				Open Hole		
RD-02	ı	400	15	0 - 26.0	10-1/8	0 - 26.0	0 - 26.0		1873.92	01/16/86
			8-5/8	26.0 - 400.0				Open Hole		
RD-03	I	300	15	0 - 27.0	10-1/8	0 - 27.0	0 - 27.0		1743.50	01/10/86
			8-5/8	27.0 - 300.0				Open Hole		
RD-04	11	496	15	0 - 27.0	10-1/8	0 - 27.0	0 - 27.0		1883.85	01/22/86
			8-5/8	27.0 - 496.0				Open Hole		
RD-05A	UL-S	158	12-1/4	0 - 29.5	8-1/4	0 - 29.5	0 - 29.5		1704.66	02/17/93
			6-1/4	29.5 - 158.0				Open Hole		
RD-05B	UL-S	310	15	0 - 27.0	10-1/8	0 - 27.0	0 - 27.0		1705.89	05/20/93
			9-7/8	27.0 - 310.0	5	0 - 310.0	0 - 248.0	257.6 - 310.0		
RD-05C	UL-S	480	17-1/2	0 - 29.0	12-1/8	0 - 28.0	0 - 29.0		1705.25	06/27/94
			11-7/8	29.0 - 421.0	6-1/4	0 - 418.0	0 - 421.0			
			6-1/4	421.0 - 480.0				Open Hole		
RD-06	UL-S	260	15	0 - 27.0	10-1/8	0 - 27.0	0 - 27.0		1617.21	01/31/86
			9-7/8	27.0 - 136.0	6-1/4	0 - 140.0		70.0 - 140.0		
			8-5/8	136.0 - 260.0				Open Hole		
RD-07	IV	300	15	0 - 25.0	10-1/8	0 - 25.0	0 - 25.0		1812.82	01/08/86
			8-5/8	25.0 - 300.0				Open Hole		
RD-08	111	50	15	0 - 27.0	10-1/8	0 - 27.0	0 ~ 27.0	<u>-</u>	1763.38	01/29/86
		-	8-5/8	27.0 - 50.0	-		-	Open Hole		
RD-09	- 11	200	15	0 - 37.0	10-1/8	0 - 37.0	0 - 37.0		1768.20	01/28/86
			8-5/8	37.0 - 200.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	В	orehole	C	asing	Cooled	Devlorated	Measuring	Doto
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	(feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-10	1	400	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1904.43	05/07/86
			8-3/8	30.0 - 400.0				Open Hole		
RD-11	111	71	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1762.65	10/23/86
			8-3/8	30.0 - 71.0	***			Open Hole		
RD-12	111	72	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1762.62	10/23/86
			8-3/8	30.0 - 72.0				Open Hole		
RD-13	IV	160	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1840.27	07/25/89
			6-1/2	30.0 - 160.0				Open Hole		
RD-14	īV .	125	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1824.29	07/27/89
			6-1/2	30.0 - 125.0				Open Hole		
RD-15	IV	152	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1817.70	07/27/89
			6-1/2	30.0 - 152.0				Open Hole		
RD-16	IV	220	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1808.99	08/15/89
			6-1/2	30.0 - 220.0				Open Hole		
RD-17	IV	125	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1836.30	08/10/89
			6-1/2	30.0 - 125.0				Open Hole		
RD-18	IV	240	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1839.49	07/28/89
			6-1/2	30.0 - 240.0				Open Hole		
RD-19	IV	135	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1853.13	07/31/89
			6-1/2	30.0 - 135.0				Open Hole		
RD-20	IV	127	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1819.72	07/27/89
			6-1/2	30.0 - 127.0				Open Hole		
RD-21	IV	175	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1866.96	08/11/89
			6-1/2	30.0 - 175.0				Open Hole		
RD-22	IV	440	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1853.41	08/15/89
			6-1/2	30.0 - 440.0				Open Hole		
RD-23	IV	440	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1838.19	08/16/89
			6-1/2	30.0 - 440.0				Open Hole		
RD-24	IV	150	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1809.93	08/09/89
_		-	6-1/2	30.0 - 150.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

_		Effective	В	orehole	С	asing	- Coolod	0-44	Measuring	Data
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	- Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-25	IV	175	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1810.76	08/07/89
			6-1/2	30.0 - 175.0				Open Hole		
RD-26		160	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1880.39	08/03/89
			6-1/2	30.0 - 160.0				Open Hole		
RD-27	IV	150	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1841.67	08/10/89
			6-1/2	30.0 - 150.0				Open Hole		
RD-28	IV	150	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1810.92	08/10/89
			6-1/2	30.0 - 150.0				Open Hole		
RD-29	IV	100	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1806.29	08/10/89
			6-1/2	30.0 - 100.0		***		Open Hole		
RD-30	IV	75	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		1768.69	08/11/89
			6-1/2	30.0 - 75.0				Open Hole		
RD-31	ı	175	12	0 - 30.0	8-1/4	0 - 30.0	0 - 30.0		. 1945.02	08/16/89
			6-1/2	30.0 - 175.0				Open Hole		
RD-32	os	150	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1808.47	02/09/94
			11-7/8	19.0 - 99.0	6-1/4	0 - 99.0	0 - 99.0			
			5-7/8	99.0 - 150.0				Open Hole		
RD-33A	UL-N	320	17-1/2	0 - 11.0	12-1/8	0 - 11.0	0 - 11.0		1792.97	09/27/91
			11	11.0 - 100.0	6-1/4	0 - 100.0	0 - 100.0			
			5-1/2	100.0 - 320.0				Open Hole		
RD-33B	UL-N	415	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1793.21	09/27/91
			11	20.0 - 360.0	6-1/4	0 - 360.0	20.0 - 360.0			
			6-1/4	360.0 - 415.0				Open Hole		
RD-33C	UL-N	520	17-1/2	0 - 10.0	12-1/8	0 - 10.0	0 - 10.0		1793.54	09/21/91
			11	10.0 - 480.0	6-1/4	0 - 480.0	0 - 480.0			
			6-1/4	480.0 - 520.0				Open Hole		
RD-34A	UL-N	60	12-1/4	0 - 16.0	8-1/4	0 - 16.0	0 - 16.0	· · · · · · · · · · · · · · · · · · ·	1761.83	07/25/91
			6-1/2	16.0 - 60.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	В	orehole	C	asing	- Cooled	Desferated	Measuring	Dete
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-34B	UL-N	240	17-1/2	0 - 30.0	12-1/8	0 - 30.0	0 - 30.0		1762.51	08/11/91
			11	30.0 - 180.0	6-1/4	0 - 180.0	0 - 180.0			
			6-1/4	180.0 - 240.0				Open Hole		
RD-34C	UL-N	450	17-1/2	0 - 30.0	12-1/8	0 - 30.0	0 - 30.0		1762.60	08/10/91
			11	30.0 - 380.0	6-1/4	0 - 380.0	0 - 380.0			
			6-1/4	380.0 - 450.0				Open Hole		
RD-35A	T I	110	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5		1906.68	01/24/93
			6-1/4	19.5 - 110.0	4	0 - 105.5	0 - 30.0	65.0 - 105.5		
RD-35B	1	328	24	0 – 10	18	0 - 11	0 - 11		1905.65	01/18/99
			17-1/2	10 – 162	12	0 - 158	0 - 162			
			9-7/8	162 - 328	4	0 - 324	0 - 292	303 - 324		
			3	328 - 359			328 - 359			
RD-36A	OS	95	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1913 09	01/14/94
			6-1/4	20.0 - 95.0				Open Hole		
RD-36B	os	170	17-1/2	0 – 20.5	12-1/8	0 - 20.5	0 - 20.5		1915.26	03/13/94
			11-7/8	20.5 - 120.0	6-1/4	0 - 120.0	0 - 120.0			
			5-7/8	120.0 - 170.0				Open Hole		
RD-36C	OS	466	26	0 - 20.0	20	0 - 20.0	0 - 20.0		1913 82	04/23/94
			15	20.0 - 198.0	10-1/8	0 - 197.0	0 - 198.0			
			5-7/8	198.0 - 466.0	4	0 - 455.5	0 - 381.0	405.0 - 455.5		
RD-36D	OS	605	24-1/2	0 – 10	18	0 - 10	0 - 10		1920.08	09/10/97
			15	10 - 554	10	0 - 550	0 - 550			
			9-7/8	554 - 608	4	0 - 605	0 - 560	575 - 605		
RD-37	os	400	17-1/2	0 - 38.0	12-1/8	0 - 38.0	0 - 38.0		1870.01	01/28/94
			11-7/8	38.0 - 260.0	4	0 - 377.0				
			7-7/8	260.0 - 400.0				272.0 - 377.0		
RD-38A	OS	120	17-1/2	0-20.0	12-1/8	0 - 20.0	0 - 20.0		1878.92	02/12/94
			6-1/2	20.0 - 120.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective Borehole Depth (feet)	В	orehole	C	asing	- Sealed	D = = = = = = = = =	Measuring	Data
Well Identifier	Area No.		Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-38B	os	370	24	0-6	18	0-6	0-6		1881.45	12/15/98
			17-1/2	6 - 170	12	0 - 161	0 - 170			
			11-7/8	170 - 279	6	0 - 277	0 - 279			
			5-1/2	279 - 370				Open Hole		
RD-39A	os	159	17-1/2	0 – 20.0	12-1/8	0 - 20.0	0 - 20.0		1960.23	02/02/94
			6-1/2	20.0 - 159.0				Open Hole		
RD-39B	os	477	24	0 – 12	16	0 - 12	0 - 12		1959.48	11/11/97
			15	12 – 213	10	0 - 210	0 - 213			
			9-1/2	213 - 477	4	0 – 470	0 – 424	440 - 470		
			6-1/2	477 – 500			477 - 500			
RD-40	11	300	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5		1972.02	01/08/93
			6-1/4	19.5 - 300.0				Open Hole		
RD-41A	11	120	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5		1774.48	01/10/93
			6-1/4	19.5 - 120.0		***		Open Hole		
RD-41B	jl .	390	17-1/2	0 - 19.5	12-1/8	0 - 19.5	0 - 19.5		1774.71	10/19/93
			11-7/8	19.5 - 340.0	6-1/4	0 - 336.0	0 - 340.0			
			5-7/8	340.0 - 390.0				Open Hole		
RD-41C	11	558	17-1/2	0 - 19.5	12-1/8	0 - 19.5	0 - 19.5		1773.73	10/05/93
			11-1/4	19.5 - 492.0	6-1/4	0 - 491.0	0 - 492.0			
			6-1/4	492.0 - 558.0				Open Hole		
RD-42	11	120	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5		1945.46	01/09/93
			6-1/4	19.5 - 120.0		***		Open Hole		
RD-43A	os	98	17-1/2	0 - 19.5	12-1/8	0 - 19.5	0 - 19.5		1680.16	09/09/94
			6-1/2	19.5 - 98.0				Open Hole		
RD-43B	os	295	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1680.21	10/25/94
			11-7/8	20.0 - 240.5	6-1/4	0 - 240.5	0 - 30.5			
			6-1/2	240.5 - 295.0			115.5 - 240.5	Open Hole		

TABLE C-I WELL CONSTRUCTION DATA BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

		Effective Borehole Depth (feet)	В	orehole	С	asing	- Coalad	Perforated	Measuring	Date
Well Identifier	Area No.		Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	- Sealed Interval (feet)	Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-43C	os	439.5	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1679.31	10/10/94
			11-7/8	20.0 - 370.0	6-1/4	0 - 370.0	5.0 - 140.0			
			6-1/2	370.0 - 439.5			183.0 - 219.0	Open Hole		
							318.0 - 368.0			
RD-44	1	485	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		2035.92	03/13/93
			6-1/4	20.0 - 485.0				Open Hole		
RD-45A		480	17-1/2	0 - 19.5	12-1/8	0 - 19.5	0 - 19.5		1841.59	02/06/93
			6-1/2	19.5 - 480.0				Open Hole		
RD-45B	I	590	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1840.09	09/11/94
			11-7/8	20.0 - 538.0	6-1/4	0 - 538.0	0 - 127.0			
			6-1/2	538.0 - 590.0			471.0 - 538.0	Open Hole		
RD-45C	ı	798	24	0 - 20.0	16	0 - 19.0	0 - 20.0		1835.74	08/26/94
			11-7/8	20.0 - 750.0	6-1/4	0 - 750.0	0 - 135.0			
			6-1/4	750.0 - 798.0			483.0 - 540.0	Open Hole		
							590.0 - 750.0			
RD-46A	1	140	12-1/4	0 - 29.5	8-1/4	0 - 29.5	0 - 29.5		1805.80	01/13/93
			6-1/4	29.5 - 140.0				Open Hole		
RD-46B	1	328	24	0 - 20	18	0 - 20	0 - 20		1807.19	12/19/98
			17-1/2	20 - 193	12	0 - 190	0 - 193			
			9-7/8	193 - 328	4	0 - 325	0 - 281	293 - 325		
			3	328 - 366			328 - 366			
RD-47	ı	710	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		2045.72	04/01/93
			6-1/2	19.0 - 710.0				Open Hole		
RD-48A	UL-S	110	12-1/4	0 - 20.0	8-1/4	0 - 20.0	0 - 20.0		1736.54	03/15/93
			6-1/2	20.0 - 110.0				Open Hole		
RD-48B	UL-S	248	17-1/2	0 - 29.5	12-1/8	0 - 29.5	0 - 29.5		1735.40	05/26/93
			11-1/4	29.5 - 200.0	6-1/4	0 - 200.0	0 - 198.5			
			6-1/4	200.0 - 248.0		400		Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective Borehole Depth (feet)	Be	orehole	C	asing	- Sealed	Perforated	Measuring	Dete
Well Identifier	Area No.		Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Interval (feet)	Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-48C	UL-S	438	17-1/2	0 - 30.0	12-1/8	0 - 30.0	0 - 30.0		1734.95	05/16/93
			11-1/4	30.0 - 371.0	6-1/4	0 - 371.0	0 - 371.0			
			6-1/4	371.0 - 438.0				Open Hole		
RD-49A	11	50	12-3/4	0 - 18.5	8-1/4	0 - 18.5	0 - 18.5		1867.25	06/08/93
			6-1/4	18.5 - 50.0				Open Hole		
RD-49B	11	298	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1867.95	06/14/93
			11-7/8	20.0 - 250.0	6-1/4	0 - 250.0	0 - 250.0			
			5-7/8	250.0 - 298.0				Open Hole		
RD-49C	11	558	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1869.45	07/07/93
			11-7/8	19.0 - 500.0	6-1/4	0 - 491.0	0 - 491.0			
			6-1/4	500.0 - 558.0				Open Hole		
RD-50	IV	195	12-3/4	0 - 18.5	8-1/4	0 - 18.5	0 - 18.5		1914.88	05/28/93
			6-1/4	18.5 - 195.0				Open Hole		
RD-51A	11	250	24	0 - 50.0	12-1/8	0 - 50.0	0 - 50.0		1832.51	07/11/91
			11-3/4	50.0 - 160.0	6-1/4	0 - 160.0	0 - 160.0			
			5-1/2	160.0 - 250.0				Open Hole		
RD-51B	11	370	24	0 - 48.0	12-1/8	0 - 48.0	0 - 48.0		1832.68	07/11/91
			11-3/4	48.0 - 300.0	6-1/4	0 - 300.0	0 - 300.0			
			5-1/2	300.0 - 370.0				Open Hole		
RD-51C	11	602	14	0 - 13.5	12-1/8	0 - 13.5	0 - 13.5		1831.65	07/09/91
			11-3/4	13.5 - 510.0	6-1/4	0 - 510.0	0 - 510.0			
			5-1/2	510.0 - 602.0				Open Hole		
RD-52A	1	137	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5		1755.09	01/25/93
			6-1/2	19.5 - 137.0		***		Open Hole		
RD-52B	1	318	17-1/2	0 - 24.0	12-1/8	0 - 24.0	0 - 24.0		1712.15	12/06/93
			11-1/4	24.0 - 200.0	6-1/4	0 - 200.0	0 - 199.0			
			5-7/8	200.0 - 318.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	В	orehole	C	asing		Deeferated	Measuring	D-4-
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	(feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-52C	i	678	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1712.83	11/29/93
			11-7/8	20.0 - 450.0			0 - 620.0			
			11-1/4	450.0 - 620.0	6-1/4	0 - 620.0			•	
			6-1/4	620.0 - 678.0				Open Hole		
RD-53	1	159	14	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1909.19	05/15/91
			12	20.0 - 77.0	6-1/4	0 - 77.0	0 - 77.0			
			5-1/2	77.0 - 159.0				Open Hole		
RD-54A	IV	278	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1841.72	08/07/93
			11-1/4	19.0 - 119.0	6-1/4	0 - 119.0	0 - 119.0			
			5-7/8	119.0 - 278.0				Open Hole		
RD-54B	IV	437	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1842.54	08/31/93
			11-1/4	19.0 - 379.0	6-1/4	0 - 379.0	0 - 379.0			
			5-7/8	379.0 - 437.0				Open Hole		
RD-54C	IV	638	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0	•	1843.77	07/27/93
			11-1/4	20.0 - 558.0	6-1/4	0 - 557.0	0 - 557.0			
			6-1/4	558.0 - 638.0				Open Hole		
RD-55A	111	106	17-1/2	0 - 28.0	12-1/8	0 - 28.0	0 - 28.0		1756.87	02/19/93
			6-1/4	28.0 - 106.0				Open Hole		
RD-55B	111	250	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1757.19	04/19/93
			11	20.0 - 199.5	6-1/4	0 - 199.5	0 - 199.5			
			5-7/8	199.5 - 250.0				Open Hole		
RD-56A	UL-N	397.5	17-1/2	0 - 20.5	12-1/8	0 - 20.5	0 - 20.5		1758.62	03/08/94
			6-1/2	20.5 - 397.5				Open Hole		
RD-56B	UL-N	463	22	0 - 10	16	0 - 10	0 -10		1761,83	07/24/97
			15	10 - 453	10	0 - 443	0 - 443			
			6-1/2	453 - 463				Open Hole		
RD-57	UL-N	419	17-1/2	0 - 19.5	12-1/8	0 - 19.5	0 - 19.5		1774.15	02/23/94
			6-1/2	19.5 - 419.0				Open Hole		
RD-58A	111	126	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5	·	1756.11	02/01/93
			6-1/4	19.5 - 126.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	B	orehole	C	asing	Sealed	Perforated	Measuring	Date
	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Interval (feet)	Interval (feet)	Point Elevation (ft MSL)	Drilling Completed
RD-58B	111	268	17-1/2	0 - 20.0	12-1/8	0 - 20.0	0 - 20.0		1761.34	08/28/94
			11-7/8	20.0 - 220.0	6-1/4	0 - 220.0	0 - 220.0			
	_		6-1/2	220.0 - 268.0				Open Hole		
RD-58C	111	498	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1759.59	08/09/94
			11-7/8	19.0 - 450.0	6-1/4	0 - 450.0	0 - 450.0			
			6-1/2	450.0 - 498.0				Open Hole		
RD-59A	os	58	17-1/2	0 - 21.0	12-1/8	0 - 21.0	0 - 21.0		1340.50	05/19/94
			6-1/2	21.0 - 58.0				Open Hole		
RD-59B	os	214	17-1/2	0 - 19.5	12-1/8	0 - 19.5	0 - 19.5		1342.49	07/02/94
			6-1/2	19.5 - 214.0	2	0 - 209.0	0 - 161.0	178.0 - 20 <u>9.0</u> °		
RD-59C	os	398	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1345.41	07/02/94
			6-1/2	19.0 - 398.0	2	0 - 397.0	0 - 186.0			
							250.0 - 328.0	345.5 - 397.0		
RD-60	111	126	12-1/4	0 - 19.5	8-1/4	0 - 19.5	0 - 19.5		1870.40	01/21/93
			6-1/4	19.5 - 126.0				Open Hole		
RD-61	1	129	17-1/2	0 - 19.0	12-1/8	0 - 19.0	0 - 19.0		1843.88	04/26/94
			6-1/4	19.0 - 129.0				Open Hole		
RD-62	UL-S	238	17-1/2	0 - 20.7	12-1/8	0 - 20.7	0 - 19.5		1837.20	05/06/94
			6-1/2	20.7 - 238.0				Open Hole		
RD-63	IV	230	12-3/4	0 - 20.0	8-1/4	0 - 20.0	0 - 20.0	•	1764.85	05/10/94
			6-1/2	20.0 - 230.0				Open Hole		
RD-64	IV	398	12-1/4	0 - 19.0	8-1/4	0 - 19.0	0 - 19.0		1857.04	05/19/94
			6-1/2	19.0 - 398.0				Open Hole		
RD-65	IV	397	12-3/4	0 - 19.0	8-1/4	0 - 19.0	0 - 19.0		1819.14	08/14/94
			6-1/2	19.0 - 397.0				Open Hole		
RD-66	os	225	22	0 - 19	12	0 - 19	0 - 19		1730.79	07/28/97
			6-1/2	19 - 225	***			Open Hole		
RD-67	UL-S	102	17-1/2	0 - 20	12	0 - 20	0 - 20		1901.71	09/19/97
			6-1/2	20 - 102				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	Borehole		С	asing	Caalad	D f 1 1	Measuring	D.4.
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	- Sealed Interval (feet)	Perforated Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
RD-68A	os	90	17-1/2	0 - 19	12	0 - 19	0 - 19		1307.64	06/05/97
			6-1/4	19 - 90	***			Open Hole		
RD-68B	os	272		0 - 52	12	0 - 52	0 - 224	240-270	1312.44	06/11/97
			11-7/8	52 - 272	4	0 - 270				
RD-69		103	17-1/2	0 - 19	12	0 - 19	0 - 19		1831.28	06/16/97
			6-1/4	19 - 103				Open Hole		
RD-70	UL-N	278	17-1/2	0 - 19	12	0 - 19	0 - 19		1732.26	06/14/97
			6-1/2	19 - 278				Open Hole		
RD-71	OS	281	17-1/2	0 - 20	12	0 - 20	0 - 20		1740.02	07/27/97
			6-1/2	20 - 281				Open Hole		
RD-72	l	182	24	0 - 27	12	0 - 27	0 - 27		1907.25	12/23/97
			6-1/2	27 - 182				Open Hole		
RD-73	1	141	12	0 - 20	10	0 - 20	0 - 20		1901.60	07/19/95
			6	20 - 141				Open Hole		
RD-74	IV	101	17-1/2	0 - 30	12	0 - 30	0 - 30		1810.90	01/21/99
			6-1/2	30 - 101				Open Hole		
WS-04A	1	502	13	0 - 300.0	10-1/4	0 - 288.0	Unknown	96.0 - 288.0	1749.77	1953
			10	300.0 - 502.0				Open Hole		
WS-05	I	2304	>12-1/4	0 - 40.0	12	0 - 40.0	0 - 55.0		1830.20	1951
			12-1/4	40.0 - 2304.0				Open Hole		
WS-06	1	1440	30	0 - 6.0	12-1/8	0 - 450.0	0 - 6.0	306.0 - 450.0	1932.72	1953
			13	6.0 - 450.0		****				
			8-1/4	450.0 - 1440.0				Open Hole		
WS-07	IV	700	15	0 - 400.0	12-1/8	0 - 400.0	Unknown	216.0 - 400.0	1826.19	1954
			10	400.0 - 700.0		at her		Open Hole		
WS-08	111	700	15	0 - 400.0	12-1/8	0 - 400.0	Unknown	192.0 - 400.0	1794.39	1954
			10	400.0 - 700.0				Open Hole		
WS-09	ll	1800	30	0 - 17.0	12-1/8	0 - 17.0	0 - 14.0		1883.99	1955
	••		15	17.0 - 690.0		****				
•			10	690.0 - 1800.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective Borehole Depth (feet)	В	orehole	C	asing	Sealed	Perforated	Measuring	D-4-
Well Identifier	Area No.		Diameter (inches)	(feet)	Inside Diameter (inches)	Interval (feet)	Interval (feet)	interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
WS-09A	ll	541	30	0 - 34.0	14	0 - 34.0	0 - 20.0		1647.61	1956
			15	34.0 - 541.0	12-1/8	0 - 541.0				
					8-1/4	0 - 539.0		20.0 - 539.0		
WS-09B	- 11	220	16	0 - 220.0			Unknown	Open Hole	1796.89	1956
WS-11	111	677	13	0 - 400.0	12-1/8	0 - 400.0	Unknown	200.0 - 400.0	1748.70	1956
			9	400.0 - 677.0	8-1/4	365.5 - 615.0		365.0 - 615.0		
								Open Hole		
WS-12	1	1768	15	0 - 408.0	14	0 - 375.0	Unknown		1705.98	1956
			12	408.0 - 1768.0				Open Hole		
WS-13	11	940	>13	0 - 750.0	12-1/8	0 - 750.0	0 - 15.0	22.0 - 750.0	1658.62	1957
			11-1/2	750.0 - 940.0		000		Open Hole		
WS-14	l l	1272	>16	0 - 40.0	16	0 - 40.0	Unknown		1878.23	1957
			12-3/4	40.0 - 1272.0				Open Hole		
WS-SP	[]	203	Unknown	0 - 203.0	6	0 - 203.0	Unknown	Unknown	1766.76	Unknown
HAR-01	1	110	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0	-	1874.13	05/16/87
			8	30.0 - 110.0				Open Hole		
HAR-05	11	180	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0	·	1812.65	05/16/87
			8	30.0 - 180.0				Open Hole	•	
HAR-06	H	160	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1815.03	05/16/87
			8	30.0 - 160.0				Open Hole		
HAR-07	! !	100	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1728.38	05/20/87
			8	30.0 - 100.0				Open Hole		
HAR-08	Ħ	130	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1730.75	05/20/87
			8	30.0 - 130.0				Open Hole		
HAR-16	ı	120	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1872.31	05/20/87
			8	30.0 - 120.0				Open Hole		
HAR-17	ii	100	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1711.59	05/20/87
			8	30.0 - 100.0				Open Hole		
HAR-18	HI	80	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1749.41	05/20/87
			8	30.0 - 80.0				Open Hole		

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	Bo	orehole	C	asing	Sealed	Perforated	Measuring	D-4-
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	interval (feet)	Interval (feet)	Interval (feet)	Point Elevation (ft MSL)	Date Drilling Completed
HAR-19	11	220	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1833.42	06/17/87
			8	30.0 - 220.0				Open Hole		
HAR-20	11	230	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1830.47	06/16/87
			8	30.0 - 230.0				Open Hole		
HAR-21	H	130	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1821.30	06/18/87
			8	30.0 - 130.0				Open Hole		
HAR-22	11	90	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1816.41	06/18/87
			8	30.0 - 90.0				Open Hole		
HAR-23	111	90	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1805.87	06/18/87
			8	30.0 - 90.0				Open Hole		
HAR-24	1	110	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1906.89	06/18/87
			8	30.0 - 110.0				Open Hole		
HAR-25	1	90	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0		1889.75	06/18/87
			8	30.0 - 90.0				Open Hole		
HAR-26	III	90	15	0 - 30.0	10-1/8	0 - 30.0	0 - 30.0	<u> </u>	1763.23	06/18/87
			8	30.0 - 90.0				Open Hole		
PRIVATE O	FF-SITE V	VELLS AND	SPRINGS							
OS-01	os	288	Unknown	Unknown	10	0 - 52	Unknown		1310.34	Unknown
(converted	to RD-68	3)						Open Hole		
OS-02	os	700	Unknown	Unknown	10	0 - 17	0 - 17		1237.01	03/18/59
								Open Hole		
OS-03	os	100	Drilled with		8-1/4	0 - 59	0 - 30	30 - 60	1298.15	06/12/50
			cable tools					Open Hole		
OS-04	os	Well Cons	truction Data	Unresolved or h	Vot Available				1334.00	
OS-05	os	Well Cons	truction Data	Unresolved or N	lot Available					
OS-08(S)	os									
OS-09	os	Well Cons	truction Data	Unresolved or N	lot Available					
OS-10	os	600	18	0 - 10	12-1/8	0 - 10	0 - 10		1016.97	12/54
			12	10 - 600				Open Hole		
OS-12(S)	os									

TABLE C-I
WELL CONSTRUCTION DATA
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

		Effective	Во	rehole	С	asing	- Cooled	Perforated	Measuring	Date
Well Identifier	Area No.	Borehole Depth (feet)	Diameter (inches)	Interval (feet)	Inside Diameter (inches)	Interval (feet)	Sealed Interval (feet)	Interval (feet)	Point Elevation (ft MSL)	Drilling Completed
OS-13(S)	os									
OS-15	os	218	Drilled with	-	8-1/4	0 - 40	0 - 40		1404.86	08/27/60
			cable tools					Open Hole		
OS-16	os	Well Cons	truction Data	Unresolved of	r Not Available				1785.05	
OS-17	os	425	Drilled with		0 – 25			1564.07		
			cable tools				Open Hole			
OS-21	os	Well Cons	truction Data	Unresolved of	r Not Available				1900.39	
OS-24	os	515	10	0 - 40	6-1/4	0 - 40	0 - 40		1947.30	12/02/87
			6	40 - 515				Open Hole		
OS-25	os	515	10	0 - 36	6-1/4	0 - 36	0 - 36		2043.58	12/10/87
			6	36 - 515				Open Hole		
OS-26	os	515	10	0 - 40	6-1/4	0 - 40	0 - 40		2080.58	11/16/87
			6	40 - 515				Open Hole		
OS-27	os	477	10-1/4	0 - 30	10	0 - 5.5	0 - 30		2043.90	05/16/95
			6-1/8	30 - 477	6	0 - 30		Open Hole		
OS-28	os	Well Cons	truction Data	Unresolved o	r Not Available					

Depth/intervals are measured in feet below land surface.

Note: Well OS-1 was converted to well RD-68B in 1997.

(=	No casing installed over the borehole interval specified; open hole.
---	---	--

(v) = Top of well below land surface, installed inside zero-grade vault.

S = Spring; construction data not applicable.

UL-N = Undeveloped land north of Facility

UL-S = Undeveloped land south of Facility.

OS = Off-site

Piezometer ID	Area	Northing (feet)	Easting (feet)	MP Elevation (feet)	Date Drilled	Total Depth (feet bgs)	Screened Interval (feet bgs)	Sand Interval (feet bgs)	Bentonite Interval (feet bgs)	Grout Interval (feet bgs)	Concrete Interval (feet bgs)
PZ-012A	ı	266871.1	1794033.3	1827.69	11/16/00	N/A	4.75-5.25	4-6	2-4	N/A	0-2
PZ-012B	1	266871.1	1794033.3	1827.69	11/16/00	N/A	10.75-11.25	10-12	6-10	N/A	N/A
PZ-012C	1	266871.1	1794033.3	1827.69	11/16/00	N/A	16.75-17.25	16-18	12-16	N/A	N/A
PZ-012D	1	266871.1	1794033.3	1827.69	11/16/00	N/A	21.25-21.75	20.5-22.5	18-20.5	N/A	N/A
PZ-012E	1	266871.1	1794033.3	1827.69	11/16/00	N/A	26.75-27.25	25-28	22.5-25	N/A	N/A
PZ-012F	t	266871.1	1794033.3	1827.69	11/16/00	37.0	34.75-35.25	34-37	28-34	N/A	N/A

Footnotes and Explanations: bgs = Below ground surface.

N/A = Not applicable.

APPENDIX D

Quality Assurance Assessment

E OF	CONTE	NTS		Page
OF TA	BLES			ii
OVE	RVIEW			1
INTR	RODUCI	TION		2
2.1	Qualit	y Assurance	e/Quality Control Procedures	2
QA/Q	C EVA	LUATION		3
3.1	Field l	Data		3
			-	3
				3
				3
		_	ality Parameter Measurements	4
3.2	•			4
		_	- · · · · · · · · · · · · · · · · · · ·	4
	3.2.2		•	5 5 5
			• •	5
			• • •	5
			•	6
		-	• • • • • • • • • • • • • • • • • • • •	6
	3.2.5		·	7
			•	7
				8
			<u>. </u>	8 9
			<u> </u>	9
			* · · · · · · · · · · · · · · · · · · ·	9
		3.2.3.0		10
		2257		10
				10
			•	11
			· •	11
		3.2.5.10	Data Qualifiers	11
	OF TA OVE INTE 2.1 QA/Q	OF TABLES OVERVIEW INTRODUCT 2.1 Quality QA/QC EVA 3.1 Field 1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Analy 3.2.1 3.2.2 3.2.3 3.2.4	OVERVIEW INTRODUCTION 2.1 Quality Assurance QA/QC EVALUATION 3.1 Field Data 3.1.1 Pre-Samp 3.1.2 Groundwa 3.1.3 QA/QC S 3.1.4 Water Qu 3.2 Analytical Data 3.2.1 Comparisa 3.2.2 Lab Perfo 3.2.2.1 3.2.2.2 3.2.3 Field Dup 3.2.4 Data Repri 3.2.5 Data Usat 3.2.5.1 3.2.5.2 3.2.5.3 3.2.5.4 3.2.5.5 3.2.5.6 3.2.5.7 3.2.5.8 3.2.5.9 3.2.5.10	OVERVIEW INTRODUCTION 2.1 Quality Assurance/Quality Control Procedures QA/QC EVALUATION 3.1 Field Data 3.1.1 Pre-Sampling Water Levels 3.1.2 Groundwater Sample Collection 3.1.3 QA/QC Sample Collection 3.1.4 Water Quality Parameter Measurements 3.2 Analytical Data 3.2.1 Comparison with Historical Water Quality Data 3.2.2 Lab Performance Comparison 3.2.2.1 July 17 Matrix Spike Samples 3.2.2.2 August 12 Matrix Spike Samples 3.2.2.3 Field Duplicate Sample Precision 3.2.4 Data Representativeness, Reproducibility, and Completeness 3.2.5 Data Usability Summary 3.2.5.1 Chain of Custody Procedures 3.2.5.2 Holding Time Compliance 3.2.5.3 Blank Sample Analyses 3.2.5.4 Surrogate Compound Recoveries 3.2.5.5 Laboratory Control Sample (LCS/LCSD) Analyses 3.2.5.6 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample Analyses 3.2.5.7 Calibration Verification Recovery 3.2.5.8 Continuing Calibration Recovery 3.2.5.9 Data Qualification of Samples by AMEC 3.2.5.10 Sample Data Reporting

LIST OF TABLES

Table No.	Title
D-I	Summary of 2003 Split Sample Results
D-II	Summary of 2003 Duplicate Sample Results
D-III	Summary of 2003 Data Qualification of Non-Appendix IX Samples Due to Blank Sample Contamination
D-IV	Summary of 2003 Data Qualification of Non-Appendix IX Samples Due to LCS/LCSD, MS/MSD Recovery Exceedance
D-V	Summary of 2003 Data Qualification of Non-Appendix IX Samples Due to Calibration Verification Recovery Exceedance
D-VI	Summary of 2003 Data Qualification of Non-Appendix IX Samples Due to Continuing Calibration Verification Exceedance
D-VII	Summary of 2003 Data Qualification of Samples by AMEC

1. OVERVIEW

Field and laboratory data were reviewed according to procedures outlined in the Groundwater Monitoring, Quality Assurance Project Plan, Santa Susana Field Laboratory (Groundwater Resources Consultants, Inc., 1995) following each 2003 quarterly groundwater sampling event. Results of the review are discussed in the following sections. The analytical results for these samples were subjected to a data validation process summarized in 3.2.3 of this appendix. During April 2003, several samples were collected for the analysis of Appendix IX constituents. The analytical results for these samples were subjected to a data validation process summarized in Appendix H.

2. INTRODUCTION

2.1 Quality Assurance/Quality Control Procedures

Following each 2003 quarterly groundwater sampling event, field and laboratory data were reviewed according to procedures outlined in the *Groundwater Monitoring, Quality Assurance Project Plan, Santa Susana Field Laboratory* (Groundwater Resources Consultants, Inc., 1995). As the project develops, it is anticipated that the quality assurance assessment conducted by Haley & Aldrich following each quarterly event will be modified. The current procedures include reviewing field forms and documentation and evaluating whether field data were complete. Analytical data were reviewed by the laboratory for precision, accuracy, representativeness, and comparability as part of its standard QA/QC program. QA/QC data were submitted as part of the laboratory QA/QC package. Analytical data also were reviewed by Haley & Aldrich for data representativeness, reproducibility, completeness, erroneous data, and discrepancies.

Del Mar Analytical of Irvine, California served as the primary laboratory for all analyses except for the following:

- 1,4-dioxane analyzed by Ceimic Corporation of Narragansett, Rhode Island;
- N-Nitrosodimethylamine (NDMA) analyzed by Weck Laboratories of City of Industry, California and Pacific Analytical of Carlsbad, California;
- Radiochemistry analyses conducted by Eberline Services of Richmond,
 California;
- Split radiochemistry analyses conducted by Severn Trent Laboratories of Richland, Washington;
- Split samples were analyzed by American Analytics of Chatsworth, California for volatile organic compounds and perchlorate, by Ceimic Corporation for perchlorate, and by Del Mar Analytical for 1,4-dioxane; and
- Oxygen-18 and deuterium analyzed by the University of Ottawa G.G. Hatch Laboratories of Ottawa, Ontario, Canada.

Haley & Aldrich field and analytical data reviews are summarized below.

Completeness values presented in this summary were calculated using the following equation:

$$C = \begin{bmatrix} 1 - & \frac{\text{number of incomplete results}}{\text{total number requested}} & x 100 \end{bmatrix}$$

The values shown in parentheses in this summary are simply percentages and are not completeness values. The percentages are provided as a quick reference.

3. QA/QC EVALUATION

3.1 Field Data

3.1.1 Pre-Sampling Water Levels

During each quarterly sampling event, 234 wells were scheduled for water level monitoring. During the first quarter, 234 wells were monitored (100%); 227 wells were monitored during the second quarter (97%); 231 wells were monitored during the third quarter (99%); and 232 wells were monitored during the fourth quarter (99%). Out of the 234 wells monitored, water level measurements were obtained for 169, 197, 188, and 171 wells during the first, second, third, and fourth quarters, respectively. Water levels were not obtained from the other wells because the wells were dry, inaccessible, or needed repair.

Based upon the number of monitoring attempts versus the scheduled number, the completeness value for water level monitoring was 100% for the first quarter, 97% for the second quarter, 99% for the third and fourth quarters.

3.1.2 Groundwater Sample Collection

During the quarterly sampling events, the number of wells scheduled for sampling ranged from 117 to 188 wells, with the maximum number of scheduled wells occurring during the first quarter of 2003. Of the wells scheduled for sampling, the percentage sampled each quarter ranged from 42% to 71%. Samples were not collected at a number of wells because the wells were dry or contained inadequate water for sampling purposes, the wells were inaccessible, or the well equipment malfunctioned. Sample collection at several Chatsworth Formation wells was postponed during the third and fourth quarters to accommodate the C-1 corehole pumping test conducted by MWH. Wells affected by the C-1 test will be sampled following the completion of the test.

Comparing the number of wells that could be sampled versus the schedule, the field completeness value for water sample collection was 100% for the first quarter, 68% for the second quarter, and 100% for the third and fourth quarters.

3.1.3 QA/QC Sample Collection

Duplicate samples, split samples, field blanks, and trip blanks comprise the QA/QC sample collection program. The QA/QC target for duplicate samples is 10% of sampled wells. Split samples are collected from wells requiring verification sampling and from randomly selected wells, and typically comprise 5% of all sampled wells. Field blanks are collected each day that volatile organic samples are collected. Trip blanks are included with each shipment of VOC samples.

3

Results of QA/QC sample collection during 2003 are summarized below. The results do not include OS-09 sampling.

QA/QC Sample Type	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Percent of samples duplicated	8	10	12	20
Percent of samples split	6	8	4	33
Field blank completeness value	63	81	56	56
Trip blank completeness value	94	86	63	22

In 2004, field staff will receive additional on-site training on the collection of field blanks and trip blanks.

3.1.4 Water Quality Parameter Measurements

Each water quality parameter (pH, temperature, electrical conductivity, and turbidity) is measured at least three times before sample collection, except at wells that function as extraction wells and thus are already pumping prior to the quarterly sampling event; wells that bail or pump dry prior to purging three well volumes; at private wells; at flowing artesian wells; at flowing springs; and at wells equipped with multi-level FLUTe systems. Water quality parameters were measured at least once at all wells sampled during 2003 except at eight wells from the first quarter, five wells from the second quarter, eleven wells from the third quarter, and one well from fourth quarter. During the first through fourth quarters of 2003, field parameters were not measured according to established protocols at a number of wells due to sampler oversight or parameter equipment malfunction. The completeness values for field parameters measured at least three times prior to sample collection were 97%, 99%, 97%, and 98%.

3.2 Analytical Data

3.2.1 Comparison with Historical Water Quality Data

There were some instances where analyte concentrations had increased or decreased in groundwater samples collected during 2003, but most values were within the range of historic data. For several samples, constituents were detected for the first time due to the very low method detection limits reported by the laboratory. During each quarter, the laboratories were requested to confirm suspect results. Verification sampling was scheduled for a number of detection monitoring wells during 2003. Verification samples collected during 2003 did not confirm the presence of contaminants at detection monitoring wells. Additional verification sampling confirmed the presence of NDMA at point of compliance well HAR-07 and provided VOC concentration trend data for evaluation monitoring wells RD-55A and RD-55B and interim corrective action well WS-09A. A summary of unusual results is included in Section 2.2 of this report.

3.2.2 Lab Performance Comparison

Results of the split samples are presented in Table D-I. Relative percent differences (RPDs) were calculated for each compound detected by both the primary and split laboratories, and for compounds detected at concentrations exceeding the product of five times the method detection limit times the dilution factor. RPD values calculated for 2003 split samples ranged from 0% to 67%.

Perchlorate spike samples were submitted to Del Mar Analytical and Ceimic Corporation on July 17, 2003. The spike samples consisted of both de-ionized water samples and groundwater samples from well OS-09 spiked with perchlorate at a concentration of 5.0 micrograms per liter (ug/l). The spikes were prepared by Environmental Resource Associates (ERA) of Arvada, Colorado using de-ionized water and groundwater collected from well OS-09 on July 10, 2003.

A second set of perchlorate spike samples were submitted to Del Mar Analytical and Ceimic Corporation on August 12, 2003. Again, the spike samples consisted of both de-ionized water samples and OS-09 groundwater samples. The August 12, 2003 matrix spikes were prepared in the field by a Del Mar Analytical chemist at the well OS-09 location. The matrix spikes were prepared using well OS-09 groundwater immediately after it was collected. The reagent de-ionized water spikes were prepared at the Del Mar Analytical laboratory. The August 12, 2003 spikes were prepared at three concentrations (5.0 ug/l, 50 ug/l, and 150 ug/l). Reagent de-ionized water blanks were also prepared by Del Mar Analytical.

3.2.2.1 July 17 Matrix Spike Samples

The reported perchlorate concentration in the 5.0 ug/l groundwater matrix and reagent de-ionized water spike samples submitted with the July 17, 2003 groundwater samples ranged from 4.3 to 5.2 ug/l. Perchlorate was less than the detection limit in all reagent de-ionized water blanks analyzed. The detection limits were 0.8 ug/l for Del Mar Analytical and 0.35 ug/l for Ceimic Corporation.

3.2.2.2 August 12 Matrix Spike Samples

The reported perchlorate concentration in the 5.0 ug/l field groundwater matrix and reagent de-ionized water spike samples submitted with the August 12, 2003 groundwater samples ranged from 4.2 to 4.6 ug/l.

The reported perchlorate concentration in the 50 ug/l field groundwater matrix and reagent de-ionized water spike samples submitted with the August 12, 2003 groundwater samples ranged from 49 to 49.9 ug/l.

The reported perchlorate concentration in the 150 ug/l field groundwater matrix and reagent de-ionized water spike samples submitted with the August 12, 2003 groundwater samples ranged from 140 to 150 ug/l.

Perchlorate was less than the detection limit in all reagent deionized water blanks analyzed. The detection limits were 0.8 ug/l for Del Mar Analytical and 0.35 ug/l for Ceimic Corporation.

3.2.3 Field Duplicate Sample Precision

Water quality data were precise as indicated by the relative percent differences (RPDs) of field duplicate samples (Table D-II). RPDs ranged from 0% to 42%. Two of the RPDs from the second quarter exceeded the laboratory RPD limit of 40% for VOC analyses by EPA Method 8260B. None of the other RPDs exceeded the laboratory RPD limits for VOC analyses, metals, NDMA, perchlorate, and inorganics.

3.2.4 Data Representativeness, Reproducibility, and Completeness

Data representativeness, reproducibility, and completeness of 2003 results were evaluated by verifying the following:

- all locations were sampled as scheduled,
- samples were properly collected and preserved (if required),
- procedures to maintain the integrity of samples during shipment were followed,
- sample dilutions were properly conducted,
- chain-of-custody records were complete when submitted or changed appropriately, and
- laboratory QA/QC data were obtained for each sample submitted.

All locations were sampled as scheduled except at locations where wells contained insufficient water volume, where equipment problems were encountered, or where wells were inaccessible. All samples were preserved (where necessary) and shipped following acceptable procedures. Samples from wells with TCE concentrations exceeding 3,000 ug/l were segregated during storage and shipment.

A few chain-of-custody (COC) forms were not completed satisfactorily. Because the laboratories were notified of the deficiencies immediately following sample submission, all samples submitted were identified correctly and analyzed according to the monitoring schedule. Field personnel were informed of the custody form deficiencies and provided an example of a completed custody form. Some 1,4-dioxane samples were shipped to Del Mar Analytical (DMA) instead of Ceimic for analysis during the third quarter, but the samples were subsequently shipped by DMA to Ceimic so the analyses were not delayed beyond holding times.

All samples were received appropriately, identified correctly, and analyzed according to the monitoring schedule except for two radiochemistry samples that were lost due to container failure during shipment. Adequate sample volume was available to perform all radiochemistry analyses except for gross alpha/beta and gamma-emitting radioisotope analyses of samples collected from well RD-27 during the first quarter. Field personnel were informed of the sample losses and instructed to seal container lids with tape and to pack sample coolers more carefully.

3.2.5 Data Usability Summary

Analytical results for 342 groundwater samples, 80 trip blank samples, 54 field blank samples, and site specific matrix spike and matrix spike duplicate samples (MS/MSD) were reviewed to evaluate the data usability for 2003. These data were assessed in accordance with guidance from the United States Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Data Review (EPA540/R-99/008, October 1999), National Functional Guidelines for Inorganic Data Review (EPA540/7-02, July 2002) and the EPA Method specific protocol criteria, where applicable. Except for Appendix IX samples, this section pertains to the groundwater samples collected by Haley & Aldrich personnel during 2003. A data usability report of the Appendix IX samples is provided in Appendix H of this report.

The following items/criteria applicable to the QA/QC data and sample analysis data listed above were reviewed:

- Chain of Custody Procedures
- Analytical Holding Time Compliance
- Method Blank, Trip Blank, and Field Blank Sample Analyses
- Surrogate Compound Recoveries
- Laboratory Control Sample Analyses
- Matrix Spike Sample Analyses
- Sample Data Reporting Procedures
- Laboratory Data Qualification Procedures

3.2.5.1 Chain of Custody Procedures

External chain of custody documentation was completed by Haley & Aldrich personnel during the performance of sampling activities conducted at SSFL. The external COC documents were completed appropriately upon sample transfer to the primary analytical laboratory personnel (Del Mar Analytical, Ceimic Corporation, Eberline Services, Severn Trent, American Analytics, Pacific Analytical and G.G. Hatch Laboratories). A number of N-Nitrosodimethylamine (NDMA) samples were subcontracted by Del Mar Analytical to Weck Laboratories.

A review of the COC documents indicate that the sample custody remained intact through the analytical process and the reported results are representative of the samples collected at SSFL. The external COC documents are provided with each laboratory report.

No corrective action is recommended.

3.2.5.2 Holding Time Compliance

Maximum allowable holding times as prescribed by the USEPA, "Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, Update III, 1996 were applied to the evaluation of each project sample. Holding time compliance was measured from the time of sample collection to the time of sample preparation or analysis. Each project sample was initially analyzed within the maximum allowable holding time.

3.2.5.3 Blank Sample Analyses

Trip blank samples were provided by Del Mar Analytical and Ceimic Corporation and accompanied the project sample containers to and from the project site to assess possible field/container contamination. Trip blank samples were analyzed by Del Mar Analytical for VOCs only and by Ceimic Corporation for 1,4-dioxane only. Method blank samples were prepared by the analytical laboratories and analyzed concurrently with the project samples to assess possible laboratory contamination. Field blank samples were prepared at sampled wells using de-ionized water provided by Del Mar Analytical. Several target compounds were detected in associated field blank and trip blank samples and in method blank samples prepared and analyzed with the project samples. Table D-III provides a list of the target compounds detected in the project trip blanks, field blanks, and/or method blank samples which required corrective action; the associated project samples; and the recommended corrective action for the presentation of the sample analysis results. Target compounds detected in blank samples that did not require corrective action are not included in the table.

In accordance with cited USEPA guidelines, positive VOC sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for the common laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane), or 5 times (5X) the amount for other target compounds. Sample results that were qualified with a "U" flag as a result of detection in blank samples are listed in Table D-III.

Several metals were detected in method blank samples prepared and analyzed concurrently with the project samples. These results were flagged with "B" by the laboratory indicating that the concentration of the analyte within the sample was less than 10 times (10X) the amount detected in the associated method blank. For these samples, the reported analyte result was also flagged with a "U" indicating that the concentration of the analyte detected in the sample was most likely due to laboratory contamination and was not indicative of the field sample conditions.

Volatile fuel hydrocarbons were detected in method blank samples prepared and analyzed with project samples. These results were flagged by the laboratory with "B" indicating that the concentration of the analyte within the sample was less than or equal to 5 times (5X) the amount for the target compound. For these samples, the reported analyte result was flagged with a "U" indicating that the concentration of the analyte detected in the sample was most likely due to laboratory contamination and was not indicative of the field sample conditions.

3.2.5.4 Surrogate Compound Recoveries

Surrogate compounds were added to each sample prior to analysis to confirm the efficiency of the purge and trap sample preparation procedure by EPA Method 8260B and the extraction and concentration process by EPA Method 8270C. The surrogate compound recovery calculated in percentage is presented on each report for the project sample analyses. The calculated recovery of surrogate compounds for each sample fell within method specific acceptance criteria without exception. Based on the reported recovery performance of the surrogate compounds, no additional qualification of the reported results is recommended.

3.2.5.5 Laboratory Control Sample (LCS/LCSD) Analyses

Analytical precision and accuracy was evaluated based on laboratory control sample (LCS) analysis performed concurrently with the project samples. LCS analyses included the addition of a known amount of each target analyte into lab pure water using a traceable reference material independent of the instrument calibration materials. LCS samples were analyzed to confirm the precision and accuracy of the analytical system calibration.

The percent recovery calculated for each target analyte fell within laboratory specific criteria indicating that the analyses were conducted with acceptable analytical accuracy and precision with

some exceptions (Table D-IV). During the second, third, and fourth quarters, LCS percent recoveries were below the percent recovery criteria for benzidine. Reported as non-detected in the associated samples, the benzidine results were qualified with an "R" indicating that the results were rejected because the presence or absence of the analyte could not be verified.

3.2.5.6 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample Analyses

Analytical precision and accuracy was evaluated based on the Matrix Spike and Matrix Spike Duplicate analyses performed on the project samples within each sample delivery group (SDG). After the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability of the analytical systems to identify these compounds within the sample matrix. Due to limitation of sample volume, some SDGs contained reports of MS/MSD analyses performed on sample matrices from non-project related samples. However, the analysis of these samples concurrently with the project samples provides valuable information on the accuracy of the analyses performed.

The percent recovery calculated for each target analyte fell within laboratory specific criteria with one exception (Table D-IV). A fourth quarter matrix spike recovery for cis-1,2-dichloroethene fell below the laboratory acceptance criteria. Positive cis-1,2-dichloroethene results reported in samples associated with this matrix spike were qualified with a "J", indicating the results were estimated because the percent recovery was less than the lower acceptance limit in the matrix spike.

3.2.5.7 Calibration Verification Recovery

Calibration verification percent recoveries were below the upper acceptance limits in all target compounds with a few exceptions (Table D-V). Where calibration verification recoveries exceeded the upper acceptance limits, the analytes were not detected in the associated field samples and were qualified with a "UJ", indicating that the reported sample quantitation limit is approximate.

3.2.5.8 Continuing Calibration Recovery

The continuing calibration verification percent recovery was less than 50% of initial calibration in one target compound from the third quarter, N-Nitrosodimethylamine (Table D-VI). For the affected field sample, OS-28 (08/22/03), the NDMA result had been reported as detected and was qualified with an "R", indicating that the result was rejected.

3.2.5.9 Data Qualification of Samples by AMEC

Validation of OS-09 perchlorate samples was performed by AMEC Earth & Environmental (Table D-VII). For OS-09 samples where the continuing calibration verification recoveries and confirmation spike recoveries exceeded the acceptance limits, the affected samples were qualified with a "UJ", indicating that the reported sample quantitation limit is approximate.

AMEC Earth & Environmental also reviewed OS-28 NDMA sample results. For the primary sample collected on 18 September 2003, the result was rejected due to a laboratory spike deficiency (Table D-VII).

3.2.5.10 Sample Data Reporting

Sample data were reported in summary reports containing laboratory specific data qualifiers. The reporting limit values for the dilution analyses were adjusted for the level of dilution performed. When an analysis was performed without dilution, the reporting limit was based on the most recent method detection limit (MDL) study conducted by the contract laboratory. Values presented for target compounds detected at concentrations below the reporting limit but above the MDL were flagged with a "J" as estimated values. Generally, MDL studies were performed within 180 days of the project sample analyses conducted without exception. No corrective action is recommended.

3.2.5.11 Data Qualifiers

The use of the data qualifiers is intended to aid data users in their interpretation of the sample results. Laboratory specific data qualifiers were assigned by the laboratories to the reported results in accordance with each laboratory's standard operating procedures. However, the data qualifiers used by Del Mar Analytical do not correspond with standard USEPA guidance as referenced in this document. As such, the data qualifiers recommended above in accordance with the USEPA guidelines should preclude the use of the laboratory specific qualifiers so that comparability of the reported results can be achieved if future analyses are performed at other laboratory facilities.

The results presented in each report were found to be compliant with the data quality objectives (DQOs) for the project and usable, with the few exceptions noted above. Based on our review, the

data usability is compliant with a completeness goal of greater than 95%.

 $G:\label{lem:conditional} G:\label{lem:conditional} G:\label{lem:conditional} G:\label{lem:conditional} Projects\label{lem:conditional} App\ D\ text.doc$

TABLE D-I SUMMARY OF 2003 SPLIT RESULTS BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well ID	Date	Method	Constituent	Primary Sample Result (ug/l)	Split Sample Result (ug/l)	RPD
Shallow Wells						
ES-30	02/20/03	8260B	Trichtoroethene	79	63	23
			Acetone	16	3 U	
			1,1-Dichloroethene	0.40 J	Result (ug/l) 63 3 U 0.3 U 0.2 U 6.3 0.75 0.2 U 1.546 2 U 4 12 4.3 7.3 170 50 10 16 70 0.45 U etected 1.3 0.2 U etected 0.3 U 0.1 U 6 2.4 180 3.8 F 0.2 U 59 3 U 0.1 U 0.2 U 10 10 10 10 10 10 10 10 10 10 10 10 10	
			cis-1,2-Dichloroethene	0.65 J	0.2 U	
RS-08	04/14/03	8260B	cis-1,2-Dichloroethene	7.8	79 63 23 16 3U 0.40 J 0.3 U 0.65 J 0.2 U 7.8 6.3 21 0.91 J 0.75 N/ 0.75 J 0.2 U 0.8 U 1.546 0.8 U 2U 4 4 4 N/ 14 12 15 5 J 4.3 N/ 6.2 7.3 16 170 170 0 51 50 2 11 10 10 13 16 21 69 70 1 0.331 U 0.45 U None detected 1.77 1.3 N/ 0.66 J 0.2 U None detected 0.32 J 0.3 U 0.28 J,F 0.1 U 7.3 6 20 3.2 2.4 26 170 180 69 5 16 5 F 3.8 F 50 4.4 0.2 U 0.46 J, F 0.1 U 1.4 F 0.2 U None detected 5.06 +/- 3.4 11.6 +/- 4.56 N/ 9.29 +/- 3.4 13.3 +/- 4.16 N/ 185 U +/- 120 237 +/- 65 0.654 J +/- 0.075 1.15 +/- 0.338 N/ 1.61 +/- 0.27 2.93 J +/- 0.884 N/ None detected 1.68 U +/- 1.7 4.91 +/- 2.29 6.79 +/- 2.3 7.05 +/- 2.35 N/ -11.2 U +/- 110 9.54 U +/- 48.9 107 U +/- 110 9.54 U +/- 48.9 107 U +/- 110 9.54 U +/- 48.9 11 U 28 None detected	21
				0.91 J		NA
	•		•			
RS-25	03/28/03	314.0				
.,.	05/01/03	314.0		· · · · · · · · · · · · · · · · · · ·		
SH-04	04/14/03	8260B				NA
01104	04/1/1100	OECOD	• •			
			•			
			·			
			· ·			
			Trichloroethene 79			
•						
			•			
			Trichloroethene	69	70	1
Chatsworth Formation						
RD-04	05/07/03	8260SIM	1,4-Dioxane			
RD-05B	11/10/03	8260B	VOCs	None detec	ted	
RD-13	11/12/03	8260B	Toluene	1.7	1.3	NA
			Trichloroethene	0.66 J	0.2 U	
RD-16	05/13/03	8260B	VOCs	None detec	ted	
RD-21(Z2)	11/17/03	8260B	1,1-Dichloroethene	0.32 J	0.3 U	
• •			Benzene	0.28 J.F	0.1 U	
			Carbon tetrachloride		6	20
						29
						6
			•			50
						_
			•			16
BD 22/72)	02/24/03	9260B				
RD-22(Z2)	02/24/03	8260B				
				· ·		
RD-24	11/14/03	901.1	,, ,			
		900.0	• " '			
		900.0				NA
		906.0	"	185 U +/- 120		
		903.1	Radium-226 (pCi/l)	0.654 J +/- 0.075	1.15 +/- 0.338	NA
		904.0	Radium-228 (pCi/l)	1.61 +/- 0.27	2.93 J +/- 0.884	N.A
RD-27	11/14/03	901.1	Gamma (pCi/l)	None detec	ted	
		900.0	Gross Alpha (pCi/l)	1.68 U +/- 1.7	4.91 +/- 2.29	
		900.0	Gross Beta (pCi/l)	6.79 +/- 2.3	7.05 +/- 2.35	NA
		906.0		-11.2 U +/- 110	9.54 U +/- 48.9	
RD-33C	11/13/03	906.0				
RD-37	02/17/03	8260B				
RD-41C	02/20/03	8260B				
RD-48B	02/18/03	8260B				
	09/03/03	8260B				
RD-49A	05/07/03	8260SIM				
RD-49B			1,4-Dioxane			
110-130	05/06/03	8260SIM	1,4-Dioxane	2.76	2.4 U	NIA
	11/17/03	8260SIM	1,4-Dioxane	2.3	0.93 J	N/

TABLE D-I SUMMARY OF 2003 SPLIT RESULTS BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well ID	Date	Method	Constituent	Primary Sample Result (ug/l)	Split Sample Result (ug/l)	RPD
RD-49C	11/18/03	8260SIM	1,4-Dioxane	0.6 U		
RD-51B	11/06/03	314.0	Perchlorate	0.8 U		
RD-51C	02/21/03	8260B	VOCs	None detected		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/07/03	314.0	Perchlorate	0.8 U	0.35 U	
		8260B	VOCs	None detect	Result (ug/l) 0.49 U 0.35 U 0.35 U coted 0.4 U 75 1.5 72 4 1.2 0.2 U 500 3 U 24 430 68 7.9 12 0.2 U 3.53 +/- 1.94 14 +/- 3.88 -12.3 U +/- 51.5 coted 17.1 U +/- 49.0 -8.74 U +/- 46.3 coted coted 0.54 U 0.054 94 3 U 0.46 J 2.6 U 530 12 1300 0.35 U	
RD-55A	02/13/03	8260B	Chloromethane	0.37 J		
11D-00/1	02/10/00	OLOGB	cis-1,2-Dichloroethene	84		11
			trans-1,2-Dichloroethene	3		67
			Trichloroethene	83		14
				5.4	Result (ug/l) 0.49 U 0.35 U 0.35 U efected 0.4 U 75 1.5 72 4 1.2 0.2 U 500 3 U 24 430 68 7.9 12 0.2 U 3.53 +/- 1.94 14 +/- 3.88 -12.3 U +/- 51.5 efected 17.1 U +/- 49.0 -8.74 U +/- 46.3 efected 0.54 U 0.054 94 3 U 0.46 J 2.6 U 530 12 1300 0.35 U	30
	00(40(02	93600	Vinyl chloride			
	08/18/03	8260B	1,1-Dichloroethene	1.6 U		
			Chloroform	1.8 J,S		44
			cis-1,2-Dichloroethene	560		11
			Methylene chloride	14 J,L		
			trans-1,2-Dichloroethene	30		22
			Trichloroethene	490		13
			Vinyl Chloride	73		
RD-55B	08/22/03	8260B	cis-1,2-Dichloroethene	9.5		18
			Trichloroethene	12	12	0_
RD-56B	11/11/03	8260B	Trichloroethene	0.35 J	0.2 U	
RD-59A	05/15/03	900.0	Gross Alpha (pCi/l)	3.55 +/- 2.0	3.53 +/- 1.94	NA
		900.0	Gross Beta (pCi/l)	7.58 +/- 2.8	14 +/- 3.88	NA
		906.0	Tritium (pCi/l)	29.7 U +/- 100	-12.3 U +/- 51.5	
		901.1	Gamma (pCi/l)	None detect	ted	
	08/08/03	906.0	Tritium (pCi/l)	-33.7 U +/- 110	17.1 U +/- 49.0	
	11/14/03	906.0	Tritium (pCi/l)	-82.5 U +/- 110	-8.74 U +/- 46.3	
RD-61	12/03/03	8260B	VOCs	None detect	ed	
RD-68B	12/04/03	8260B	VOCs	None detect	ed	
HAR-07	04/16/03	8260SIM	1,4-Dioxane	0.07 U		
		1625M	N-Nitrosodimethylamine	0.055	0.054	2
HAR-14	04/15/03	8260SIM	1,4-Dioxane	160	····	52
WS-04A	02/19/03	8260B	Acetone	6.5 J		
	12/03/03	8260B	Toluene	0.64 J		NA
WS-05	05/05/03	8260SIM	1,4-Dioxane	2.38		<u> </u>
WS-09A	12/03/03	8260B	cis-1,2-Dichloroethene	690		26
****	12700700	02005	trans-1,2-Dichloroethene	18 J		NA
			Trichloroethene	2000		42
OS-08	12/09/03	314.0	Perchlorate	0.8 U	··	
OS-09	07/02/03	314.0	Perchlorate	0.8 U		
03-09	07/10/03					
	07/10/03	314.0	Perchlorate	0.8 U		
	07/47/00	244.0	Perchlorate	0.8 U		
	07/17/03	314.0	Perchlorate	0.8 UJ		
	A7/04/00		Perchlorate	0.8 UJ		
	07/24/03	314.0	Perchlorate	0.8 U		
			Perchlorate	0.8 U		
	07/31/03	314.0	Perchlorate	0.8 U		
			Perchlorate	0.8 U		
			Perchlorate	0.8 U		
	<u></u>		Perchlorate	0.8 U		
	08/07/03	314.0	Perchlorate	0.8 UJ		
			Perchlorate	0.8 UJ	0.35 U (*)	
	08/12/03	314.0	Perchlorate	U 8.0	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	

TABLE D4 SUMMARY OF 2003 SPLIT RESULTS BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well ID	Date	Method	Constituent	Primary Sample Result (ug/l)	Split Sample Result (ug/l)	RPD
OS-09	08/21/03	314.0	Perchlorate	0.8 U	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	
	08/28/03	314.0	Perchlorate	0.8 U	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	***
	09/04/03	314.0	Perchlorate	0.8 U	0.35 U	
			Perchlorate	U 8.0	0.35 U (*)	
	09/11/03	314.0	Perchlorate	0.8 U	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	
	09/18/03	314.0	Perchlorate	0.8 U	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	
	09/25/03	314.0	Perchlorate	0.8 U	Result (ug/l) 0.35 U (*)	
			Perchlorate	0.8 U	0.35 U (*)	
	10/02/03	314.0	Perchlorate	U 8.0	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	
	11/06/03	314.0	Perchlorate	0.8 U	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	
		8260B	VOCs	None detect	ed	
	11/13/03	314.0	Perchlorate	U 8.0	0.35 U	
			Perchlorate	0.8 U	0.35 U (*)	
	12/04/03	314.0	Perchlorate	0.8 U	0.35 U	
OS-10	12/09/03	314.0	Perchlorate	0.8 U	0.35 U	
OS-21	12/02/03	314.0	Perchlorate	U 8.0	0.35 ∪	
OS-28	08/22/03	1625M	N-Nitrosodimethylamine	0.012 R	0.002 U	
			N-Nitrosodimethylamine	0.0007 U	0.002 U (*)	
	12/16/03	1625M	N-Nitrosodimethylamine	0.0036	0.0047	NA

8260B	=	EPA method 8260B for volatile organic compounds.
8260SIM	=	EPA method 8260SIM for 1,4-dioxane.
314.0	=	EPA method 314.0 for perchlorate.
1625M	=	EPA method 1625M for n-Nitrosodimethylamine.
pCi/l	=	Pico Curies per liter.
ug/l	=	Micrograms per liter.
RPD	=	Relative percent difference. RPDs were calculated only if the detected concentration exceeded the product of five times the method detection limit times the dilution factor.
NA	=	Not applicable. An RPD calculation is not valid since at least one of the laboratories reported a detected concentration less than the product of five times the method detection limit times the dilution factor.
()	=	Not applicable. Constituent detected in only one sample.
Primary lab	=	Del Mar Analytical of Irvine, California. For 1,4-dioxane, Ceimic Corporation of Narragansett, Rhode Island served as the primary lab.
Split lab	=	American Analytics of Chatsworth, California. For 1,4-dioxane, Del Mar Analytical of Irvine, California served as the split lab.
(*)	=	Duplicate sample analyzed by the split laboratory. The split lab was Ceimic Corp. of Narragansett, Rhode Island for perchlorate for OS-09 and Weck Laboratories of City of Industry, California for NDMA for OS-28.
(**)	=	Duplicate sample analyzed by the split laboratory for Perchlorate in OS-09. The split lab was American Analytics of Chatsworth, California.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
F	=	Sampled through multi-level FLUTe ports. Footnoted results are not representative of historic groundwater samples, and may have been introduced in the FLUTe samples by compressed nitrogen gas, electrical tape and/or FLUTe components.
L	=	Laboratory contaminant.
R	=	The analyte result was rejected; presence or absence of the analyte cannot be verified.
S	=	Suspect result.
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
UJ	=	Not detected. Estimated detection limit as a result of quality control recoveries exceeding the acceptance limit range.

TABLE D-II SUMMARY OF 2003 DUPLICATE SAMPLE RESULTS BOEING SANTA SUSANA FILED LABORATORY VENTURA COUNTY, CALIFORNIA

Well ID	Date	Method	Constituent	Primary Sample Result (ug/l)	Duplicate Sample Result (ug/l)	RPD
Shallow Wells		Transca,				
RS-10	02/26/03	8260B	None Detected			
RS-13	02/21/03	8260B	Chloromethane	0.14 J	0.14 U	
RS-11	05/01/03	8260B	VOCs	None de	tected	
RS-25	03/28/03	314 0	Perchlorate	0.8 U	0.8 U	
	05/01/03	314.0	Perchlorate	Not det	ected	
SH-11	08/25/03	8260B	cis-1,2-Dichloroethene	0.59 J	0.63 J	NA
HAR-15	12/03/03	8260B	Acetone	4.5 U	4.6 J	
Chatsworth F	ormation Wells					
RD-02	08/11/03	8260SIM	1,4-Dioxane	1.52	1.64	8
	11/19/03	8260B	1,1-Dichloroethene	1.5	1.8 J	NA
			cis-1,2-Dichloroethene	440	450	2
			trans-1,2-dichloroethene	25	26	NA
			Trichloroethene	280	290	4
			Vinyl chloride	7.2	6.9	NA
RD-03	02/18/03	8260B	cis-1,2-Dichloroethene	1	1.1	NA
RD-05B	05/09/03	8260B	Trichloroethene	0.48 J	0.6 J	NA
	11/10/03	8260B	VOCs	None de	tected	
RD-13	02/07/03	8260B	Trichloroethene	1.4	1.3	7
RD-19	05/06/03	8260B	VOCs	None de	tected	
RD-21(Z2)	11/17/03	8260B	1,1-Dichloroethene	0.32 J	0.32 U	
			Benzene	0.28 J,F	0.28 U	
			Carbon tetrachloride	7.3	8.1	10
			Chloroform	3.2	3	6
			cis-1,2-Dichloroethene	170	150	13
			Toluene	5 F	4.4 F	13
			trans-1,2-dichloroethene	4.4	0.93 J	NA
			Trichloroethene	69	70	1
RD-22(Z2)	04/30/03	8260B	Acetone	8.7 J,F	16 F	NA
			Benzene	0.56 F	0.9 F	NA
			Chlorobenzene	0.36 U	0.42 J, F	
			Toluene	1.9 F	0.9 J,F	NA
RD-26	08/21/03	8260B	Chloroform	0.33 U	0.36 J,S	
			Trichloroethene	5. <u>9</u>	6	2
RD-33A(Z4)	01/30/03	8260B	Benzene	1 F	1 F	NA
			Methylene Chloride	3.0 U	12 L	
			Toluene	35 F	31 F	12
			Trichloroethene	0.66 J	0.53 J	NA
RD-34C	11/13/03	8260B	VOCs	None de	tected	
RD-40	05/08/03	8260B	Acetone	8.4 J,L	6.6 J,L	NA
RD-43B	08/13/03	8260B	VOCs	None de		
RD-44	02/04/03	8260SIM	1,4 Dioxane	0.07 U	0.07 U	
RD-48B	02/18/03	8260B	Acetone	5.7 J,L	5.3 J,L	NA
	09/03/03	8260B	VOCs	None de		
RD-49A	02/04/03	8260B	cis-1,2-Dichloroethene	2000	2200	10
			trans-1,2-Dichloroethene	46	51	10
			Methylene Chloride	20 J,L	13 J,L	NA
			Trichloroethene	4100	4400	7_
RD-49B	11/17/03	8260SIM	1,4-Dioxane	2.3	1.8 U	
RD-49C	11/18/03	8260SIM	1,4-Dioxane	0.6 U	0.74 U	
RD-52C RD-54B	05/14/03	8260B	VOCs	None de	etected	
	08/07/03	8260B	VOCs			

TABLE D-II
SUMMARY OF 2003 DUPLICATE SAMPLE RESULTS
BOEING SANTA SUSANA FILED LABORATORY
VENTURA COUNTY, CALIFORNIA

Well ID	Date	Method	Constituent	Primary Sample Result (ug/l)	Duplicate Sample Result (ug/l)	RPD
RD-55A	02/13/03	8260B	Chloromethane	0.37 J	0.19 J	NA
			cis-1,2-Dichloroethene	84	84	0
			trans-1,2-Dichloroethene	3	Sample Result (ug/l) 0.19 J	11
			Trichloroethene	83	82	1
			Vinyl chloride	5.4	5.2	4
	05/05/03	8260B	cis-1,2-Dichloroethene	27	20	30
			trans-1,2-Dichloroethene	1.4	0.94 J	NA
			Trichloroethene	25		22
			Vinyl Chloride	6.4		37
	08/18/03	8260B	Chloroform	1.8 J,S		NA
	***		cis-1,2-Dichloroethene	560		2
			Methylene chloride	14 J,L		7
			trans-1,2-Dichloroethene	30	•	Ö
			Trichloroethene	490	0.19 J 84 2.7 82 5.2 20 0.94 J 20 4.4 2 J,S 550 13 J,L 30 470 71 6.2 8.6 9.5 12 0.36 J ected 0.051 4.5 U 0.44 J 1.9 J 18 1.1 J 83 ected 4.7 J,L ected 0.64 J 700 18 J 2000 0.8 U 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ 0.35 U (*) 0.8 UJ	4
			Vinyl Chloride	73		3
RD-55B	05/06/03	8260B	cis-1,2-Dichloroethene	9.5		42
ND-00D	00/00/00	02000	Trichloroethene	13		41
	08/22/03	8260B	cis-1,2-Dichloroethene	9.5		
	00/22/00	02000	Trichloroethene	12		0
RD-56B	11/11/03	8260B	TCE	0.35 J		NA NA
RD-61	12/03/03	8260B	VOCs			INA
RD-66	05/08/03	8260B	VOCs			
HAR-07	04/16/03	1625M	N-Nitrosodimethylamine	0.055		8
HAR-17	04/16/03	8260B	Acetone	4.6 J		0
HAR-17	04/10/03	0200B				ALA
			1,1-Dichloroethane	0.49 J		NA 47
			1,1-Dichloroethene	1.6 J		17
			cis-1,2-Dichloroethene			11
			trans-1,2-Dichloroethene	1.7 J		NA
1115.00	05/45/00	00000	Trichloroethene	93 J		11
HAR-26	05/15/03	8260B	VOCs			414
WS-04A	02/19/03	8260B	Acetone	6.5 J,L		NA
	05/09/03	8260B	VOCs			414
1110 000	12/03/03	8260B	Toluene	0.64 J		NA
WS-09A	12/03/03	8260B	cis-1,2-Dichloroethene	690		1
			trans-1,2-dichloroethene	18 J		NA
	07110100		Trichloroethene	2000		0
OS-09	07/10/03	314.0	Perchlorate	0.8 U		
	07/10/03		Perchlorate	0.8 U	• •	
	07/17/03		Perchlorate	0.8 UJ		
	07/17/03		Perchlorate	0.8 UJ		
	07/24/03		Perchlorate	0.8 ป		
	07/24/03	-	Perchlorate	0.8 U	, ,	
	07/31/03		Perchlorate	0.8 U		
	07/31/03		Perchlorate	0.8 U		
	07/31/03		Perchlorate	0.8 U		
	08/07/03		Perchlorate	0.8 UJ		
	08/07/03		Perchlorate	0.8 UJ		_
	08/12/03		Perchlorate	0.8 U		
	08/12/03		Perchlorate	0.8 U		
	08/21/03		Perchlorate	0.8 U	0.8 U	
	08/21/03		Perchlorate	0.8 U	0.35 U (*)	
	08/28/03		Perchlorate	0.8 U		
	08/28/03		Perchlorate	0.8 U		

TABLE D-II SUMMARY OF 2003 DUPLICATE SAMPLE RESULTS BOEING SANTA SUSANA FILED LABORATORY VENTURA COUNTY, CALIFORNIA

				Primary	Duplicate	
Well ID	Date	Method	Constituent	Sample Result	Sample	RPD
				(ug/l)	Result (ug/l)	
OS-09	09/04/03	314.0	Perchlorate	0.8 U	0.8 U	
	09/04/03		Perchlorate	0.8 U	0.35 U (*)	
	09/11/03		Perchlorate	0.8 U	0.8 U	
	09/11/03		Perchlorate	0.8 U	0.35 U (*)	
	09/18/03		Perchlorate	U 8,0	0.8 U	
	09/18/03		Perchlorate	0.8 U	0.35 U (*)	
	09/25/03		Perchlorate	0.8 U	0.8 U	
	09/25/03		Perchlorate	0.8 U	0.35 U (*)	
	10/02/03		Perchlorate	0.8 U	0.8 U	
	10/02/03		Perchlorate	0.8 U	0.35 U (*)	
	11/06/03		Perchlorate	0.8 U	0.8 U	
	11/06/03		Perchlorate	0.8 U	0.35 U (*)	
	11/13/03		Perchlorate	0.8 U	0.8 U	
	11/13/03		Perchlorate	0.8 U	0.35 U (*)	
	11/06/03	8260B	VOCs	None de	etected	
OS-26	02/04/03	8260B	None Detected			
OS-28	08/22/03	8260B	VOCs	None de	etected	
		8260SIM	1,4-Dioxane	0.07 U	0.07 U	
		6010B	Calcium (mg/l)	110	110	0
		6010B	Magnesium (mg/l)	58	58	0
		6010B	Potassium (mg/l)	4.6	4.9	6 2 3
		6010B	Sodium (mg/l)	66	65	2
		SM2320B	Bicarbonate (mg/l)	415	402	3
		300.0	Chloride (mg/l)	38	38	0
		300.0	Fluoride (mg/l)	0.53	0.5	6
		300.0	Sulfate (mg/l)	250	250	0
		160.1	Total Dissolved Solids (mg/l)	770	790	3
		150.1	pH (pH units)	7.29	7.26	NA
		120.1	Specific Conductance (umhos/cm)	1200	1200	0
		SM2320B/300.0		None de		
	09/18/03	1625M	N-Nitrosodimethylamine	0.0057 R	0.006 J	
		1625M	N-Nitrosodimethylamine	0.0057 R	0.0028 U	
	12/16/03	1625M	N-Nitrosodimethylamine	0.002	0.0036	NA

8260B 8260SIM 300.0 314.0 1625M 6010B SM2320B 120.1 150.1 160.1		EPA method 8260B for volatile organic compounds. EPA method 8260SIM for 1,4-dioxane. EPA method 300.0 for chloride, fluoride, sulfate, and nitrate. EPA method 314.0 for perchlorate. EPA method 1625M for n-Nitrosodimethylamine. EPA method 6010B for metals. EPA method SM2320B for bicarbonate and carbonate. EPA method 120.1 for specific conductance. EPA method 150.1 for pH. EPA method 160.1 for total dissolved solids.
mg/l	=	Milligrams per liter.
ug/l	=	Micrograms per liter.
umhos/cm	=	Micromhos per centimeter.
RPD	=	Relative percent difference. RPDs were calculated only if the detected concentration exceeded the product of five times the method detection limit times the dilution factor.
NA ·	=	Not applicable. An RPD calculation is not valid since at least one of the laboratories reported a detected concentration less than the product of five times the method detection limit times the dilution factor.
()	=	Not applicable. Constituent not detected in one or both samples.
J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
F	=	Sampled through multi-level FLUTe ports. Footnoted results are not representative of historic groundwater samples, and may have been introduced in the FLUTe samples by compressed nitrogen gas, electrical tape and/or FLUTe components.
L	=	Laboratory contaminant.
R	=	Rejected.
S	=	Suspect result.
U	=	Not detected; numerical value represents the Method Detection Limit for that compound.
ъ.		t the Politic Activity of the American

Primary and duplicate samples were analyzed by Del Mar Analytical unless otherwise noted.

- (*) = Duplicate samples analyzed by the split laboratory.

 The split lab used was Ceimic Corp. of Narrangansett, Rhode Island for perchlorate for OS-09 and Weck Laboratories of City of Industry, California for NDMA for OS-28.
- (**) = Duplicate samples analyzed by the split laboratory for perchlorate in OS-09. The split lab used was American Analytics of Chatsworth, California.

TABLE D-III
SUMMARY OF 2003 DATA QUALIFICATION OF NON-APPENDIX IX SAMPLES DUE TO BLANK SAMPLE CONTAMINATION
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Blank Sample Identification	Blank Sample Type	Date Sampled	Target Compound(s) Detected in the Blank	Concentration (ug/l)	Flag Associated Field Sample results with a "U" if less than or equal to this value (ug/l)	Affected Field Samples
Volatile Organic Compou	nds					
OS-26_020403_05	Trip blank	02/04/03	Methylene chloride	0.61	6.1	OS-26 (dup), RD-58C_020303_04
RD-03_021803_05	Trip blank	02/18/03	Methylene chloride	0.5	5	RD-48C, RD-67_021903_04
RD-05C_013103_04	Field blank	01/31/03	Methylene chloride	5.9	59	RD-05C
RD-05C_013103_05	Trip blank	01/31/03	Methylene chloride	4	40	OS-08, RD-05C_013103_04, RD-05A, RD-05B, RD-58B
RD-33A(Z4)_013003_05	Trip blank	01/30/03	Methylene chloride	0.94	9.4	RD-33A(Z4), OS-16
RD-36B_021203_05	Trip blank	02/12/03	Acetone	6.1	61	HAR-27, RD-36C, RD-55A, RD-55A (dup)
RD-37_021703_04	Field blank	02/17/03	Acetone	6.3	63	RD-37_021703_01
RD-37_021703_04	Field blank	02/17/03	Chloromethane	0.43	2.2	RD-37_021703_01
RD-43B_021103_05	Trip blank	02/11/03	Methylene chloride	0.5	5	RD-43B_021103_04, RD-52B_021103_04
RD-48B_021803_05	Trip blank	02/18/03	Methylene chloride	0.81	8.1	RD-37_021703_04, RD-03_021803_04
RD-67_021903_04	Field blank	02/19/03	Acetone	15	150	RD-67
3E10008-BLK1	Method Blank	2nd Qtr	1,4-Dioxane	1.29 J	5.45	WS-05 (split)
RD-19_050603_04	Field blank	05/06/03	Acetone	6.4 J	64	RD-19 (primary & dup)
RD-57(Z8)_043003_04	Field blank	04/30/03	Acetone	7.4 J	74	RD-57(Z8)
RD-62_050203_04	Field blank	05/02/03	Acetone	6.9 J	69	RD-62
3E11006-BLK1	Method Blank	2nd Qtr	1,4-Dioxane	1.59 J	7.95	RD-20(A)_050503_06 (spike)
3E15018-BLK1	Method Blank	2nd Qtr	Methylene Chloride	0,330 J	3.3	RD-49B_050603_05 (trip blank)
3E14016-BLK1	Method Blank	2nd Qtr	1,4-Dioxane	0.620 J	3.1	RD-04 (split), RD-49A (split), RD-49B (split)
RD-02_050503_05	Trip blank	05/05/03	1,4-Dioxane	0.086 J	0.43	RD-04, RD-44
V170508-B1	Method Blank	2nd Qtr	1,4-Dioxane	0.13 J	0.65	RD-04, RD-44, RD-02_050503_05 (trip blank)
V170825-B1	Method blank	3rd Qtr	1,4-Dioxane	0.18	0.9	RD-49C, RD-04, WS-06, WS-13
3H11016-BLK1	Method blank	3rd Qtr	Methylene chloride	0.480 J	4.8	RD-68A (field blank)
3H14024-BLK1	Method blank	3rd Qtr	Methylene chloride	0.8 B,J	8	RD-56B, RD-44 (field blank), RD-52C (field blank)
RD-52C_081203_04	Field blank	08/12/03	Acetone	5.3 J	53	RD-52C
RD-52C_081203_05	Trip blank	08/12/03	Acetone	12	120	RD-52C
VBLKQR	Method blank	3rd Qtr	1,4-Dioxane	0,180 J	0.9	WS-12
3H14024-BLK1	Method blank	3rd Qtr	Methylene chloride	0.8 J ~	8	WS-12, WS-12 (trip blank)
WS-12_081303_05	Trip blank	08/13/03	Methylene chloride	0.59 J	5.9	WS-12
HAR-22_082103_05	Trip blank	08/21/03	Acetone	9,1	91	HAR-22, RD-26, RD-26 (dup), RD-48C
RD-55B_082203_04	Field blank	08/22/03	Methylene chloride	0.69	6.9	RD-55B, RD-55B (dup)
RD-55B_082203_05	Trip blank	08/22/03	Methylene chloride	1.2	12	OS-28 & OS-28 (dup) (08/22/03), RD-55B, RD-55B (dup)
3103005-BLK1	Method blank	3rd Qtr	Acetone	6,48	64.8	ES-26
RD-60_082603_05	Trip blank	08/26/03	Acetone	82	82	HAR-11
3103005-BLK1	Method blank	3rd Qtr	Acetone	6.48	64.8	HAR-11, RD-60, RD-60 (trip blank)
RD-33A(Z2)_082703_04	Field blank	08/27/03	Toluene	1.8	9	RD-33A(Z2)
RD-07(Z13)_082803_05	Trip blank	08/28/03	Acetone	14	140	RD-33A(Z2), RD-57(Z8)
RD-48C_112103_05	Trip blank	11/21/03	Acetone	6.8 J	68	RD-62
RD-56B_111103_04	Field blank	11/11/03	Methylene chloride	0.86 J	86	RD-56B, RD-56B (dup)
RD-22(Z2)_111703_05	Trip blank	11/17/03	Carbon disulfide	0.49 J	2.45	RD-21(Z2) (primary)
RD-22(Z2)_111703_05	Trip blank	11/17/03	Trichloroethene	1.0	5.0	RD-22(Z2), RD-22(Z2) (field blank)
RD-18_111903_05	Trip blank	11/19/03	Methylene chloride	2.5 J	25	RD-18 (field blank)
VBLKQI	Method blank	4th Qtr	1,4-Dioxane	0.36 J	1.8	RD-02, WS-06, RD-49A, RD-49B (dup), RD-49C, RD-49C (d

TABLE D-III SUMMARY OF 2003 DATA QUALIFICATION OF NON-APPENDIX IX SAMPLES DUE TO BLANK SAMPLE CONTAMINATION **BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA**

Page 2 of 2

Blank Sample Identification	Blank Sample Type	Date Sampled	Target Compound(s) Detected in the Blank	Concentration (ug/l)	Flag Associated Field Sample results with a "U" if less than or equal to this value (ug/l)	
Trace Metals						
3B05044-BLK1	Method blank	1st Qtr	Antimony	0.047	0.47	RD-59B
3B05044-BLK1	Method blank	1st Qtr	Chromium	0.245	2.45	RD-59A
3B11070-BLK1	Method blank	1st Qtr	Chromium	0.396	3.96	RD-34B, RD-34C
3B12071-BLK1	Method blank	1st Qtr	Vanadium	0.886	8.86	RD-33B, RD-33C
3B24067-BLK1	Method blank	1st Qtr	tron	4.34	43.4	RD-54A(Z2)
3C04048-BLK1	Method blank	1st Qtr	Chromium	0.745	7.45	RD-21(Z2), RD-22(Z2)
3C06075-BLK1	Method blank	1st Qtr	Antimony	0.092	0.92	RD-15, RD-23(Z1), RD-54B, RD-54C
3C06075-BLK1	Method blank	1st Qtr	Chromium	0.35	3.5	RD-15, RD-23(Z1), RD-54B, RD-54C
3C06075-BLK1	Method blank	1st Qtr	1ron	5.05	50.5	RD-23(Z1)
3E07049-BLK1	Method Blank	2nd Qtr	Arsenic	0.309 J	3.09	RS-18, RD-57(Z8)
3112082-BLK1	Method blank	3rd Qtr	Potassium (mg/l)	0.198	1.98	OS-09 (9/11/03)
H22074-BLK1	Method blank	3rd Qtr	Iron (total)	0.0218	0.218	OS-09 (8/21/03)
H12064-BLK1	Method blank	3rd Qtr	Antimony	0.548 J	5.48	RD-54B, RD-59A, RD-59B, RD-59C
3H12064-BLK1	Method blank	3rd Qtr	Chromium	0.999 J	9.99	RD-54B, RD-59A, RD-59B, RD-59C
3H27042-BLK1	Method blank	3rd Qtr	Chromium	0.283	2.83	OS-28 (08/22/03)
3H27042-BLK1	Method blank	3rd Qtr	Copper	1.01	10.1	OS-28 (08/22/03)
3108050-BLK1	Method blank	3rd Qtr	Chromium	0.266	2,66	RD-21(Z2)
8102088-BLK1	Method blank	3rd Qtr	Chromium	0.374	3.74	RD-23(Z1), RD-54C, RD-54A
8102088-BLK1	Method blank	3rd Qtr	Iron	3.94	39.4	RD-23(Z1), RD-54A
K21100-BLK1	Method blank	4th Qtr	Iron (total)	0.0126 J	0.126	RD-59A
3L24039-BLK1	Method Blank	4th Qtr	Iron (total)	0.0132 J	0.132	OS-09 (12/23/03)
/olatile Fuel Hydrocar	bons					
B14006-BLK1	Method blank	1st Qtr	Volatile Fuel Hydrocarbons	17.2	86	RD-36B
B18002-BLK1	Method blank	1st Qtr	Volatile Fuel Hydrocarbons	9,68	48.4	RD-36C, RD-38B
B20008-BLK1	Method blank	1st Qtr	Volatile Fuel Hydrocarbons	19.4	97	RD-37, RD-38A
3B23001-BLK1	Method blank	1st Qtr	Volatile Fuel Hydrocarbons	21.7	108.5	RD-32
BB26003-BLK1	Method blank	1st Qtr	Volatile Fuel Hydrocarbons	10.9	54.5	RS-32
BB28001-BLK1	Method blank	1st Qtr	Volatile Fuel Hydrocarbons	15.8	79	HAR-11
BE05001-BLK1	Method Blank	3rd Qtr	Volatile Fuel Hydrocarbons(C6-C12)	14.3	71.5	RS-31
Semi-Volatile Organic	Compounds					
3H22065-BLK1	Method blank	3rd Qtr	N-Nitrosodimethylamine	0.0014 J	0.007	RD-04, WS-06, WS-13
N309595-BLK1	Method blank	3rd Qtr	N-Nitrosodimethylamine	0.000816	0.00408	OS-28 (09/18/03)
General Minerals						
C3K2107-BLK1	Method blank	11/20/03	Formaldehyde	30.1 J	150.5	RD-04

EXPLANATION:

mg/l = Milligrams per liter. ug/l = Micrograms per liter. Primary = Primary sample. Dup = Field duplicate.

Z = FLUTe sample port number.

Split = Sample split.

U = Not detected; numerical value represents the Method Detection Limit for that compound.

J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).

LCS/LCSD,

Page 1 of 1

Qualification: If % Recovery is less than the lower acceptance limit, the associated target analyte is qualified "J" for positive results

SUMMARY OF 2003 DATA QUALIFICATION OF NON-APPENDIX IX SAMPLES DUE TO LCS/LCSD, MS/MSD RECOVERY EXCEEDANCE **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Cis-1,2-Dichloroethene

LCS/LCSD, MS/MSD Sample Identification	Sample Type	Date sampled	Target Compound(s) Outside of Recovery Limits	% Recovery Criteria	% Recovery	Affected Field Samples	and "R" for non-detects. If % Recovery is greater than the upper acceptance limit, the associated target analyte is qualified "J" for positive results and not qualified for non-detects.
Semi-Volatile Organ	ic Compou	ınds					
3E02041-BS1	LCS	04/30/03	Benzidine	15 - 180	<15	RD-10(Comp)	R
3H17026-BS1	LCS	08/11/03	Benzidine	15 - 180	<15	RD-44, RD-49A, RD-49B, RD-02	R
3H21079-BS1	LCS	8/20/03, 8/19/03	Benzidine	15 - 180	<15	RD-04, WS-06	R
3H25065-BS1	LCS	8/20/03, 8/22/03	Benzidine	15 - 180	6	WS-13, OS-28	R
3K17036-BS1	LCS	11/17/03	Benzidine	15 - 180	<15	RD-49B	R
Volatile Organic Cor	mpounds						

59

RD-49A, RD-49C

60 - 113

EXPLANATION:

3K26007-MS1

LCS = Laboratory control standard.

LCSD = Laboratory control standard duplicate.

MS

MS = Matrix spike.

MSD = Matrix spike duplicate.

11/18/03

Comp = Composite sample. The RD-10 sample was composited at the laboratory from FLUTe ports 3, 6, and 9.

J = Estimated viaue. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the method detection limit.

R = The analyte result was rejected; presence or absence of the analyte cannot be verified.

Target Compound(s)	Batch	Date Sampled	Calibration Verification Recovery Above Method Control Limit?	Affected Field Samples	If calibration verification % recovery is greater than the upper acceptance limit, qualify associated target analyte positive results as "J" and non-detects as "UJ".
Semi-Volatile Organic Compounds					
Diethyl phthalate	3E02041	04/30/03	Yes	RD-10(Comp)	UJ
	3E07066	05/06/03	Yes	RD-49B	UJ
	3E07066	05/06/03	Yes	RD-44	UJ
	3E07066	05/05/03	Yes	RD-02	UJ
	3E07066	05/05/03	Yes	WS-05	UJ
Bis(2-chloroisopropyl)ether	3K20044	11/19/03	Yes	RD-02	UJ
	3K24056	11/20/03	Yes	RD-04	UJ
	3K20044	11/18/03	Yes	RD-49A	UJ
	3K20044	11/18/03	Yes	RD-49C	UJ
	3K20044	11/19/03	Yes	WS-06	UJ
Volatile Organic Compounds					
Bromoform	3K26007	11/18/03	Yes	RD-49A	UJ
	3K26007	11/18/03	Yes	RD-49C	UJ
Trichlorotrifluoroethane (Freon 113)	3K26007	11/18/03	Yes	RD-49A	UJ
·	3K26007	11/18/03	Yes	RD-49C	UJ

EXPLANATION:

UJ = Not detected. Estimated detection limit as a result of quality control recoveries. exceeding the acceptance limit range.

Comp = Composite sample. The RD-10 sample was composited at the laboratory from FLUTe ports 3, 6, and 9.

TABLE D-VI Page 1 of 1

SUMMARY OF 2003 DATA QUALIFICATION OF NON-APPENDIX IX SAMPLES DUE TO CONTINUING CALIBRATION VERIFICATION EXCEEDANCE BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

Target Compound(s)	Batch	CCV Below Method Control Limit of 50%?	Affected Field Samples	If Continuous Calibration Verification is less than 50 % of Initial Instrument Calibration (ICAL), then the result is qualified "R"
Semi-Volatile Organic Compounds				
N-Nitrosodimethylamine	3H26087	Yes	OS-28 (08/22/03)	R

EXPLANATION:

R = Rejected

CCV = Continuing Calibration Verification

Sample	Sample Date Sample Type		Analyte	Data Validation Issues	Qualified Perchlorate Result (ug/l)	Lab
OS-09	07/17/03	Primary	Perchlorate	CCV exceeded limits	0.8 UJ	DMA
	07/17/03	Duplicate	Perchlorate	CCV exceeded limits	0.8 UJ	DMA
	07/17/03	Field blank	Perchlorate	CCV exceeded limits	0.8 UJ	DMA
OS-09_071703_06M1	07/17/03	5 ug/l Matrix spike	Perchlorate	CCV exceeded limits	4.8 J	DMA
OS-09_071703_06MD1	07/17/03	5 ug/l Matrix spike duplicate	Perchlorate	CCV exceeded limits	4.3 J	DMA
OS-09_071703_06N1	07/17/03	Reagent blank	Perchlorate	CCV exceeded limits	0.8 UJ	DMA
OS-09	07/24/03	Duplicate	Perchlorate	CCV exceeded limits	0.8 UJ	DMA
	07/31/03	Split	Perchlorate	CCV exceeded limits	2 UJ	Ceimic
	07/31/03	Split Sample Dup	Perchlorate	CCV exceeded limits	2 UJ	AMA
OS-28	08/07/03	Primary	Perchlorate	Recoveries for confirmation spikes exceeded limits	0.8 UJ	DMA
	08/07/03	Duplicate	Perchlorate	Recoveries for confirmation spikes exceeded limits	0.8 UJ	DMA
	09/18/03	Primary	N-Nitrosodimethylamine	Lab spike deficiency	0.0057 R	Weck

EXPLANATION:

AMEC = AMEC Earth & Environmental of Lakewood, Colorado.

CCV = Continuing Calibration Verification.

J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the method detection limit.

R = Result rejected.

UJ = Not detected. Estimated detection limit as a result of calibration verification recovery or confirmation spike recoveries were below the acceptance limits.

AMA = American Analytics of Chatsworth, California.

DMA = Del Mar Analytical of Irvine, California.

Ceimic = Ceimic Corporation of Narrangansett, Rhode Island.

Weck = Weck Laboratories of City of Industry, California.

Primary = Primary sample.

Duplicate = Sample duplicate.

Split = Sample split.

Split Sample Dup = Duplicate sample analyzed by the split laboratory.

ug/I = Micrograms per liter.

APPENDIX E

Results of Radiological Analyses

APPENDIX E RESULTS OF RADIOLOGICAL ANALYSES

TABLE OF CONTENTS

TABLE NO.TITLE

E-I	RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
E-II	RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
E-III	RESULTS OF ANALYSES FOR MAN-MADE, GAMMA- EMITTING RADIONUCLIDES IN GROUNDWATER SAMPLES
E-IV	RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES

i

APPENDIX E

RESULTS OF RADIOLOGICAL ANALYSES

This appendix contains a compilation of all radiochemistry data obtained during the quarterly groundwater monitoring program and new well construction activities. Table E-I presents the results for gross alpha and gross beta analyses. Table E-II presents the results for tritium and Table E-III presents the results for man-made gamma-emitting radionuclides. Table E-IV presents the results for other specific isotopes, including uranium, thorium, radium, lead, plutonium, polonium, and technetium.

The results are generally presented as the activity detected within an overall error range (±). Any activity detected is reported by the laboratory. Analytical results that are less than the instrument background count are shown as negative values. Some results may also be presented as less than (<) the detection limit.

The text describes a result as non-detectable if it is less than the minimum detectable activity (MDA), less than the overall laboratory error, or the sample count is less than the instrument background count. In each of these cases, radioactivity is not considered to be present at detectable concentrations. In Table E-III, the gamma results are presented as non-detectable if the reported activity was less than the MDA. Only man-made radionuclides (e.g., cobalt-57, cobalt-60, cesium-134 and cesium-137) are specifically included in Table E-III. Naturally occurring radionuclides such as bismuth-214, lead-214, thallium-208 and lead-212 have exhibited activities above their respective MDAs occasionally. These uranium and thorium daughter products are discussed in the quarterly reports, but are not considered to be indicative of man-made radioactivity. As such, they are not included in Table E-III.

Date Gross Alpha **Gross Beta** Sample Well Identification Sample Type Sample Comment Laboratory Sampled (pCi/l) (pCi/l) Handling Shallow Wells Primary 12/12/91 5.73 ± 4.46 8.37 ± 3.08 ECL French-drain Filtered ΙT SH-04 Primary 06/03/89 4.8 ± 6.9 6.8 ± 3.2 Unfiltered BC SH-04 07/22/89 4.0 ± 1.0 19.2 ± 2.4 Unfiltered, Decanted BC Primary SH-04 Primary 09/09/89 8.0 ± 4.4 10.0 ± 1.3 Unfiltered BC SH-04 Primary 09/09/89 22.0 ± 5.4 13.0 ± 1.3 Filtered BC SH-04 03/18/93 7 ± 6 Filtered CEP Primary <3 Gross alpha; high statistics due to large amount of solids. SH-04 8 ± 4 Primary 06/09/93 5 ± 4 Filtered Gross alpha: high statistics due to large amount of solids. CEP CEP SH-04 Primary 08/09/93 5 ± 4 <3 Filtered Gross alpha: high statistics due to large amount of solids. SH-04 Primary 11/04/93 1.1 ± 5.2 2.9 ± 6.5 Filtered LAS 4.5 ± 6.7 Filtered SH-04 05/06/94 3.5 ± 5.7 Primary LAS SH-07 06/03/89 185 ± 18.3 21.2 ± 3.1 Unfiltered BC Primary SH-07 07/19/89 30.5 ± 3.3 21.2 ± 0.9 Unfiltered, Decanted BC Primary SH-07 Primary 07/19/89 8.4 ± 2.0 3.8 ± 0.6 Filtered BC BC SH-07 09/09/89 5.9 ± 2.1 11.0 ± 0.5 Unfiltered Primary 3.2 ± 0.4 Filtered вС SH-07 09/09/89 5.4 ± 1.4 Primary SH-11 06/03/89 281 ± 20.9 11.8 ± 3.6 Unfiltered BC Primary SH-11 07/19/89 8.9 ± 2.5 8.1 ± 0.6 Unfiltered, Decanted BC Primary BC SH-11 Primary 07/19/89 4.7 ± 1.8 5.6 ± 0.6 Filtered SH-11 09/09/89 5.9 ± 2.1 11.0 ± 0.5 Unfiltered BC Primary SH-11 Primary 09/09/89 1.2 ± 1.7 5.6 ± 0.6 Filtered BC UST 5.23 ± 2.97 SH-11 Primary 10/17/89 2.43 ± 1.68 Filtered SH-11 Primary 10/31/89 10.4 ± 6.06 6.96 ± 2.82 Unfiltered UST 10/31/89 9.57 ± 5.05 2.95 ± 2.45 Filtered UST SH-11 Primary **RS-05** 10/19/89 7.79 ± 3.55 3.17 ± 1.85 Filtered UST Primary **RS-05** Primary 10/31/89 37.2 ± 11.1 8.32 ± 3.01 Unfiltered UST **RS-05** Primary 10/31/89 6.15 ± 4.71 5.30 ± 2.80 Filtered UST 16.3 ± 4.3 BC RS-06 06/03/89 12.6 ± 0.8 Unfiltered Primary 07/23/89 5.1 ± 2.1 14.7 ± 0.3 Unfiltered, Decanted BC **RS-06** Primary 2.1 ± 0.9 RS-07 Primary 07/22/89 7.7 ± 1.1 Unfiltered BC **RS-07** 09/11/89 2.0 ± 3.4 8.5 ± 1.2 Unfiltered BC Primary 5.5 ± 0.8 **RS-07** Primary 09/11/89 1.2 ± 2.1 Filtered BC 06/04/89 12.4 ± 6.1 14.5 ± 1.1 Unfiltered BC **RS-08** Primary RS-08 07/22/89 15.5 ± 1.5 17.1 ± 1.0 Unfiltered, Decanted BC Primary **RS-08** 03/18/93 14 ± 9 5 ± 4 Filtered CEP **Primary** CEP **RS-08** 06/08/93 16 ± 7 13 ± 4 . Filtered Primary Filtered CEP RS-08 Primary 08/09/93 14 ± 5 7 ± 3 11/08/93 24 ± 10 9.1 ± 6.7 Filtered LAS **RS-08** Primary **RS-08** 11/08/93 19 ± 10 15.1 ± 9.9 Filtered Gross alpha and beta dissolved. LAS Primary 0.962 ± 2.22 **RS-11** 12/08/89 1.38 ± 1.63 Filtered UST Primary **RS-11** 12/06/90 1.93 ± 2.19 -1.05 ± 1.96 Filtered IT **Primary** 0.981 ± 2.19 Filtered IT **RS-11** 03/04/91 2.54 ± 1.84 Primary **RS-11** 12/07/91 3.77 ± 2.63 1.44 ± 1.29 Filtered IT Primary 03/05/92 <3 Filtered CEP **RS-11** Primary <2

See last page of Table E-I for footnotes and explanations.

Haley & Aldrich, Inc.

G:\Projects\26472 - ROC\Reports\M-442 Annual\App E\M442.E-1.x\ldots

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Sample Comment	Laboratory
RS-11	Primary	03/07/93	<2	6 ± 4	Filtered	CEP
RS-11	Primary	02/22/94	0 ± 2.2	2.3 ± 2.4	Filtered	LAS
RS-11	Primary	02/15/95	19.4 ± 5.6	16.6 ± 3.0	Filtered	LAS
RS-11	Reanalysis of Primary	02/15/95	0.4 ± 2.0	3.1 ± 1.7	Filtered	LAS
RS-11	Primary	02/07/96	9.4 ± 4.4	5.4 ± 2.4	Filtered	LAS
RS-11	Primary	02/04/97	6.1 ± 3.9	3.1 ± 2.5	Filtered	LAS
RS-11	Primary	02/04/98	2.60 ± 2.4	3.44 ± 1.4	Filtered	TN
RS-11	Primary	02/06/99	1.58 ± 1.3	2.36 ± 1.5	Filtered	TN
RS-11	Primary	02/15/00	0.381 ± 1.6	0.572 ± 4.4	Filtered	TR
RS-11	Primary	02/06/01	0.782 ± 1.6	5.10 ± 1.7	Filtered	ES
RS-11	Primary	05/01/03	1.65U ± 1.8	0.692U ± 2.3	Filtered	ES
RS-14	Primary	06/04/89	-1.0 ± 2.7	7.6 ± 0.5	Unfiltered	BC
RS-14	Primary	07/22/89	5.2 ± 2.2	5.8 ± 0.7	Unfiltered, Decanted	BC
RS-14	Primary	09/10/89	9.0 ± 1.7	8.1 ± 0.5	Unfiltered	ВС
RS-14	Duplicate	09/10/89	7.7 ± 1.8	6.9 ± 0.4	Unfiltered .	BC
RS-14	Primary	09/10/89	4.5 ± 1.6	4.4 ± 0.4	Filtered	BC
RS-14	Duplicate	09/10/89	5.2 ± 1.6	5.3 ± 0.4	Filtered	ВС
RS-15	Primary	12/08/89	4.12 ± 2.33	3.33 ± 2.51	Filtered	UST
RS-15	Primary	12/07/91	8.02 ± 4.00	4.55 ± 2.12	Filtered	lΤ
RS-15	Primary	12/06/92	4 ± 3	8 ± 3	Filtered	CEP
RS-16	Primary	03/09/92	3 ± 2	<3	Filtered	CEP
RS-16	Primary	02/09/95	3.1 ± 4.4	1.4 ± 4.0	Filtered	LAS
RS-16	Primary	02/04/97	10.3 ± 6.3	2.9 ± 4.1	Filtered	LAS
RS-16	Primary	05/27/98	5.34 ± 2.7	3.00 ± 1.8	Filtered	TN _
RS-17	Primary	12/08/89	3.56 ± 2.61	1.10 ± 2.18	Filtered	ŲST
RS-17	Primary	12/10/90	8.36 ± 4.63	2.35 ± 2.47	Filtered	IT
RS-17	Primary	12/07/91	9.58 ± 5.41	1.54 ± 2.36	Filtered	ΙT
RS-17	Primary	12/05/92	3 ± 2	4 ± 3	Filtered	CEP
RS-18	Primary	03/03/89	20 ± 5	11 ± 3	Unfiltered .	FGL
RS-18	Primary	06/04/89	27.6 ± 8.4	33.0 ± 1.5	Unfiltered	BC
RS-18	Primary	03/27/90	9.92 ± 4.84	8.48 ± 2.98	Filtered	UST
RS-18	Primary	03/10/91	16.4 ± 5.86	7.84 ± 2.81	Filtered	ΙT
RS-18	Duplicate	03/10/91	11.0 ± 5.73	6.06 ± 2.97	Filtered	łΤ
RS-18	Primary	06/04/91	22.0 ± 7.92	9.36 ± 5.13	Filtered	ΙT
RS-18	Duplicate	06/04/91	18.4 ± 7.50	13.1 ± 5.61	Filtered	IT
RS-18	Primary	03/04/92	3 ± 2	<3	Filtered	CEP
RS-18	Primary	06/04/92	14 ± 6	11 ± 3	Filtered	CEP
RS-18	Split	09/10/92	55 ± 20	40 ± 12	Filtered	BL
RS-18	Reanalysis of Primary	09/10/92	78 ± 24	50 ± 10	Filtered	BL
RS-18	Primary	09/10/92	21 ± 5	32 ± 5	Filtered	CEP
RS-18	Reanalysis of Primary	09/10/92	21 ± 6		Filtered	CEP
RS-18	Primary	12/15/92	13 ± 6	8 ± 4	Filtered	CEP
RS-18	Split	12/15/92	24 ± 14	19 ± 9	Filtered	В
RS-18	Primary	06/23/93	6 ± 5	14 ± 8	Filtered Gross alpha; high statistics due to large amount of solids.	CEP

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RS-18	Primary	11/06/93	23.1 ± 9.3	14.1 ± 6.1	Filtered		LAS
RS-18	Primary	05/04/94	34 ± 12	5.1 ± 6.7	Filtered		LAS
RS-18	Primary	02/17/95	39 ± 10	31.4 ± 5.8	Filtered		LAS
RS-18	Reanalysis of Primary	02/17/95	14.2 ± 5.8	9.1 ± 3.4	Filtered		LAS
RS-18	Primary	08/10/95	13.3 ± 6.9	9.1 ± 5.5	Filtered		LAS
RS-18	Primary	05/16/96	26 ± 11	11.1 ± 7.4	Filtered		LAS
RS-18	Primary	02/03/97	20.6 ± 9.8	6.8 ± 6.2	Filtered		LAS
RS-18	Primary	02/05/98	15.2 ± 4.8	5.86 ± 1.8	Filtered		TN
RS-18	Primary	08/05/98	45.8 ± 8.1	13.7 ± 10	Filtered		TN
RS-18	Primary	05/12/99	26.9 ± 6.2	13.6 ± 2.1	Filtered		TN
RS-18	Primary	05/09/00	21.0 ± 6.3	11.6 ± 3.1	Filtered		TR
RS-18	Primary	02/19/01	4.38 ± 3.5	7.08 ± 1.7	Filtered		ES
RS-18	Primary	05/02/03	29.1 ± 9.1	17.8 ± 6.0	Filtered		ES
RS-22	Primary	06/07/89	245 ± 29.4	227 ± 12.4	Unfiltered		BC
RS-22	Primary	07/22/89	1.9 ± 1.5	2.2 ± 0.3	Unfiltered, Decanted		BC
RS-25	Primary	02/25/03	2.18 ± 1.3	8.98 ± 2.2	Filtered		ES
RS-27	Primary	03/04/92	<2	4 ± 3	Filtered		CEP
RS-27	Primary	06/04/92	-0.3 ± 1.5	2 ± 3	Filtered		CEP
RS-27	Primary	05/17/95	1.1 ± 1.2	3.7 ± 1.4	Filtered		LAS
RS-27	Primary	05/07/98	-0.216 ± 0.80	1.03 ± 1.2	Filtered		TN
RS-28	Primary	09/27/89	42.3 ± 7.5	49.5 ± 1.3	Unfiltered		BC
RS-28	Primary	09/27/89	7.5 ± 2.3	10.0 ± 0.8	Filtered		BC
RS-28	Primary	10/19/89	7.4 ± 3.2	11.7 ± 0.9	Filtered		BC
RS-28	Split	10/19/89	7.07 ± 3.03	3.53 ± 1.79	Filtered		UST
RS-28	Primary	11/01/89	7.38 ± 3.45	7.03 ± 2.94	Unfiltered		UST
RS-28	Primary	11/01/89	4.62 ± 2.59	4.76 ± 2.59	Filtered		UST
RS-28	Primary	03/27/90	5.68 ± 3.50	5.39 ± 2.60	Filtered		UST
RS-28	Primary	06/29/90	9.39 ± 4.83	5.24 ± 2.80	Filtered		UST
RS-28	Primary	09/15/90	9.85 ± 3.90	5.77 ± 2.72	Filtered		UST
RS-28	Duplicate	09/15/90	7.90 ± 4.00	6.97 ± 2.80	Filtered		UST
RS-28	Primary	12/06/90	8.72 ± 4.75	4.93 ± 2.55	Filtered		ΙT
RS-28	Primary	03/09/91	6.44 ± 3.16	3.32 ± 2.29	Filtered		ΙT
RS-28	Primary	06/07/91	7.18 ± 3.38	12.7 ± 3.45	Filtered		ΙT
RS-28	Primary	12/06/91	6.42 ± 3.40	5.13 ± 2.14	Filtered		ΙΤ
RS-28	Primary	03/09/92	3 ± 2	<3	Filtered		CEP
RS-28	Primary	06/03/92	3 ± 2	-5 ± 3	Filtered		CEP
RS-28	Split	09/13/92	8.4 ± 7.1	9.7 ± 6.8	Filtered		BL
RS-28	Primary	09/13/92	0.3 ± 2.2	5 ± 4	Filtered		CEP
RS-28	Primary	12/05/92	4 ± 2	7 ± 3	Filtered		CEP
RS-28	Primary	06/22/93	3 ± 2	8 ± 3	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RS-28	Primary	11/06/93	6.0 ± 3.8	3.7 ± 3.6	Filtered	, 5	LAS
RS-28	Primary	05/07/94	10.9 ± 5.4	8.1 ± 4.1	Filtered		LAS
RS-28	Primary	05/17/95	7.6 ± 4.4	10.5 ± 3.8	Filtered		LAS .
RS-28	Primary	11/08/95	3.8 ± 3.1	5.2 ± 2.4	Filtered		LAS

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RS-28	Primary	05/16/96	25.7 ± 7.9	33.7 ± 6.0	Filtered		LAS
RS-28	Primary	05/08/98	4.41 ± 2.5	4.61 ± 1.6	Filtered		TN
RS-28	Primary	11/16/98	5.46 ± 2.3	6.55 ± 1.9	Filtered		TN
RS-28	Primary	05/05/00	3.42 ± 2.3	5.44 ± 2.7	Filtered		TR
RS-28	Primary	05/10/01	0.802 ± 2.2	6.44 ± 1.9	Filtered		ES
RS-54	Primary	09/11/93	3 ± 2	<3	Filtered	Gross alpha: high statistics due to large amount of solids	CEP
RS-54	Primary	09/29/93	11 ± 7	9 ± 3	Filtered		CEP
RS-54	Primary	05/07/94	35 ± 12	15.1 ± 7.3	Filtered		LAS
RS-54	Reanalysis of Primary	05/07/94	42 ± 14	24.1 ± 8.1	Filtered		LAS
RS-54	Primary	08/07/94	27 ± 11	30.3 ± 8.1	Filtered		LAS
RS-54	Primary	08/03/95	25.1 ± 9.5	7.2 ± 6.3	Filtered		LAS
RS-54	Primary	05/16/96	31 ± 10	12.8 ± 5.3	Filtered		LAS
RS-54	Primary	08/23/96	50 ± 14	9.7 ± 6.5	Filtered		LAS
RS-54	Reanalysis of Primary	08/23/96	53 ± 15	21.7 ± 8.0	Filtered		LAS
RS-54	Primary	05/03/97	28.0 ± 9.9	6.7 ± 5.4	Filtered		LAS
RS-54	Primary	08/02/97	24.8 ± 9.9	13.5 ± 6.2	Filtered		LAS
RS-54	Primary	08/27/97	24.8 ± 9.9	13.2 ± 6.4	Filtered		LAS
RS-54	Primary	02/08/98	8.86 ± 3.0	5.92 ± 1.7	Filtered		TN
RS-54	Primary	08/04/98	31.5 ± 14	4.93 ± 18	Filtered		TN
RS-54	Primary	02/02/99	10.2 ± 3.9	10.0 ± 1.9	Filtered		TN
RS-54	Primary	08/18/99	16.1 ± 4.7	11.4 ± 3.2	Filtered		TN
RS-54	Primary	03/15/00	16.5 ± 4.7	11.6 ± 2.8	Filtered		TR
RS-54	Primary	11/01/01	59.44 ± 5.64	7.59 ± 0.96	Filtered		DL
RS-54	Primary	03/01/02	24.29 ± 6.92	5.52 ± 1.17	Filtered		DL
RS-54	Primary	11/07/02	16.9 ± 6.4	11.7 ± 3.5	Filtered		ES
ES-06	Primary	12/08/89	0.404 ± 0.502	0.840 ± 2.10	Filtered		UST
ES-12	Primary	03/03/89	12 ± 5	24 ± 6	Unfiltered		FGL
ES-24	Primary	03/03/89	7 ± 4	7 ± 5	Unfiltered		FGL
ES-24	Primary	06/03/89	10.7 ± 3.8	2.1 ± 0.7	Unfiltered		BC
ES-24	Primary	09/10/89	3.7 ± 2.5	9.2 ± 0.6	Unfiltered		BC
ES-24	Primary	09/10/89	1.0 ± 2.4	6.0 ± 0.6	Filtered		BC
ES-24	Duplicate	09/10/89	10.5 ± 1.9	7.1 ± 0.3	Unfiltered		BC
ES-24	Duplicate	09/10/89	5.9 ± 1.5	6.8 ± 0.3	Filtered		BC
ES-31	Primary	07/23/89	6.9 ± 2.2	6.7 ± 0.5	Unfiltered, Decanted		BC
ES-31	Primary	12/10/90	2.79 ± 2.10	2.09 ± 2.35	Filtered		Ti
ES-31	Primary	03/04/91	0.899 ± 1.32	4.79 ± 2.55	Filtered		ΙT
ES-31	Duplicate	03/04/91	2.37 ± 1.73	2.98 ± 2.29	Filtered		ΙΤ
ES-31	Primary	06/06/91	9.12 ± 4.51	4.94 ± 2.59	Filtered		IT
ES-31	Duplicate	06/06/91	8.09 ± 4.90	4.99 ± 2.63	Filtered		ΪΤ
ES-31	Primary	12/07/91	7.57 ± 4.02	22.8 ± 3.64	Filtered		, iT
ES-31	Primary	03/05/92	4 ± 2	<3	Filtered		CEP
ES-31	Primary	03/03/93	4 ± 3	6 ± 4	Filtered	Gross alpha; high statistics due to large amount of solids.	CEP
ES-31	Primary	02/22/94	2 ± 3.1	4.3 ± 2.9	Filtered	, , , , , , , , , , , , , , , , , , , ,	LAS
ES-31	Primary	02/15/95	23.5 ± 6.5	20.9 ± 3.7	Filtered		LAS

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
ES-31	Reanalysis of Primary	02/15/95	22.5 ± 6.2	28.0 ± 3.8	Filtered		LAS
ES-31	Primary	02/06/96	2.4 ± 3.6	2.3 ± 2.8	Filtered		LAS
ES-31	Primary	02/04/97	9.9 ± 5.1	3.5 ± 3.1	Filtered		LAS
ES-31	Primary	02/04/98	11.5 ± 3.7	5.09 ± 2.0	Filtered		TN
ES-31	Primary	02/06/99	6.85 ± 3.3	4.33 ± 2.7	Filtered		TN
ES-31	Primary	02/06/00	4.36 ± 2.6	4.79 ± 3.2	Filtered		TR
ES-31	Primary	02/15/01	3.16 ± 2.3	4,41 ± 1.8	Filtered		ES
ES-31	Primary	02/18/02	10.49 ± 3.59	2.79 ± 1.76	Filtered		DL
ES-31	Primary	02/19/03	2.33 ± 2.2	3.64 ± 1.9	Filtered		ES
HAR-03	Primary	09/11/89	19.0 ± 2.5	13.0 ± 0.6	Unfiltered		BC
HAR-03	Primary	09/11/89	5.0 ± 1.7	2.0 ± 0.5	Filtered		BC
HAR-04	Primary	06/02/89	20.7 ± 3.4	19.7 ± 0.9	Unfiltered		BC
HAR-04	Primary	07/23/89	1.7 ± 1.3	1.1 ± 0.3	Unfiltered, Decanted		BC
HAR-04	Primary	09/11/89	8.9 ± 1.6	8.9 ± 0.5	Unfiltered		BC
HAR-04	Primary	09/11/89	1.6 ± 0.8	3.1 ± 0.2	Filtered		BC
HAR-11	Primary	06/02/89	92.5 ± 14.7	80.6 ± 3.1	Unfiltered		BC
HAR-11	Primary	07/22/89	4.9 ± 1.1	12.8 ± 0.9	Unfiltered, Decanted		BC
HAR-14	Primary	06/02/89	34.0 ± 5.7	47.4 ± 1.4	Unfiltered		BC
HAR-14	Primary	07/22/89	11.9 ± 2.3	8.2 ± 0.5	Unfiltered, Decanted		BC
HAR-14	Primary	09/12/89	9.2 ± 1.0	9.0 ± 0.2	Unfiltered		BC
HAR-14	Split	09/12/89	-1.0 ± 2.0	9.7 ± 0.8	Filtered		BC
HAR-14	Split	09/12/89	0 ± 3	14 ± 6	Unfiltered		TMA
HAR-14	Split	09/12/89	1 ± 5	3 ± 5	Filtered		TMA
HAR-14	Primary	03/16/93	5±3	5 ± 4	Filtered		CEP
HAR-14	Primary	06/08/93	6±3	11 ± 4	Filtered		CEP
HAR-14	Primary	08/09/93	2 ± 1	9±3	Filtered		CEP
HAR-14	Primary	11/04/93	4.4 ± 2.7	5.4 ± 2.8	Filtered		LAS
HAR-15	Primary	03/16/93	70 ± 14	45 ± 9	Filtered		CEP
HAR-15	Primary	03/16/93	8±5	38 ± 8	Filtered	Gross alpha and beta dissolved.	CEP
HAR-15	Primary	06/08/93	54 ± 11	66 ± 10	Filtered	Cross diprid and beta disserved.	CEP
HAR-15	Reanalysis of Primary	06/08/93	4±3	7±5	Filtered .	Gross alpha and beta dissolved. Gross alpha: high statistics due to large amounts of solids.	CEP
HAR-15	Primary	08/09/93	4 ± 3	<3	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
HAR-15	Primary	11/04/93	70 ± 16	34.9 ± 8.6	Filtered	orbod diprial riight stationed and to large amount of bolido.	LAS
HAR-15	Primary	11/04/93	14.8 ± 6.4	9.0 ± 3.7	Filtered	Gross alpha and beta dissolved.	LAS
HAR-27	Primary	12/08/89	2.69 ± 2.73	5.65 ± 2.73	Filtered	Cross diprid and beta disserved.	UST
HAR-30	Primary	06/02/89	6.1 ± 2.8	10.2 ± 0.9	Unfiltered		BC
HAR-30	Primary	07/22/89	11.8 ± 2.3	7.4 ± 0.6	Unfiltered, Decanted		BC
HAR-30	Primary	07/22/89	5.6 ± 2.2	8.4 ± 0.7	Filtered		BC
	•	07/22/89	5.6 ± 2.2 5 ± 2	3±4	Unfiltered		FGL
HAR-30	Primary	07/22/89	3 ± 2 14.2 ± 4.3	11.3 ± 1.6	Unfiltered		BC
HAR-30	Primary				Filtered		BC
HAR-30	Primary	06/29/90	10.7 ± 4.0	10.5 ± 1.4			UST
HAR-30	Primary	06/29/90	6.20 ± 3.64	6.17 ± 2.92	Filtered		UOI

BOEING SANTA SUSANA FIELD LABORATOR VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
Chatsworth Form	ation Wells						
RD-01	Primary	06/01/89	6.2 ± 4.8	6.8 ± 0.7	Unfiltered		BC
RD-01	Primary	07/22/89	4.2 ± 1.5	8.5 ± 0.5	Unfiltered, Decanted		BC
RD-01	Primary	09/11/89	11.5 ± 3.1	12.5 ± 1.1	Unfiltered		BC
RD-01	Primary	09/11/89	8.7 ± 2.8	14.7 ± 1.0	Filtered		BC
RD-02	Primary	06/03/89	6.9 ± 3.2	2.3 ± 0.6	Unfiltered		BC
RD-02	Primary	07/23/89	3.9 ± 1.6	7.1 ± 0.5	Unfiltered, Decanted		BC
RD-03	Primary	06/07/89	1.9 ± 3.1	6.6 ± 0.7	Unfiltered		BC
RD-03	Primary	07/22/89	3.5 ± 1.6	7.7 ± 0.5	Unfiltered, Decanted		BC
RD-03	Primary	09/10/89	10.5 ± 1.9	7.1 ± 0.3	Unfiltered		BC
RD-03	Primary	09/10/89	5.9 ± 1.5	6.8 ± 0.3	Filtered		BC
RD-03	Primary	09/12/89	11.0 ± 2.2	4.0 ± 0.7	Unfiltered		BC
RD-03	Split	09/12/89	0 ± 2	0 ± 2	Unfiltered		TMA
RD-03	Primary	09/12/89	10.0 ± 2.2	4.0 ± 0.7	Filtered		BC
RD-03	Split	09/12/89	0 ± 2	19 ± 3	Filtered		TMA
RD-04	Primary	06/04/89	5.1 ± 7.6	4.3 ± 1.4	Unfiltered		BC
RD-04	Primary	06/04/89	2.0 ± 3.5	8.4 ± 0.6	Unfiltered		BC
RD-04	Primary	07/22/89	4.6 ± 1.6	9.2 ± 0.4	Unfiltered, Decanted		BC
RD-05B	Primary	06/07/89	9.8 ± 2.5	-1.0 ± 0.6	Unfiltered		BC
RD-05B	Primary	07/22/89	5.1 ± 1.7	7.9 ± 0.5	Unfiltered, Decanted		BC
RD-05B	Primary	09/10/89	2.0 ± 1.5	10.0 ± 0.3	Unfiltered		BC
RD-05B	Primary	09/10/89	3.5 ± 1.5	7.3 ± 0.3	Filtered		BC
RD-05B	Primary	03/16/93	<2	<3	Filtered		CEP
RD-05B	Primary	06/07/93	10 ± 4	21 ± 4	Filtered		CEP
RD-05B	Primary	08/09/93	8 ± 3	13 ± 3	Filtered		CEP
RD-05B	Primary	11/22/93	3.0 ± 4.7	5.4 ± 4.3	Filtered		LAS
RD-06	Primary	06/07/89	7.3 ± 2.2	7.5 ± 0.6	Unfiltered		BC
RD-06	Primary	07/22/89	18.1 ± 2.9	11.3 ± 0.8	Unfiltered, Decanted		BC
RD-06	Primary	09/10/89	4.0 ± 1.6	5.7 ± 0.3	Unfiltered		BC
RD-06	Primary	09/10/89	3.2 ± 1.3	7.5 ± 0.4	Filtered		BC
RD-06	Primary	10/18/89	2.10 ± 1.98	5.16 ± 1.99	Filtered		UST
RD-06	Primary	10/31/89	4.9 ± 3.98	6.03 ± 2.77	Unfiltered		UST
RD-06	Primary	10/31/89	3.11 ± 2.42	6.22 ± 2.79	Filtered		UST
RD-06	Primary	03/06/91	9.99 ± 5.83	3.58 ± 2.32	Filtered		ΙT
RD-06	Primary	03/10/92	<2	<3	Filtered		CEP
RD-06	Primary	03/16/93	4 ± 3	7 ± 4	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-06	Primary	06/07/93	3 ± 2	8 ± 7	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-06	Primary	08/09/93	5 ± 3	4 ± 3	Filtered	·	CEP
RD-06	Primary	11/22/93	1.5 ± 4.1	5.5 ± 4.6	Filtered		LAS
RD-07	Primary	06/04/89	11.5 ± 5.0	8.1 ± 1.0	Unfiltered		BC
RD-07	Primary	07/22/89	6.6 ± 1.5	5.3 ± 0.5	Unfiltered, Decanted		BC
RD-07	Primary	09/13/89	8.0 ± 2.6	13.6 ± 0.9	Unfiltered		BC
RD-07	Primary	09/13/89	2.6 ± 1.8	9.9 ± 0.7	Filtered		BC
RD-07	Primary	12/05/90	7.19 ± 3.19	6.66 ± 2.72	Filtered		IT.

TABLE E-I RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-07	Primary	03/09/91	5.70 ± 2.67	3.63 ± 2.42	Filtered		iT -
RD-07	Primary	12/07/91	7.42 ± 3.19	5.06 ± 1.61	Filtered		İT
RD-07	Primary	03/06/92	<2	6 ± 4	Filtered		CEP
RD-07	Primary	03/07/93	3 ± 2	5±4	Filtered	Crean alpha, high statistics due to lorge amount of salida	CEP
RD-07 RD-07				4.7 ± 2.7		Gross alpha: high statistics due to large amount of solids.	
	Primary	02/27/94	6.4 ± 3.7		Filtered		LAS
RD-07	Primary	08/09/94	6.1 ± 3.5	5.4 ± 2.8	Filtered		LAS
RD-07	Primary	02/09/95	3.4 ± 3.3	5.9 ± 3.2	Filtered		LAS
RD-07	Duplicate	02/09/95	10.8 ± 5.1	6.6 ± 3.5	Filtered		LAS
RD-07	Primary	08/04/95	6.6 ± 3.6	7.5 ± 2.8	Filtered		LAS
RD-07	Primary	02/07/96	12.2 ± 4.5	3.1 ± 1.9	Filtered		LAS
RD-07	Primary	08/18/96	8.7 ± 4.5	6.5 ± 3.2	Filtered		LAS
RD-07	Primary	02/25/97	9.5 ± 3.9	5.9 ± 2.4	Filtered		LAS
RD-07	Primary	08/25/97	12.5 ± 5.6	8.1 ± 4.3	Filtered		LAS
RD-07	Primary	02/05/98	10.3 ± 2.8	8.27 ± 1.7	Filtered		TN
RD-07	Primary	08/05/98	9.43 ± 8.9	-7.81 ± 18	Filtered		TN
RD-07	Primary	02/06/99	5.53 ± 2.3	11.9 ± 1.9	Filtered		TN
RD-07	Primary	08/19/99	6.94 ± 2.3	8.51 ± 1.7	Filtered		TN
RD-07	Primary	03/16/00	9.92 ± 3.2	9.58 ± 2.3	Filtered		TR
RD-07	Primary	08/10/00	8.94 ± 2.9	7.04 ± 2.6	Filtered		TR
RD-07	Primary	02/23/01	12.4 ± 3.7	8.74 ± 2.1	Filtered		ES
RD-07	Primary	11/07/01	6.18 ± 3.28	5.90 ± 1.5	Filtered		DL
RD-07	Primary	02/22/02	18.36 ± 5.66	4.37 ± 1.15	Filtered		DL
RD-07	Primary	08/20/02	4.94 ± 3.5	5.90 ± 1.6	Filtered		ES
RD-07(Z3)	Primary	02/10/03	14.4 ± 3.5	15.5 ± 3.1	Filtered		ES
RD-07(Z13)	Primary	08/28/03	6.82 ± 2.9	9.29 ± 3.2	Filtered		ES
RD-08	Primary	06/07/89	-1.0 ± 2.9	4.1 ± 0.7	Unfiltered		BC
RD-08	Primary	07/24/89	-1.0 ± 1.0	4.5 ± 0.3	Unfiltered, Decanted		BC
RD-08	Primary	09/13/89	-1.0 ± 1.4	6.9 ± 0.5	Unfiltered		BC
RD-08	Primary	09/13/89	-1.0 ± 2.0	1.9 ± 0.8	Filtered		BC
RD-09	Primary	03/03/89	4 ± 2	7±4	Unfiltered		FGL
RD-09	Primary	06/03/89	-1.0 ± 3.0	6.8 ± 0.7	Unfiltered		ВС
RD-10	Primary	06/07/89	2.3 ± 2.5	2.6 ± 0.5	Unfiltered		BC
RD-10	Primary	07/22/89	6.9 ± 1.8	5.9 ± 0.4	Unfiltered, Decanted		BC
RD-10	Primary	09/10/89	5.0 ± 1.6	14.0 ± 0.4	Unfiltered		BC
RD-10	Primary	09/10/89	4.0 ± 1.5	10.0 ± 0.3	Filtered		BC
RD-10	Primary	03/06/91	1.85 ± 2.44	2.56 ± 2.02	Filtered		iT
		03/07/92	<2	<3	Filtered		CEP
RD-10 RD-12	Primary	06/03/89	-1.0 ± 3.9	3.3 ± 0.9	Unfiltered		BC
	Primary						BC BC
RD-12	Primary	07/22/89	-1.0 ± 1.5	12.4 ± 1.3	Unfiltered, Decanted		
RD-13	Primary	09/05/89	7.6 ± 1.6	10.6 ± 0.3	Unfiltered		BC
RD-13	Primary	09/05/89	5.9 ± 1.3	10.1 ± 0.3	Filtered		BC
RD-13	Primary	09/12/89	7.0 ± 1.9	46.0 ± 0.5	Unfiltered		BC
RD-13	Split	09/12/89	0 ± 2	7±2	Unfiltered		TMA
RD-13	Primary	09/12/89	7.0 ± 2.4	5.6 ± 0.7	Filtered		BC

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-13	Split	09/12/89	4±3	2 ± 2	Filtered		TMA
RD-13	Primary	10/17/89	5.9 ± 2.4	10.3 ± 0.6	Filtered	•	BC
RD-13	Primary	12/06/90	1.69 ± 2.16	5.03 ± 2.65	Filtered		ΙT
RD-13	Primary	03/08/91	2.15 ± 2.02	6.02 ± 2.72	Filtered		ΙT
RD-13	Primary	12/10/91	4.02 ± 2.51	5.68 ± 1,77	Filtered		IT
RD-13	Primary	03/12/92	<2	<3	Filtered		CEP
RD-13	Primary	03/08/93	7 ± 3	7 ± 4	Filtered		CEP
RD-13	Primary	08/26/97	7.5 ± 4.6	6.4 ± 3.8	Filtered		LAS
RD-14	Primary	08/29/89	5.0 ± 2.19	3.0 ± 0.80	Unfiltered		BC
RD-14	Primary	08/29/89	4.0 ± 2.07	4.0 ± 0.77	Filtered		BC
RD-14	Primary	10/18/89	5.8 ± 2.3	8.6 ± 0.7	Filtered		BC
RD-14	Duplicate	10/18/89	4.83 ± 2.48	1.97 ± 1.65	Filtered		UST
RD-14	Primary	10/31/89	6.33 ± 3.05	5.15 ± 2.63	Unfiltered		UST
RD-14	Primary	10/31/89	5.27 ± 2.62	5.01 ± 2.62	Filtered		UST
RD-14	Primary	12/07/90	6.29 ± 3.02	6.69 ± 2.80	Filtered		IT
RD-14	Primary	03/09/91	9.44 ± 4.63	5.36 ± 2.53	Filtered		iŤ
RD-14	Primary	12/06/91	5.92 ± 3.40	7.66 ± 2.22	Filtered		iΤ
RD-14	Primary	03/05/92	3 ± 2	<3	Filtered		CEP
RD-14	Primary	03/07/93	4±3	<3	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-14	Primary	02/24/94	1.8 ± 3	0.8 ± 3.2	Filtered	Sibos dipria. Tigit statistics due to large amount of solido.	LAS
RD-14	Primary	02/08/95	5.4 ± 4.4	5.7 ± 3.5	Filtered		LAS
RD-14	Primary	02/16/96	4.4 ± 3.4	5.4 ± 2.2	Filtered		LAS
RD-14	Primary	02/07/97	3.7 ± 3.6	7.7 ± 3.3	Filtered		LAS
RD-15	Primary	08/30/89	8.0 ± 2.5	5.0 ± 0.89	Unfiltered		BC
RD-15	Primary	08/30/89	6.0 ± 2.62	12.0 ± 0.89	Filtered		BC
RD-15	Primary	10/19/89	12.5 ± 2.7	10.7 ± 1.0	Filtered		BC
RD-15	Primary	12/07/90	5.82 ± 2.76	6.45 ± 2.77	Filtered		IT
RD-15	Primary	03/10/91	9.29 ± 3.41	8.99 ± 3.05	Filtered		iΤ
RD-15	Primary	12/06/91	12.3 ± 5.11	9.19 ± 2.48	Filtered		iT
RD-15	Primary	03/11/92	3 ± 2	7±3	Filtered		CEP
RD-15	Split	03/11/92	7.7 ± 5.7	14 ± 3	Filtered		TEL
RD-15	Primary	05/10/01	2.02 ± 2.4	3.68 ± 3.0	Filtered		ES
RD-15	Primary	03/06/02	7.84 ± 3.91	4.77 ± 1.32	Filtered		DL
	Primary	02/26/03	5.24 ± 3.1	14.4 ± 4.6	Filtered		ES
RD-15		09/14/89	15.3 ± 3.7	5.9 ± 1.8	Unfiltered		BC
RD-16	Primary Primary	09/14/89	4.1 ± 2.0	6.6 ± 1.0	Filtered		BC
RD-16	Primary Primary	10/25/89	6.4 ± 2.3	9.2 ± 0.6	Filtered		BC
RD-16	Primary Primary	07/01/90	0.4 ± 2.3 1.92 ± 2.37	9.2 ± 0.6 6.35 ± 2.87	Filtered		UST
RD-16	Primary				Filtered		IT
RD-16	Primary	12/07/90	4.88 ± 2.54	6.39 ± 2.72	Filtered		IT
RD-16	Primary	03/09/91	6.12 ± 2.82	4.20 ± 2.51			IT
RD-16	Primary	12/05/91	3.00 ± 2.27	6.38 ± 1.93	Filtered		
RD-16	Primary	06/06/92	2 ± 2	-2 ± 3	Filtered		CEP
RD-16	Primary	05/27/98	4.72 ± 2.4	7.56 ± 1.7	Filtered		TN

TABLE E-I RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment .	Laboratory
RD-17	Primary	09/21/89	9.4 ± 2.1	8.3 ± 1.1	Unfiltered		BC
RD-17	Primary	09/21/89	1.7 ± 1.6	8.5 ± 0.8	Filtered		BC
RD-17	Primary	10/18/89	-1.0 ± 1.5	5.6 ± 0.5	Filtered		BC
RD-17	Duplicate	10/18/89	2.8 ± 2.0	5.7 ± 0.5	Filtered		BC
RD-17	Primary	12/04/90	4.50 ± 2.87	1.63 ± 2.22	Filtered		IT
RD-17	Primary	03/05/91	4.22 ± 2.27	1.69 ± 0.994	Filtered		iΤ
RD-17	Split	12/07/91	<2	<3	Filtered		CEP
RD-17	Primary	12/07/91	2.42 ± 1.81	4.94 ± 1.63	Filtered		ΙT
RD-17	Primary	03/04/92	<2	<3	Filtered		CEP
RD-17	Primary	03/05/93	3 ± 2	4 ± 3	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-17	Primary	02/26/94	3.8 ± 3.5	7.4 ± 2.9	Filtered		LAS
RD-17	Primary	02/08/95	4.7 ± 3.6	3.1 ± 3.0	Filtered		LAS
RD-17	Primary	02/04/96	8.8 ± 3.3	2.0 ± 1.5	Filtered		LAS
RD-17	Primary	02/08/97	4.5 ± 3.2	7.3 ± 2.6	Filtered		LAS
RD-17	Primary	02/04/98	4.18 ± 2.0	6.25 ± 1.6	Filtered		TN
RD-17	Primary	02/08/99	4.31 ± 2.0	5.94 ± 1.7	Filtered		TN
RD-17	Primary	02/21/00	3.57 ± 2.6	6.66 ± 3.7	Filtered		TR
RD-17	Primary	02/14/01	4.46 ± 2.6	7.87 ± 1.6	Filtered		ES
RD-17	Primary	03/01/02	4,70 ± 1.96	4.59 ± 1.30	Filtered		DL
RD-17	Primary	02/24/03	2.73 ± 2.3	7.25 ± 3.6	Filtered		ES
RD-18	Primary	09/15/89	16.0 ± 2.5	14.4 ± 1.2	Unfiltered		BC
RD-18	Primary	09/15/89	12.7 ± 2.3	6.7 ± 1.2	Filtered		BC
RD-18	Primary	10/26/89	6.0 ± 2.0	9.6 ± 0.7	Filtered		BC
RD-18	Primary	07/01/90	3.85 ± 2.23	6.95 ± 2.79	Filtered		UST
RD-18	Primary	12/08/90	8.20 ± 3.26	6.62 ± 2.90	Filtered		IT.
RD-18	Primary	03/09/91	3.31 ± 1.87	4.05 ± 2.42	Filtered		iΤ
RD-18	Primary	12/11/91	2.51 ± 1.91	3.45 ± 1.27	Filtered		iΤ
RD-18	Primary	03/12/92	7 ± 2	11 ± 3	Filtered		CEP
RD-18	Primary	03/17/93	4 ± 2	12 ± 4	Filtered		CEP
RD-18	Primary	06/08/93	8±3	22 ± 4	Filtered		CEP
RD-18	Primary	08/09/93	7±2	16 ± 3	Filtered		CEP
RD-18	Primary	11/04/93	1.5 ± 1.9	7.2 ± 2.5	Filtered		LAS
RD-18	Primary	02/22/94	13.6 ± 4.4	8.7 ± 2.6	Filtered		LAS
RD-18	Primary	02/17/95	22.1 ± 5.3	20.4 ± 3.0	Filtered		LAS
RD-18	Reanalysis of Primary	02/17/95	8.5 ± 3.4	12.2 ± 2.2	Filtered		LAS
RD-18	Primary	02/05/96	1.9 ± 2.3	2.4 ± 1.6	Filtered		LAS
RD-16 RD-18	•	02/05/90	1.9 ± 2.3 11.2 ± 3.8	7.3 ± 2.3	Filtered		LAS
	Primary						TN
RD-18	Primary	02/06/98	3.42 ± 1.5	4.95 ± 1.5	Filtered Unfiltered		BC
RD-19	Primary	08/31/89	10.0 ± 2.35	18.0 ± 0.77			
RD-19	Primary	08/31/89	13.0 ± 2.41	1.3 ± 0.88	Filtered		BC
RD-19	Primary	10/26/89	11.0 ± 2.1	13.4 ± 0.7	Filtered		BC
RD-19	Primary	12/08/90	6.66 ± 3.17	9.06 ± 3.20	Filtered		IT •=
RD-19	Duplicate	12/08/90	11.9 ± 5.63	11.6 ± 3.38	Filtered		IT IT
RD-19	Primary	03/08/91	11.7 ± 5.80	7.74 ± 2.89	Filtered		1T

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-19	Duplicate	03/08/91	8.80 ± 4.49	7.96 ± 2.93	Filtered		IT
RD-19	Primary	12/11/91	9.20 ± 5.31	11.2 ± 3.47	Filtered		IT
RD-19	Primary	03/12/92	17 ± 4	15 ± 4	Filtered		CEP
RD-19	Primary	03/08/93	6 ± 4	12 ± 4	Filtered	Gross alpha and beta high statistics due to large amount of	CEP
	· ·····ary		·-·	··		solids.	02.
RD-19	Duplicate	03/08/93	5 ± 4	13 ± 4	Filtered	Gross alpha and beta high statistics due to large amount of solids.	CEP
RD-19	Primary	02/26/94	18 ± 9.2	17.5 ± 5.4	Filtered		LAS
RD-19	Reanalysis of Primary	02/26/94	21 ± 10	32.1 ± 8.9	Filtered		LAS
RD-19	Primary	02/15/95	100 ± 22	50.2 ± 9.8	Filtered	,	LAS
RD-19	Reanalysis of Primary	02/15/95	13.3 ± 8.7	34.6 ± 7.0	Filtered	•	LAS
RD-19	Primary	02/06/96	36 ± 12	29.8 ± 7.1	Filtered		LAS
RD-19	Reanalysis of Primary	02/06/96	6.9 ± 5.0	3.6 ± 2.8	Filtered		LAS
RD-19	Primáry	02/07/97	27 ± 10	17.3 ± 5.7	Filtered		LAS
RD-19	Primary	02/06/98	25.6 ± 5.7	18.6 ± 2.5	Filtered		TN
RD-20	Primary	09/05/89	14.4 ± 2.4	34.1 ± 0.8	Unfiltered		BC
RD-20	Primary	09/05/89	10.0 ± 2.3	16.7 ± 0.7	Filtered		BC
RD-20	Primary	10/17/89	13.1 ± 3.3	17.06 ± 1.0	Filtered		BC
RD-20	Primary	12/07/90	4.74 ± 2.36	2.49 ± 2.30	Filtered		IT
RD-20	Primary	03/05/91	4.07 ± 2.23	5.29 ± 1.39	Filtered		iT
RD-20	Primary	12/10/91	4.43 ± 3.96	9.08 ± 3.07	Filtered		iŤ
RD-20	Primary	03/04/92	4±3	5±3	Filtered		CEP
RD-20	Primary	03/03/93	6±5	10 ± 4	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-20	Primary	02/22/94	5 ± 6.4	8.3 ± 6.9	Filtered	Oross alpha. Trigit statistics due to large amount of solids.	LAS
RD-20 RD-20	Primary	02/16/95	35 ± 11	36.3 ± 6.9	Filtered		LAS
RD-20	Reanalysis of Primary	02/16/95	10.1 ± 6.0	9.6 ± 6.0	Filtered		LAS
RD-20	Duplicate	02/16/95	46 ± 12	35.4 ± 6.7	Filtered		LAS
	Reanalysis of Duplicate		6.5 ± 5.5	10.3 ± 6.9	Filtered		LAS
RD-20		02/04/96		4.7 ± 4.2	Filtered		LAS
RD-20	Primary		6.5 ± 6.9	5.8 ± 3.9			
RD-20	Primary	02/08/97 02/04/98	14.4 ± 6.9 8.04 ± 3.6	8.24 ± 2.0	Filtered Filtered		LAS
RD-20	Primary	09/12/89	6.5 ± 2.2	5.5 ± 1.1	Unfiltered		TN BC
RD-21	Primary	09/12/89	6.0 ± 2.0	-0.5 ± 1.0	Filtered		BC
RD-21	Primary	10/20/89	7.7 ± 2.6	10.8 ± 0.9	Filtered		BC
RD-21	Primary						BC
RD-21	Duplicate	10/20/89	12.3 ± 3.0	3.1 ± 1.0	Filtered		BC
RD-21	Primary	12/03/90	2.91 ± 2.53	1.85 ± 2.34	Filtered		١Ţ
RD-21	Primary	03/08/91	7.80 ± 4.84	5.85 ± 2.62	Filtered		IT
RD-21	Primary	12/05/91	7.59 ± 3.74	6.37 ± 2.11	Filtered		IT
RD-21	Primary	03/04/92	5 ± 2	5 ± 4	Filtered		CEP
RD-21	Primary	03/06/93	3 ± 2	<3	Filtered		CEP
RD-21	Primary	06/22/93	13 ± 4	37 ± 5	Filtered		CEP
RD-21	Primary	08/06/93	3 ± 2	<3	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-21	Primary	11/06/93	4.1 ± 3.0	6.5 ± 3.5	Filtered		LAS
RD-21	Primary	02/25/94	7.2 ± 4.5	6.1 ± 3.5	Filtered		LAS

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-21	Primary	08/08/94	6.8 ± 3.9	6.6 ± 3.3	Filtered		LAS
RD-21	Primary	02/08/95	8.2 ± 4.8	9.2 ± 3.7	Filtered		LAS
RD-21	Primary	08/31/95	13.7 ± 6.3	5.5 ± 3.9	Filtered		LAS
RD-21	Primary	02/16/96	6.8 ± 4.1	5.1 ± 2.8	Filtered		LAS
RD-21	Primary	08/18/96	10.3 ± 5.6	3.5 ± 3.5	Filtered		LAS
RD-21	Primary	02/06/97	4.6 ± 3.8	4.5 ± 3.1	Filtered		LAS
RD-21	Primary	02/09/98	11.8 ± 3.3	6.79 ± 1.7	Filtered		TN
RD-21	Primary	02/16/99	13.0 ± 4.5	6.58 ± 1.7	Filtered		TN
RD-21	Primary	03/15/00	17.2 ± 4.5	6.85 ± 2.2	Filtered		TR
RD-21	Primary	10/24/01	21.45 ± 5.64	3.85 ± 0.96	Filtered		DL
RD-21	Primary	03/06/02	5.04 ± 2.93	3.07 ± 1.20	Filtered		DL
RD-21(Z2)	Primary	02/25/03	2.78 ± 2.5	7.72 ± 3.6	Filtered		ES
RD-22	Primary	09/13/89	7.8 ± 2.8	5.5 ± 1.3	Unfiltered		BC
RD-22	Primary	09/13/89	7.8 ± 1.7	35.0 ± 0.8	Filtered		BC
RD-22	Primary	10/19/89	-1.0 ± 2.1	9.0 ± 0.8	Filtered	•	BC
RD-22	Primary	03/27/90	2.92 ± 2.85	6.02 ± 2.75	Filtered		UST
RD-22	Primary	07/01/90	3.27 ± 3.12	5.01 ± 2.63	Filtered		UST
RD-22	Primary	09/15/90	0.539 ± 1.87	7.38 ± 2.88	Filtered		UST
RD-22	Primary	12/04/90	5.87 ± 4.09	6.14 ± 2.78	Filtered		IΤ
RD-22	Duplicate	12/04/90	3.57 ± 3.91	3.71 ± 2.57	Filtered		IT
RD-22	Primary	03/11/91	11.4 ± 7.46	3.64 ± 2.39	Filtered		IT
RD-22	Primary	06/05/91	2.71 ± 2.60	7.64 ± 2.85	Filtered		IT.
RD-22	Primary	12/06/91	3.59 ± 3.06	5.17 ± 2.36	Filtered		IT
RD-22	Primary	06/05/92	3 ± 2	-3 ± 3	Filtered		CEP
RD-22	Primary	09/10/92	3 ± 2	15 ± 4	Filtered		CEP
RD-22	Primary	12/04/92	3 ± 2	14 ± 3	Filtered		CEP
RD-22	Primary	03/20/93	<2	10 ± 3	Filtered		CEP
RD-22	Primary	06/22/93	10 ± 4	36 ± 5	Filtered		CEP
RD-22	Primary	08/05/93	<2	<3	Filtered		CEP
RD-22	Primary	11/21/93	3.5 ± 3.8	8.9 ± 4.2	Filtered		LAS
RD-22	Primary	02/24/94	4.6 ± 5.1	8.6 ± 5.4	Filtered		LAS
RD-22	Primary	08/09/94	2.3 ± 3.3	7.7 ± 3.6	Filtered		LAS
RD-22	Primary	02/17/95	29.6 ± 8.4	26.6 ± 4.8	Filtered		LAS
RD-22	Reanalysis of Primary	02/17/95	0.2 ± 2.6	4.5 ± 3.4	Filtered		LAS
RD-22	Primary	08/29/95	3.1 ± 4.2	8.1 ± 4.5	Filtered		LAS
RD-22	Primary	02/16/96	2.2 ± 3.0	2.6 ± 2.1	Filtered		LAS
RD-22	Primary	08/18/96	-0.3 ± 4.3	8.9 ± 4.9	Filtered		LAS
RD-22	Primary	02/26/97	3.9 ± 4.2	7.5 ± 3.8	Filtered		LAS
RD-22	Primary	05/28/98	4.18 ± 2.8	7.19 ± 1.7	Filtered		TN
RD-22	Primary	02/17/99	0.868 ± 2.0	4.48 ± 1.7	Filtered		TN
RD-22	Primary	02/06/00	5,12 ± 3.3	8.10 ± 2.8	Filtered		TR
RD-22	Primary	02/16/01	3.64 ± 3.3	8.59 ± 1.7	Filtered		ES
RD-22	Primary	02/20/02	9.21 ± 3.56	4.79 ± 9.21	Filtered		DL
RD-22(Z2)	Primary	02/24/03	2.97 ± 1.4	9.22 ± 1.9	Filtered		ES

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-23	Primary	09/13/89	8.6 ± 2.4	7.4 ± 1.2	Unfiltered		BC.
RD-23	Primary	09/13/89	8.2 ± 2.3	-0.5 ± 1.2	Filtered		ВĊ
RD-23	Primary	10/20/89	9.4 ± 3.0	6.5 ± 0.9	Filtered		BC
RD-23	Primary	06/29/90	0.58 ± 2.12	1.73 ± 2.18	Filtered		UST
RD-23	Primary	12/05/90	1.28 ± 1.52	2.27 ± 2.26	Filtered		IT
RD-23	Primary	03/11/91	3.30 ± 1.94	0.626 ± 1.89	Filtered		ΙT
RD-23	Duplicate	03/11/91	1.61 ± 1.34	3.98 ± 2.41	Filtered		İΤ
RD-23	Primary	12/05/91	3.80 ± 2.08	5.50 ± 1.50	Filtered		ίΤ
RD-23	Primary	03/04/92	<2	<3	Filtered		CEP
RD-23	Primary	03/21/93	<2	9 ± 2	Filtered		CEP
RD-23	Primary	06/23/93	<2	6 ± 4	Filtered		CEP
RD-23	Primary	08/06/93	<2	<3	Filtered		CEP
RD-23	Primary	11/06/93	2.9 ± 2.5	3.3 ± 2.4	Filtered		LAS
RD-23	Primary	02/25/94	3.1 ± 2.8	3.9 ± 2.8	Filtered		LAS
RD-23	Primary	08/08/94	2.5 ± 2.7	5.7 ± 2.7	Filtered		LAS
RD-23	Primary	11/22/94	4.4 ± 2.8	4.5 ± 2.0	Filtered		LAS
RD-23	Primary	02/05/95	3.1 ± 3.1	8.4 ± 3.3	Filtered		LAS
RD-23	Primary	08/03/95	4.1 ± 3.2	7.2 ± 3.1	Filtered		LAS
RD-23	Primary	02/16/96	3.6 ± 2.7	4.0 ± 1.8	Filtered		LAS
RD-23	Primary	08/18/96	2.9 ± 2.8	3.9 ± 2.5	Filtered		LAS
RD-23	Primary	02/27/97	6.4 ± 3.1	3.8 ± 1.9	Filtered		LAS
RD-23	Primary	02/07/98	4.11 ± 1.7	4.93 ± 1.4	Filtered		TN
RD-23	Primary	02/08/99	4.69 ± 2.1	4.64 ± 1.5	Filtered		TN
RD-23	Primary	02/05/00	4.69 ± 2.3	5.26 ± 2.6	Filtered	•	TR
RD-23 RD-23	Primary	10/25/01	4.89 ± 2.43	2.42 ± 1.12	Filtered		DL
RD-23 RD-23		10/25/01	3.05 ± 1.94	3.66 ± 1.29	Filtered		DL
RD-23 RD-23(Z1)	Primary Primary	02/26/03	4.42 ± 1.3	6.18 ± 1.8	Filtered		ES_
RD-23(21)		09/12/89	8.6 ± 1.6	14.0 ± 0.6	Unfiltered		BC
RD-24 RD-24	Primary	09/12/89	4.3 ± 1.0	7.4 ± 0.2	Filtered		BC
RD-24 RD-24	Primary	09/12/89			Unfiltered		TMA
	Split	09/12/89	3 ± 2 2 ± 3	6 ± 2 7 ± 2			
RD-24	Split	10/17/89	2 ± 3 2.4 ± 2.3	7.3 ± 0.5	Filtered		TMA
RD-24	Primary				Filtered		BC
RD-24	Primary	12/05/90	6.15 ± 3.65	6.12 ± 2.81	Filtered		IT IT
RD-24	Primary	03/06/91	5.46 ± 2.99	3.68 ± 1.86	Filtered		IT :-
RD-24	Primary	12/11/91	6.33 ± 3.50	5.21 ± 1.84	Filtered		IT
RD-24	Primary	03/06/92	3 ± 2	<3	Filtered		CEP
RD-24	Primary	03/07/93	3 ± 2	7 ± 4	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-24	Primary	02/23/94	7.6 ± 4.4	7 ± 3.3	Filtered		LAS
RD-24	Primary	08/08/94	3.0 ± 2.7	6.9 ± 2.7	Filtered		LAS
RD-24	Primary	02/16/95	16.5 ± 5.9	25.2 ± 4.4	Filtered		LAS
RD-24	Reanalysis of Primary	02/16/95	10 ± 4.4	13.0 ± 2.8	Filtered		LAS
RD-24	Primary	08/10/95	3.4 ± 2.8	5.9 ± 2.5	Filtered		LAS
RD-24	Primary	02/07/96	9.0 ± 5.6	2.9 ± 3.5	Filtered		LAS
RD-24	Primary	08/07/96	3.5 ± 5.0	6.8 ± 3.9	Filtered		LAS

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-24	Primary	02/07/97	4.7 ± 3.5	6.4 ± 2.9	Filtered		LAS
RD-24	Primary	08/04/97	3.7 ± 3.2	5.9 ± 3.0	Filtered		LAS .
RD-24	Primary	02/18/98	4.42 ± 2.0	8.05 ± 1.7	Filtered		TN
RD-24	Primary	05/05/98	3.63 ± 2.8	7.06 ± 2.1	Filtered		TN
RD-24	Primary	08/04/98	12.2 ± 9.5	11.0 ± 18	Filtered		TN
RD-24	Primary	02/02/99	4.53 ± 2.3	7.10 ± 2.6	Filtered		TN
RD-24	Primary	08/11/99	3.18 ± 2.0	7.07 ± 1.8	Filtered		TN
RD-24	Primary	02/03/00	4.87 ± 1.7	13.3 ± 2.0	Filtered		TR
RD-24	Primary	08/04/00	4.16 ± 2.0	6.26 ± 1.9	Filtered		TR
RD-24	Primary	02/06/01	4.84 ± 3.0	7.86 ± 2.1	Filtered		ES
RD-24	Primary	10/25/01	14.45 ± 4.88	5.14 ±1.28	Filtered		DL
RD-24	Primary	02/25/02	5.44 ± 12.70	3.90 ± 11.26	Filtered		DL
RD-24	Primary	11/06/02	8.93 ± 3.3	8.16 ± 2.1	Filtered		ES
RD-24	Primary	02/12/03	2.83 ± 1.4	6.67 ± 1.3	Filtered		ES
RD-24	Primary	11/14/03	5.06 ± 3.4	9.29 ± 3.4	Filtered		ES
RD-24	Split	11/14/03	11.6 ± 4.56	13.3 ± 4.16	_Filtered		STL
RD-25	Primary	09/12/89	4.2 ± 1.4	11.4 ± 0.4	Unfiltered		BC
RD-25	Split	09/12/89	0 ± 3	6 ± 2	Unfiltered		TMA
RD-25	Split	09/12/89	0 ± 4	5 ± 5	Unfiltered		TMA
RD-25	Primary	09/12/89	8.9 ± 1.7	56.1 ± 0.5	Filtered		BC
RD-25	Split	09/12/89	2 ± 3	3 ± 2	Filtered		TMA
RD-25	Split	09/12/89	0 ± 3	3 ± 4	Filtered		TMA
RD-25	Primary	09/12/89	3.4 ± 2.3	1.6 ± 1.1	Unfiltered		BC
RD-25	Primary	09/12/89	10.4 ± 2.4	3.7 ± 1.2	Filtered	•	BC
RD-25	Primary	10/20/89	6.0 ± 2.3	9.2 ± 0.7	Filtered		BC
RD-25	Primary	12/05/90	3.84 ± 3.17	6.77 ± 2.84	Filtered		ΙΤ
RD-25	Primary	03/06/91	2.16 ± 10.3	3.28 ± 1.17	Filtered		ſΤ
RD-25	Primary	12/10/91	8.29 ± 4.23	5.87 ± 2.18	Filtered		ΙΤ
RD-25	Primary	03/06/92	3 ± 2	<3	Filtered		CEP
RD-25	Primary	03/17/93	7 ± 3	4 ± 3	Filtered		CEP
RD-25	Primary	02/28/94	9.8 ± 5.7	5.6 ± 3.8	Filtered		LAS
RD-25	Primary	08/17/94	10.1 ± 5.2	7.3 ± 4.4	Filtered		LAS
RD-25	Primary	02/09/95	46 ± 11	41.7 ± 6.4	Filtered		LAS
RD-25	Reanalysis of Primary	02/09/95	9.7 ± 5.3	13.0 ± 4.4	Filtered		LAS
RD-25	Primary	08/18/95	9.0 ± 5.1	8.5 ± 3.6	Filtered		LAS
RD-25	Primary	02/06/96	5.7 ± 3.4	3.8 ± 2.0	Filtered		LAS
RD-25	Primary	08/20/96	11.3 ± 5.6	9.6 ± 3.9	Filtered		LAS
RD-25	Primary	02/07/97	4.9 ± 3.7	6.0 ± 3.0	Filtered		LAS
RD-25	Primary	08/21/97	12.1 ± 5.9	7.6 ± 4.1	Filtered		LAS
RD-25	Primary	02/05/98	12.2 ± 3.8	7.55 ± 2.1	Filtered		TN
RD-25	Primary	08/18/98	3.13 ± 1.2	6.01 ± 1.5	Filtered		TN
RD-25	Primary	02/16/99	18.3 ± 5.2	9.37 ± 2.1	Filtered		TN
RD-25	Primary	08/19/99	2.96 ± 1.7	5.74 ± 1.7	Filtered		TN
RD-25	Primary	02/16/00	5.66 ± 3.1	3.64 ± 4.3	Filtered		TR

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCì/l)	Sample Handling	Sample Comment	Laboratory
RD-25	Primary	08/09/00	0.815 ± 1.5	5.33 ± 1.7	Filtered		TR
RD-25	Primary	02/07/01	4.60 ± 2.6	12.5 ± 2.2	Filtered		ES
RD-25	Primary	10/25/01	12.22 ± 4.97	6.17 ± 1.49	Filtered		DL
RD-25	Primary	03/07/02	6.00 ± 3.25	4.53 ± 1.37	Filtered		DL
RD-25	Primary	11/06/02	9.90 ± 3.6	7.83 ± 1.8	Filtered		ES
RD-25	Primary	02/24/03	3.92 ± 1.4	9.12 ± 1.9	Filtered		ES
RD-25	Primary	11/13/03	7.21 ± 4.2	7.19 ± 2.6	Filtered		ES
RD-26	Primary	09/26/89	11.8 ± 1.9	10.8 ± 0.7	Unfiltered		BC
RD-26	Primary	09/26/89	7.1 ± 1.5	9.2 ± 0.6	Filtered		, BC
RD-26	Primary	10/20/89	8.9 ± 2.9	11.9 ± 0.8	Filtered		BC
RD-26	Primary	12/04/90	7.20 ± 4.33	2.90 ± 2.39	Filtered		IT
RD-26	Primary	03/07/91	12.9 ± 4.75	4.63 ± 2.54	Filtered		IT
RD-26	Primary	03/11/92	<2	<3	Filtered		CEP
RD-27	Primary	09/21/89	21.0 ± 2.8	13.1 ± 1.4	Unfiltered		BC
RD-27	Primary	09/21/89	13.7 ± 2.4	5.7 ± 1.3	Filtered		BĊ
RD-27	Primary	10/19/89	10.3 ± 2.8	9.6 ± 0.7	Filtered		BC
RD-27	Primary	12/04/90	6.79 ± 3.45	3.39 ± 2.43	Filtered		IT
RD-27	Primary	03/07/91	15.2 ± 10.3	7.91 ± 2.82	Filtered		IT
RD-27	Primary	06/08/91	5.75 ± 2.66	2.53 ± 1.18	Filtered		IT
RD-27	Primary	12/06/91	5.65 ± 2.67	9.70 ± 1.94	Filtered		IT
RD-27	Primary	03/09/92	<2	<3	Filtered		CEP
RD-27	Primary	03/08/93	5 ± 3	11 ± 4	Filtered		CEP
RD-27	Primary	02/28/94	5.8 ± 3	8.2 ± 2.6	Filtered		LAS
RD-27	Primary	08/18/94	3.6 ± 3.0	9.0 ± 2.9	Filtered		LAS
RD-27	Primary	02/17/95	23.7 ± 5.7	21.2 ± 3.0	Filtered		LAS
RD-27	Reanalysis of Primary	02/17/95	3.8 ± 2.6	9.5 ± 2.5	Filtered		LAS
RD-27	Primary	08/18/95	5.2 ± 2.9	6.4 ± 2.2	Filtered		LAS
RD-27	Primary	02/05/96	4.7 ± 3.1	8.4 ± 2.3	Filtered		LAS
RD-27	Primary	08/19/96	2.3 ± 2.7	6.7 ± 2.7	Filtered		LAS
RD-27	Primary	02/05/97	5.8 ± 3.1	8.4 ± 2.3	Filtered		LAS
RD-27	Primary	08/27/97	4.2 ± 3.5	5.2 ± 3.1	Filtered		LAS
RD-27	Primary	02/04/98	6.68 ± 2.2	8.62 ± 1.7	Filtered		TN
RD-27	Primary	08/07/98	8.47 ± 8.3	-19.0 ± 20	Filtered		TN
RD-27	Primary	02/16/99	4.86 ± 2.2	6.31 ± 1.9	Filtered		TN
RD-27	Primary	08/17/99	5.30 ± 1.9	6.66 ± 1.8	Filtered		TN
RD-27	Primary	02/21/00	4.92 ± 2.8	6.16 ± 4.1	Filtered		TR
RD-27	Primary	08/04/00	3.15 ± 2.0	4.88 ± 2.1	Filtered		TR
RD-27	Primary	02/14/01	4.27 ± 1.9	8.48 ± 4.1	Filtered		ES
RD-27	Primary	10/26/01	10.14 ± 3.64	7.46 ± 1.49	Filtered		DL
RD-27	Primary	03/06/02	5.25 ± 2.56	5.28 ± 1.38	Filtered		DL
RD-27	Primary	08/22/02	2.42 ± 3.0	4.47 ± 3.1	Filtered		ES
RD-27	Primary	05/14/03	4.43 ± 2.5	7.41 ± 3.0	Filtered		ES
RD-27	Primary	11/14/03	1.68 ± 1.7 (U)	6.79 ± 2.3	Filtered		ES
RD-27	Split	11/14/03	4.91 ± 2.29	7.05 ± 2.35	Filtered		STL

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-28	Primary	09/13/89	9.5 ± 1.3	18.3 ± 0.4	Unfiltered		BC
RD-28	Split	09/13/89	4 ± 3	7 ± 6	Unfiltered		TMA
RD-28	Primary	09/13/89	7.1 ± 1.3	16.1 ± 0.4	Filtered		BC
RD-28	Split	09/13/89	7 ± 4	14 ± 5	Filtered		TMA
RD-28	Primary	09/26/89	14.9 ± 2.6	9.4 ± 0.8	Unfiltered		BC
RD-28	Primary	09/26/89	10.4 ± 2.3	12.3 ± 0.7	Filtered		BC
RD-28	Primary	10/19/89	10.4 ± 3.4	8.5 ± 0.8	Filtered		BC
RD-28	Primary	03/27/90	9.60 ± 5.36	6.09 ± 2.73	Filtered		UST
RD-28	Primary	07/01/90	3.34 ± 3.90	8.19 ± 3.12	Filtered		UST
RD-28	Primary	09/16/90	4.94 ± 3.51	4.66 ± 2.52	Filtered		UST
RD-28	Primary	12/05/90	1,47 ± 6.11	5.38 ± 2.72	Filtered		IT.
RD-28	Primary	03/06/91	9.62 ± 4.86	2.91 ± 1.14	Filtered		iT
RD-28	Split	12/10/91	<2	<3	Filtered		CEP
RD-28	Primary	12/10/91	10.5 ± 5.73	10.1 ± 2.87	Filtered		ΙΤ̈́
RD-28	Primary	03/06/92	<2	<3	Filtered		CEP
RD-28	Split	03/06/92	17 ± 8	16 ± 4	Filtered		TEL
RD-28	Primary	03/17/93	9 ± 4	6 ± 4	Filtered		CEP
RD-28	Primary	08/05/93	6±3	5±3	Filtered		CEP
RD-28	Primary	02/24/94	24.7 ± 9.7	12.3 ± 7.2	Filtered		LAS
RD-28	Reanalysis of Primary	02/24/94	15.4 ± 7.3	16.7 ± 4.9	Filtered		LAS
RD-28	Primary	08/17/94	7.3 ± 4.6	6.8 ± 4.3	Filtered		LAS
RD-28	Primary	02/09/95	19.2 ± 7.1	10.2 ± 4.3	Filtered		LAS
RD-28	Reanalysis of Primary	02/09/95	15.2 ± 6.2	8.8 ± 4.4	Filtered		LAS
RD-28	Primary	08/18/95	17.1 ± 7.0	7.1 ± 4.1	Filtered		LAS
RD-28	Primary	02/06/96	17.2 ± 7.8	15.3 ± 4.6	Filtered		LAS
RD-28	Primary	08/20/96	23.9 ± 9.6	13.2 ± 5.3	Filtered		LAS
RD-28	Primary	02/06/97	12.2 ± 6.9	8.6 ± 4.4	Filtered		LAS
RD-28	Primary	08/28/97	28 ± 10	13.0 ± 6.6	Filtered		LAS
RD-28	Primary	02/05/98	24.7 ± 5.7	11.2 ± 2.0	Filtered		TN
RD-28	Primary	08/18/98	1.73 ± 0.98	8.56 ± 1.8	Filtered		TN
RD-28	Primary	02/16/99	14.0 ± 4.3	12.2 ± 1.9	Filtered		TN
RD-28	Primary	08/19/99	21.4 ± 5.5	14.4 ± 3.2	Filtered		TN
RD-28	Primary	02/16/00	15.0 ± 5.0	13.4 ± 4.3	Filtered		TR
RD-28	Primary	08/09/00	3.54 ± 4.1	28.7 ± 3.8	Filtered		TR
RD-28	Primary	02/07/01	5.82 ± 2.9	15.9 ± 2.0	Filtered		ES
RD-28	Primary	10/25/01	24.51 ± 7.0	8.26 ± 1.49	Filtered		DL
RD-28	Primary	02/25/02	29.36 ± 5.90	1.74 ± 0.42	Filtered		DL
RD-28	Primary	11/06/02	18.7 ± 5.7	10.3 ± 3.1	Filtered		ES
RD-28	Primary	02/24/03	11.9 ± 4.7	12.0 ± 3.9	Filtered		ES
RD-28	Primary	11/14/03	11.1 ± 6.5	15.4 ± 6.7	Filtered		ES
RD-29	Primary	09/20/89	-1.0 ± 0.9	22.3 ± 0.4	Unfiltered		BC
RD-29	Duplicate	09/20/89	36.5 ± 3.0	35.2 ± 1.6	Unfiltered		BC
RD-29	Primary	09/20/89	29.9 ± 3.0	37.3 ± 1.5	Filtered		BC
RD-29	Duplicate	09/20/89	30.0 ± 3.0	35.0 ± 1.5	Filtered		BC

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-29	Primary	10/18/89	20.9 ± 3.3	8.7 ± 1.1	Filtered		ВС
RD-29	Primary	12/08/89	22.6 ± 6.21	6.55 ± 2.80	Unfiltered		UST
RD-29	Primary	12/08/89	18.6 ± 5.36	7.12 ± 2.86	Filtered		UST
RD-29	Primary	03/27/90	20.1 ± 7.35	9.85 ± 3.17	Filtered		UST
RD-29	Primary	06/30/90	15.3 ± 6.63	11.7 ± 3.28	Filtered		UST
RD-29	Primary	09/15/90	28.7 ± 8.06	5.10 ± 2.59	Filtered		UST
RD-29	Primary	12/06/90	11.9 ± 4.93	5.61 ± 2.69	Filtered		IT
RD-29	Duplicate	12/06/90	13.3 ± 4.83	7.19 ± 2.84	Filtered		iT
RD-29	Primary	03/05/91	29.1 ± 8.42	3.98 ± 1.24	Filtered		iŤ
RD-29	Primary	06/05/91	7.06 ± 2.99	4.51 ± 2.55	Filtered		iŤ
RD-29	Duplicate	06/05/91	7.00 ± 4.46	12.9 ± 3.47	Filtered		iT
RD-29	Primary	12/10/91	17.9 ± 6.42	12.5 ± 2.82	Filtered		iT
RD-29	Split	12/10/91	<2	<3	Filtered		CEP
RD-29	Primary	03/03/92	3 ± 2	5±3	Filtered		CEP
RD-29	Primary	06/03/92	4±2	1±3	Filtered		CEP
RD-29 RD-29	Primary	09/10/92	10±3	21 ± 5	Filtered		CEP
RD-29 RD-29		12/05/92	9±3	12 ± 3	Filtered		CEP
RD-29 RD-29	Primary	03/05/93	9±3 4±3	7±4	Filtered	Cross alpha, high statistics to large amount of salida	CEP
	Primary	08/08/93	3±2	7 ± 4 4 ± 3	Filtered	Gross alpha: high statistics to large amount of solids.	CEP
RD-29	Primary					Gross alpha: high statistics to large amount of solids.	
RD-29	Primary	02/26/94	7.8 ± 4.8	8.1 ± 3.6	Filtered		LAS
RD-29	Primary	08/17/94	17.1 ± 6.5	8.3 ± 4.5	Filtered		LAS
RD-29	Primary	05/09/01	2.15 ± 2.8	3.99 ± 3.2	Filtered		ES
RD-29	Primary	05/03/02	22.79 ± 6.44	5.31 ± 1.15	Filtered		DĻ
RD-29	Primary	05/13/03	16.1 ± 5.5	9.76 ± 4.1	Filtered		ES
RD-30	Primary	09/22/89	22.8 ± 2.7	38.4 ± 1.3	Unfiltered		ВС
RD-30	Primary	09/22/89	17.4 ± 2.4	33.2 ± 1.2	Filtered		BC
RD-30	Primary	10/19/89	8.5 ± 2.8	8.1 ± 0.8	Filtered		BC
RD-30	Primary	03/27/90	3.19 ± 2.74	5.19 ± 2.66	Filtered		UST
RD-30	Primary	06/29/90	5.24 ± 4.33	3.18 ± 2.42	Filtered		UST
RD-30	Primary	09/15/90	2.63 ± 2.15	4.88 ± 2.61	Filtered		UST
RD-30	Primary	12/06/90	4.71 ± 2.42	3.18 ± 2.46	Filtered		IΤ
RD-30	Primary	03/09/91	8.58 ± 4.74	6.12 ± 2.68	Filtered		ΙΤ
RD-30	Primary	12/06/91	11.9 ± 4.99	7.03 ± 2.24	Filtered		IT
RD-30	Primary	06/03/92	4 ± 2	1 ± 3	Filtered		CEP
RD-30	Split	06/03/92	10 ± 5	9.9 ± 2.7	Filtered		TEL
RD-30	Primary	03/21/93	<2	14 ± 3	Filtered		CEP
RD-30	Primary	02/26/94	4.8 ± 4.7	7.9 ± 3.9	Filtered		LAS
RD-30	Primary	08/09/94	4.6 ± 4.0	7.5 ± 3.5	Filtered		LAS
RD-30	Primary	02/08/95	10.2 ± 6.2	7.6 ± 4.5	Filtered		LAS
RD-30	Primary	08/19/95	5.5 ± 4.1	4.7 ± 3.2	Filtered		LAS
RD-30	Primary	02/28/96	5.6 ± 4.5	3.1 ± 3.3	Filtered	•	LAS
RD-30	Primary	08/20/96	7.0 ± 5.7	5.6 ± 3.8	Filtered		LAS
RD-30	Primary	02/25/97	12.1 ± 5.2	7.5 ± 3.1	Filtered	•	LAS
RD-30	Primary	08/27/97	13.6 ± 7.0	9.0 ± 5.2	Filtered		LAS

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-30	Primary	05/28/98	10.7 ± 3.6	8.29 ± 1.7	Filtered		TN
RD-30	Primary	08/05/98	9.20 ± 9.0	-2.84 ± 20	Filtered		TN
RD-30	Primary	02/05/99	6.46 ± 2.9	8.21 ± 2.7	Filtered		TN
RD-30	Primary	05/05/00	10.5 ± 3.6	7.54 ± 3.1	Filtered		TR
RD-30	Primary	08/08/00	7.63 ± 3.0	10.4 ± 2.8	Filtered		TR
RD-30	Primary	05/09/01	6.43 ± 3.0	9.48 ± 1.8	Filtered		ES
RD-30	Primary	11/09/01	14.72 ± 6.4	8.30 ± 1.97	Filtered		DL
RD-30	Primary	03/11/02	14.94 ± 4.10	5.03 ± 1.16	Filtered		DL
RD-30	Primary	08/30/02	10.8 ± 3.3	10.1 ± 2.2	Filtered		ES
RD-30	Primary	02/07/03	3.27 ± 1.6	7.0 ± 1.9	Filtered		ES
RD-30	Primary	11/14/03	8.30 ± 4.4	13.9 ± 4.2	Filtered		ES
RD-31	Primary	09/26/89	3.7 ± 0.8	7.4 ± 0.3	Unfiltered		BC
RD-31	Primary	09/26/89	3.6 ± 1.0	4.8 ± 0.3	Filtered		BC
RD-31	Primary	10/24/89	4.2 ± 2.1	1.4 ± 0.6	Filtered		BC
RD-31	Primary	12/05/90	2.07 ± 1.80	4.18 ± 2.56	Filtered		ΙT
RD-31	Primary	03/10/91	2.26 ± 1.66	1.02 ± 2.10	Filtered	Gross beta: high statistics due to large amount of solids.	IT
RD-31	Primary	03/05/92	<2	<3	Filtered	•	CEP
RD-33A	Primary	12/05/91	7.99 ± 3.19	8.10 ± 1.90	Filtered		IT
RD-33A	Primary	12/12/91	12.9 ± 4.01	7.13 ± 1.72	Filtered		IT
RD-33A	Split	12/12/91	<2	<3	Filtered		CEP
RD-33A	Primary	06/08/92	3 ± 2	-21/2/ ± 3	Filtered	Gross beta: high statistics due to large amount of solids. Gross beta dissolved.	CEP
RD-33A	Primary	09/15/92	5 ± 2	7 ± 4	Filtered		CEP
RD-33A	Primary	12/05/92	<2	4 ± 3	Filtered		CEP
RD-33A	Primary	06/24/93	<2	<3	Filtered		CEP
RD-33A	Primary	08/24/93	<2	7 ± 3	Filtered		CEP
RD-33A	Primary	11/17/93	3.9 ± 2.8	7.2 ± 2.5	Filtered		LAS
RD-33A	Primary	02/27/94	4.9 ± 3.1	4.6 ± 2.1	Filtered		LAS
RD-33A	Primary	08/18/94	3.9 ± 2.8	5.7 ± 2.5	Filtered		LAS
RD-33A	Primary	02/07/95	1.8 ± 2.3	7.7 ± 2.4	Filtered		LAS
RD-33A	Primary	08/09/95	1.6 ± 1.9	5.8 ± 2.1	Filtered		LAS
RD-33A	Primary	02/19/96	6.7 ± 3.5	4.0 ± 2.2	Filtered		LAS
RD-33A	Primary	08/23/96	1.6 ± 2.4	4.2 ± 2.3	Filtered		LAS
RD-33A	Primary	02/25/97	7.6 ± 3.2	4.2 ± 1.8	Filtered		LAS
RD-33A	Primary	08/27/97	1.2 ± 2.2	8.6 ± 3.4	Filtered		LAS
RD-33A	Primary	05/27/98	7.38 ± 2.3	5.67 ± 1.8	Filtered		TN
RD-33A	Primary	08/17/98	1.50 ± 0.76	4.71 ± 1.4	Filtered		TN
RD-33A	Primary	02/03/99	3.16 ± 1.4	4.87 ± 1.7	Filtered		TN
RD-33A	Primary	02/09/00	5.26 ± 2.2	5.35 ± 2.2	Filtered		TR
RD-33A	Primary	05/14/01	1.70 ± 1.5	6.32 ± 1.5	Filtered		ES
RD-33A	Primary	02/15/02	3.13 ± 1.79	6.36 ± 1.55	Filtered		DL
RD-33A(Z4)	Primary	01/30/03	3.42 ± 2.1	5.38 ± 2.3	Filtered		ES
RD-33B	Primary	12/12/91	2.87 ± 2.16	7.53.± 1.92	Filtered		IT
RD-33B	Split	12/12/91	<2	<3	Filtered		CEP

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-33B	Primary	06/24/92	1 ± 2	3 ± 3	Filtered		CEP
RD-33B	Primary	09/15/92	0.1 ± 1.3	0.3 ± 3.0	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-33B	Primary	12/05/92	<2	9 ± 3	Filtered	, , , , , , , , , , , , , , , , , , , 	CEP
RD-33B	Primary	06/24/93	<2	<3	Filtered		CEP
RD-33B	Primary	08/24/93	2 ± 1	4 ± 3	Filtered		CEP
RD-33B	Primary	11/17/93	1.1 ± 1.3	5.3 ± 1.6	Filtered		LAS
RD-33B	Primary	02/27/94	0.8 ± 1.8	4.9 ± 2	Filtered		LAS
RD-33B	Primary	08/18/94	0.7 ± 2.0	5.4 ± 3.0	Filtered		LAS
RD-33B	Primary	02/07/95	0 ± 1.8	5.7 ± 2.4	Filtered		LAS
RD-33B	Primary	08/09/95	1.5 ± 1.8	4.9 ± 1.9	Filtered		LAS
RD-33B	Primary	02/19/96	2.6 ± 2.4	4.5 ± 2.3	Filtered		LAS
RD-33B	Primary	08/23/96	-0.5 ± 1.5	6.8 ± 2.5	Filtered		LAS
RD-33B	Primary	02/25/97	1.2 ± 2.0	4.4 ± 1.7	Filtered		LAS
RD-33B	Primary	08/22/97	2.5 ± 2.2	5.8 ± 2.4	Filtered		LAS
RD-33B	Primary	05/27/98	1.44 ± 1.5	6.50 ± 1.5	Filtered		TN
RD-33B	Primary	08/17/98	0.004 ± 0.34	4.31 ± 1.5	Filtered		TN
RD-33B	Primary	02/03/99	1.86 ± 1.4	3.80 ± 1.4	Filtered		TN
RD-33B	Primary	02/09/00	2.31 ± 1.8	5.24 ± 3.2	Filtered		TR
RD-33B	Primary	02/17/01	1.73 ± 1.6	4.68 ± 1.7	Filtered		ES
RD-33B	Primary	02/15/02	3.19 ± 2.09	2.78 ± 1.31	Filtered		DL
RD-33B	Primary	02/11/03	0.527 ± 0.75	4.94 ± 1.1	Filtered		ES
RD-33C	Primary	12/05/91	4.19 ± 2.34	7.42 ± 1.79	Filtered		ΙΤ
RD-33C	Primary	12/12/91	1.91 ± 1.82	6.15 ± 1.75	Filtered		IT
RD-33C	Split	12/12/91	-6	2 ± 4	Filtered		CEP
RD-33C	Primary	06/08/92	1 ± 1	-3 ± 3	Filtered		CEP
RD-33C	Primary	09/15/92	2 ± 2	2 ± 3	Filtered		CEP
RD-33C	Primary	12/05/92	<2	4 ± 3	Filtered		CEP
RD-33C	Primary	06/24/93	2 ± 1	7 ± 3	Filtered		CEP
RD-33C	Primary	08/24/93	2 ± 1	8 ± 3	Filtered		CEP
RD-33C	Primary	11/17/93	2.3 ± 2.6	5.8 ± 2.5	Filtered		LAS
RD-33C	Primary	02/27/94	0.3 ± 2.2	6.4 ± 2.3	Filtered		LAS
RD-33C	Primary	08/17/94	2.1 ± 2.8	4.4 ± 3.4	Filtered		LAS
RD-33C	Primary	02/07/95	4.4 ± 3.2	4.2 ± 2.6	Filtered		LAS
RD-33C	Primary	08/09/95	2.6 ± 2.4	6.1 ± 2.3	Filtered		LAS
RD-33C	Primary	02/19/96	6.5 ± 3.4	4.0 ± 2.2	Filtered		LAS
RD-33C	Primary	08/22/96	-0.7 ± 1.8	4.9 ± 2.8	Filtered		LAS
RD-33C	Primary	02/25/97	3.1 ± 2.5	6.9 ± 2.1	Filtered		LAS
RD-33C	Primary	08/21/97	4.3 ± 2.9	5.0 ± 2.7	Filtered		LAS
RD-33C	Primary	05/27/98	5.82 ± 2.2	5.99 ± 1.6	Filtered		TN
RD-33C	Primary	08/17/98	1.57 ± 0.86	3.72 ± 1.6	Filtered		TN
RD-33C	Primary	02/03/99	3.40 ± 1.7	5.55 ± 1.6	Filtered		TN
RD-33C	Primary	02/09/00	3.50 ± 2.4	6.98 ± 2.6	Filtered		TR
RD-33C	Primary	02/17/01	4.71 ± 2.2	6.91 ± 1.6	Filtered		ES
RD-33C	Primary	02/15/02	4.29 ± 2.45	3.45 ± 1.34	Filtered		DL

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-33C	Primary	02/10/03	0.201 ± 1.5	5.34 ± 2.0	Filtered		ES
RD-34A	Primary	12/05/91	22.1 ± 7.98	15.9 ± 3.56	Filtered		ΙT
RD-34A	Split	12/05/91	<2	<3	Filtered		CEP
RD-34A	Primary	03/10/92	6 ± 3	5 ± 3	Filtered		CEP
RD-34A	Split	03/10/92	28 ± 11	22 ± 4	Filtered		TEL
RD-34A	Primary	06/08/92	6 ± 2	-2 ± 3	Filtered		CEP
RD-34A	Primary	09/13/92	6 ± 3	8 ± 4	Filtered		CEP
RD-34A	Reanalysis of Primary	09/13/92	21 ± 14	28 ± 8	Filtered		BL
RD-34A	Split	09/13/92	33 ± 12	14 ± 8	Filtered		BL
RD-34A	Reanalysis of Primary	09/13/92	6 ± 3	19 ± 3	Filtered		CEP
RD-34A	Primary	12/05/92	7 ± 3	6 ± 3	Filtered		CEP
RD-34A	Split	12/05/92	31 ± 11	18 ± 6	Filtered		BL
RD-34A	Reanalysis of Primary	12/05/92	16 ± 11	21 ± 7	Filtered		BL
RD-34A	Primary	03/09/93	11 ± 5	11 ± 4	Filtered		CEP
RD-34A	Primary	06/22/93	7 ± 4	20 ± 4	Filtered		CEP
RD-34A	Primary	08/24/93	7 ± 3	11 ± 3	Filtered		CEP
RD-34A	Primary	11/18/93	12.5 ± 7.0	8.1 ± 5.5	Filtered		LAS
RD-34A	Primary	02/26/94	18.8 ± 8.2	8.7 ± 5.3	Filtered		LAS
RD-34A	Reanalysis of Primary	02/26/94	10.4 ± 6.3	21.5 ± 6.6	Filtered		LAS
RD-34A	Primary	08/09/94	14.6 ± 7.0	9.2 ± 4.3	Filtered		LAS
RD-34A	Primary	02/07/95	10.8 ± 7.3	13.5 ± 7.1	Filtered		LAS
RD-34A	Primary	08/09/95	15.5 ± 7.0	12.8 ± 5.1	Filtered		LAS
RD-34A	Primary	02/19/96	13.4 ± 6.2	9.9 ± 3.6	Filtered		LAS
RD-34A	Primary	08/18/96	4.5 ± 5.9	15.5 ± 5.7	Filtered		LAS
RD-34A	Primary	02/07/97	17.0 ± 7.9	9.7 ± 4.8	Filtered		LAS
RD-34A	Primary	05/27/98	21.5 ± 5.2	10.5 ± 2.0	Filtered		TN
RD-34A	Primary	08/18/98	5.97 ± 1.5	10.3 ± 1.7	Filtered		TN
RD-34A	Primary	05/09/01	7.97 ± 3.2	14.8 ± 2.0	Filtered		ES
RD-34A	Primary	05/16/03	18.5 ± 7.0	12.1 ± 5.1	Filtered		ES
RD-34B	Primary	12/05/91	3.76 ± 2.43	5.52 ± 1.86	Filtered		IT
RD-34B	Primary	03/10/92	<2	4 ± 3	Filtered		CEP
RD-34B	Split	03/10/92	< - 6	9.5 ± 3.1	Filtered		TEL
RD-34B	Primary	06/08/92	1 ± 2	-2 ± 3	Filtered		CEP
RD-34B	Primary	09/13/92	3 ± 2	8 ± 4	Filtered		CEP
RD-34B	Split	09/13/92	9.7 ± 6.8	17 ± 7	Filtered		BL.
RD-34B	Primary	12/05/92	<2	4 ± 3	Filtered		CEP
RD-34B	Primary	03/09/93	9 ± 4	13 ± 4	Filtered		CEP
RD-34B	Primary	06/23/93	3 ± 2	13 ± 4	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
RD-34B	Primary	08/24/93	<2	6±3	Filtered	Stock diplies high distributed and to large difficult of solids.	CEP
RD-34B	Primary	11/18/93	0.2 ± 2.3	8.5 ± 3.8	Filtered		LAS
RD-34B	Primary	02/26/94	1 ± 2.5	5.8 ± 2.6	Filtered		LAS
RD-34B	Primary	08/09/94	4.9 ± 3.7	7.0 ± 3.4	Filtered		LAS
RD-34B	Primary	02/07/95	0.5 ± 2.3	5.4 ± 2.8	Filtered		LAS
RD-34B	Primary	08/09/95	2.7 ± 3.1	11.2 ± 3.7	Filtered		LAS

Well Identification	Sample Type	Date	Gross Alpha	Gross Beta	Sample	Sample Comment	Laboratory
	**	Sampled	(pCi/l)	(pCi/l)	Handling		
RD-348	Primary	02/19/96	5.2 ± 3.5	6.6 ± 2.4	Filtered		LAS
RD-34B	Primary	08/18/96	2.3 ± 3.3	6.0 ± 3.3	Filtered		LAS
RD-34B	Primary	02/07/97	5.4 ± 3.5	6.3 ± 2.7	Filtered		LAS
RD-34B	Primary	08/21/97	9.3 ± 4.6	6.4 ± 3.3	Filtered		LAS
RD-34B	Primary	05/27/98	12.8 ± 4.1	13.2 ± 2.0	Filtered		TN
RD-34B	Primary	08/18/98	1.26 ± 0.76	5.29 ± 1.7	Filtered		TN
RD-34B	Primary	02/04/99	7.65 ± 3.2	8.57 ± 2.3	Filtered		TN
RD-34B	Primary	02/05/00	5.25 ± 1.6	7.99 ± 2.0	Filtered		TR
RD-34B	Primary	02/16/01	3.85 ± 2.3	5.59 ± 1.9	Filtered		ES
RD-34B	Primary	02/15/02	3.80 ± 2.64	7.89 ± 1.79	Filtered		DL
RD-34B	Primary	02/06/03	2.37 ± 2.0	6.78 ± 2.3	Filtered		ES
RD-34C	Primary	12/06/91	1.01 ± 1.18	3.76 ± 1.34	Filtered		IT
RD-34C	Primary	03/10/92	<2	6 ± 3	Filtered		CEP
RD-34C	Split	03/10/92	<4	6.7 ± 2.6	Filtered		TEL
RD-34C	Primary	06/08/92	1 ± 1	-4 ± 3	Filtered		CEP
RD-34C	Primary	09/13/92	0.9 ± 1.9	6 ± 4	Filtered		CEP
RD-34C	Split	09/13/92	2.9 ± 5.2	15 ± 5	Filtered		BL.
RD-34C	Primary	12/05/92	<2	<3	Filtered		CEP
RD-34C	Primary	03/09/93	5 ± 3	7 ± 4	Filtered		CEP
RD-34C	Primary	06/24/93	<2	<3	Filtered		CEP
RD-34C	Primary	08/24/93	<2	<3	Filtered		CEP
RD-34C	Primary	11/06/93	1.6 ± 1.9	3.7 ± 2.1	Filtered		LAS
RD-34C	Primary	02/26/94	1.6 ± 2.1	5.2 ± 2.2	Filtered		LAS
RD-34C	Primary	08/09/94	2.8 ± 2.3	5.3 ± 2.0	Filtered		LAS
RD-34C	Primary	02/07/95	2.7 ± 2.4	4.2 ± 2.4	Filtered		LAS
RD-34C	Primary	08/10/95	2.3 ± 2.1	3.7 ± 2.0	Filtered		LAS
RD-34C	Primary	02/19/96	2.3 ± 2.2	4.0 ± 1.5	Filtered		LAS
RD-34C	Primary	08/19/96	0.5 ± 1.9	4.9 ± 2.2	Filtered		LAS
RD-34C	Primary	02/07/97	3.4 ± 2.2	5.0 ± 1.7	Filtered		LAS
RD-34C	Primary	08/21/97	4.2 ± 2.7	7.3 ± 2.6	Filtered	•	LAS
RD-34C	Primary	05/27/98	2.40 ± 1.6	4.67 ± 1.4	Filtered		TN
RD-34C	Primary	08/17/98	1.08 ± 0.68	3.73 ± 1.4	Filtered		TN
RD-34C	Primary	02/04/99	1.59 ± 1.6	2.72 ± 2.5	Filtered		TN
RD-34C	Primary	02/05/00	0.866 ± 1.5	4.64 ± 2.8	Filtered		TR
RD-34C	Primary	02/16/01	2.21 ± 1.6	9.80 ± 1.9	Filtered		ES
RD-34C	Primary	02/14/02	2.17 ± 1.86	4.40 ± 1.53	Filtered		DL
RD-34C	Primary	02/06/03	1.84 ± 1.2	3.28 ± 1.7	Filtered		ES
RD-35B	Primary	05/07/99	22.8 ± 4.4	12.6 ± 2.0	Filtered		TN
RD-35B	Primary	08/18/99	1.56 ± 1.2	4.05 ± 1.6	Filtered		TN
RD-38B	Primary	02/17/99	1.52 ± 2.0	4.98 ± 1.6	Filtered		TN
RD-45C	Primary	10/06/94	2.6 ± 1.9	4.4 ± 2.0	Filtered		LAS
		02/15/99	3.26 ± 2.0	3.74 ± 1.6	Filtered		TN
RD-46B	Primary	05/05/94	24.9 ± 6.9	10.2 ± 3.9	Filtered		LAS
RD-50	Primary	05/05/94					LAS LAS
RD-50	Reanalysis of Primary	00/00/84	9.6 ± 4.7	6 ± 3.6	Filtered		LAS

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-50	Primary	05/19/95	11.8 ± 5.5	5.4 ± 3.9	Filtered		LAS
RD-50	Primary	05/14/96	31.9 ± 6.6	10.7 ± 2.6	Filtered		LAS
RD-50	Primary	05/05/97	7.0 ± 3.6	7.5 ± 2.7	Filtered		LAS
RD-50	Primary	05/28/98	8.45 ± 4.1	5.92 ± 1.7	Filtered		TN
RD-51C	Primary	12/14/91	1.18 ± 2.30	2.93 ± 1.91	Filtered		iT.
RD-51C	Primary	03/06/92	<2	<3	Filtered		CEP
RD-54A	Primary	09/12/93	<2	<3	Filtered		CEP
RD-54A	Primary	09/29/93	< <u>2</u>	<3	Filtered		CEP
RD-54A	Primary	05/08/94	5 ± 3.6	7.1 ± 3.9	Filtered		LAS
RD-54A	Primary	08/09/94	1.4 ± 2.6	6.2 ± 2.8	Filtered		LAS
RD-54A	Primary	08/03/95	4.9 ± 2.5	6.6 ± 2.0	Filtered		LAS
RD-54A	Primary	05/16/96	11.0 ± 5.3	7.4 ± 3.8	Filtered		LAS
RD-54A	Primary	08/23/96	2.5 ± 3.7	1.5 ± 3.3	Filtered		LAS
RD-54A	Primary	05/05/97	0.5 ± 1.9	1.4 ± 2.0	Filtered		LAS
RD-54A	Primary	08/22/97	16.9 ± 5.3	4.7 ± 2.7	Filtered		LAS
RD-54A	Primary	02/08/98	1.56 ± 1.3	4.49 ± 1.5	Filtered		TN
RD-54A	Primary	08/07/98	0.051 ± 7.9	4.83 ± 17	Filtered		TN
RD-54A	Primary	02/08/99	22.2 ± 12	58.0 ± 7.4	Filtered		TN
RD-54A	Primary	03/15/00	7.08 ± 2.9	6.84 ± 2.3	Filtered		TR
RD-54A	Primary	10/26/01	20.14 ± 4.71	6.03 ± 1.17	Filtered		DL
RD-54A	Primary	02/27/02	7.80 ± 2.71	1.82 ± 0.70	Filtered		DL
RD-54A(Z2)	Primary	02/18/03	5.39 ± 1.8	9.08 ± 2.6	Filtered		ES
RD-54B	Primary	09/12/93	5 ± 2	13 ± 4	Filtered		CEP
RD-54B	Primary	09/29/93	<2	4 ± 3	Filtered		CEP
RD-54B	Primary	05/08/94	4.7 ± 5.2	9.5 ± 5.1	Filtered		LAS
RD-54B	Primary	08/08/94	2.5 ± 4.2	5.9 ± 4.1	Filtered		LAS
RD-54B	Primary	08/30/95	4.6 ± 5.0	4.6 ± 4.3	Filtered		LAS
RD-54B	Primary	05/16/96	5.8 ± 5.6	10,9 ± 5.6	Filtered		LAS
RD-54B	Primary	08/23/96	0.8 ± 3.4	7.5 ± 3.7	Filtered		LAS
RD-54B	Primary	08/22/97	5.9 ± 4.0	5.7 ± 3.0	Filtered		LAS
RD-54B	Primary	02/08/98	1.42 ± 1.2	7.00 ± 1.7	Filtered		TN
RD-54B	Primary	08/07/98	-1.66 ± 4.2	-14.0 ± 22	Filtered		TN
RD-54B	Primary	02/08/99	1.44 ± 3.7	17.2 ± 4.4	Filtered		TN
RD-54B	Primary	03/15/00	1.05 ± 1.2	0.622 ± 2.2	Filtered		TR
RD-54B	Primary	10/25/01	7.40 ± 3.30	2.88 ± 1.14	Filtered		DL
RD-54B	Primary	02/27/02	2.59 ± 1.9	4.4 ± 1.5	Filtered		DL
RD-54B	Primary	02/26/03	5.38 ± 1.8	7.36 ± 2.2	Filtered		ES
RD-54C	Primary	09/11/93	6±3	10 ± 3	Filtered		CEP
RD-54C	Primary	09/29/93	<2	<3	Filtered		CEP
RD-54C	Primary	05/08/94	1.9 ± 1.8	2.9 ± 1.7	Filtered		LAS
		00/00/01		27.44	Cilha and		1.00

Filtered

Filtered

Filtered

Filtered

 2.7 ± 1.4

 4.3 ± 1.6

 4.0 ± 1.5

 3.2 ± 1.5

Primary

Primary

Primary

Primary

08/08/94

08/30/95

05/16/96

08/23/96

 0.8 ± 1.5

 1.3 ± 1.7

 3.4 ± 1.4

 0.7 ± 1.4

RD-54C

RD-54C

RD-54C

RD-54C

LAS

LAS

LAS

LAS

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-54C	Primary	05/05/97	1.4 ± 1.4	2.0 ± 1.4	Filtered		LAS
RD-54C	Primary	08/24/97	-0.18 ± 0.74	1.4 ± 1.3	Filtered		LAS
RD-54C	Primary	02/08/98	0.349 ± 0.63	2.36 ± 1.3	Filtered		TN
RD-54C	Primary	08/07/98	-1.41 ± 6.2	-6.31 ± 16	Filtered		TN
RD-54C	Primary	02/09/99	-0.998 ± 1.4	7.69 ± 3.3	Filtered		TN
RD-54C	Primary	03/15/00	0.652 ± 1.3	4.04 ± 2.5	Filtered		TR
RD-54C	Primary	11/02/01	2.23 ± 1.54	2.07± 1.10	Filtered		DL
RD-54C	Primary	02/27/02	1.77 ± 1.38	1.27 ± 1.01	Filtered		DL
RD-54C	Primary	02/26/03	1.90 ± 1.1	5.32 ± 1.8	Filtered		ES
RD-56A	Primary	05/10/94	3.9 ± 4.5	9.3 ± 5.2	Filtered		LAS
RD-56A	Primary	02/20/96	4.1 ± 3.4	3.7 ± 2.2	Filtered		LAS
RD-56A	Primary	02/06/97	5.5 ± 4.4	6.2 ± 3.6	Filtered		LAS
RD-56A	Primary	05/28/98	3.82 ± 2.3	5.45 ± 1.5	Filtered		TN
RD-56B	Primary	05/28/98	3.53 ± 2.0	6.17 ± 1.5	Filtered		TN
RD-57	Primary	03/16/94	5.2 ± 3.1	4.1 ± 2.3	Filtered		LAS
RD-57	Primary	05/10/94	2.3 ± 2.2	5.4 ± 2.5	Filtered		LAS
RD-57	Primary	08/18/94	2.8 ± 2.7	8.6 ± 3.2	Filtered		LAS
RD-57	Primary	02/07/95	1.3 ± 2.1	4.8 ± 2.4	Filtered		LAS
RD-57	Primary	08/09/95	4.2 ± 2.7	6.1 ± 2.5	Filtered		LAS
RD-57	Primary	02/19/96	3.8 ± 3.0	5.4 ± 1.7	Filtered		LAS
RD-57	Primary	08/22/96	2.4 ± 4.5	5.3 ± 4.1	Filtered		LAS
RD-57	Primary	02/25/97	6.5 ± 3.1	6.2 ± 2.1	Filtered		LAS
RD-57	Primary	08/27/97	6.2 ± 3.5	5.6 ± 2.9	Filtered		LAS
RD-57	Primary	05/26/98	4.96 ± 2.0	5.43 ± 1.7	Filtered		TN
RD-57	Primary	08/17/98	0.975 ± 0.64	4.40 ± 1.5	Filtered		TN
RD-57	Primary	05/13/99	2.84 ± 1.6	3.90 ± 1.8	Filtered		TN
RD-57	Primary	02/09/00	1.92 ± 1.1	5.16 ± 2.0	Filtered		TR
RD-57	Primary	05/11/01	1.46 ± 1.5	4.40 ± 1.4	Filtered		ES
RD-57 .	Primary	02/14/02	2.54 ± 1.46	3.15 ± 1.23	Filtered		DL
RD-57	Primary	01/29/03	2.68 ± 1.7	4.31 ± 2.6	Filtered		ES
RD-57(Z8)	Primary	04/30/03	3.06 ± 1.9	6.07 ± 2.2	Filtered		ES
RD-59A	Primary	08/16/94	3.6 ± 3.7	6.2 ± 4.1	Filtered		LAS
RD-59A	Primary	02/06/95	0.8 ± 2.9	2.9 ± 3.3	Filtered		LAS
RD-59A	Duplicate	02/06/95	-5.5 ± 7.3	2 ± 20	Filtered		LAS
RD-59A	Primary	08/08/95	4.8 ± 4.3	7.4 ± 3.6	Filtered		LAS
RD-59A	Primary	03/12/96	3.3 ± 4.1	4.7 ± 3.3	Filtered		LAS
RD-59A	Primary	08/21/96	0.3 ± 3.3	5.5 ± 3.8	Filtered		LAS
RD-59A	Primary	02/16/97	2.0 ± 3.4	7.4 ± 3.6	Filtered		LAS
RD-59A	Primary	08/22/97	0.9 ± 3.8	3.2 ± 4.0	Filtered		LAS
RD-59A	Primary	08/19/98	1.02 ± 0.73	4.35 ± 1.7	Filtered		TN
RD-59A	Primary	02/16/99	3.17 ± 2.4	4.96 ± 1.9	Filtered		TN
RD-59A	Primary	03/14/00	2.84 ± 2.1	3.83 ± 2.5	Filtered		TR
RD-59A	Primary	05/16/01	0.724 ± 2.2	6.00 ± 1.6	Filtered		ES
RD-59A	Primary	02/28/02	2.03 ± 1.75	3.06 ± 1.36	Filtered		DL

TABLE E-I
RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
RD-59A	Primary	01/31/03	1.81 ± 1.8	4.95 ± 2.4	Filtered		ES
RD-59A	Primary	05/15/03	3.55 ± 2.0	7.58 ± 2.8	Filtered		ES
RD-59A	Split	05/15/03	3.53 ± 1.9	14 ± 3.9	Filtered		STL
RD-59B	Primary	08/16/94	0.5 ± 2.2	4.8 ± 3.4	Filtered		LAS
RD-59B	Primary	02/06/95	1.1 ± 2.7	6.0 ± 2.8	Filtered		LAS
RD-59B	Primary	08/08/95	3.3 ± 2.9	4.9 ± 2.5	Filtered		LAS
RD-59B	Primary	03/12/96	0.6 ± 2.5	4.7 ± 2.4	Filtered		LAS
RD-59B	Primary	08/21/96	-0.2 ± 2.7	4.7 ± 2.8	Filtered		LAS
RD-59B	Primary	02/16/97	4.5 ± 3.5	6.7 ± 2.9	Filtered		LAS
RD-59B	Primary	08/22/97	3.5 ± 3.2	5.3 ± 3.0	Filtered		LAS
RD-59B	Primary	08/19/98	0.127 ± 0.44	3.41 ± 1.4	Filtered		TN
RD-59B	Primary	02/16/99	4.38 ± 2.3	5.32 ± 1.6	Filtered		TN
RD-59B	Primary	03/14/00	3.27 ± 2.2	3.46 ± 2.0	Filtered		TR
RD-59B	Primary	02/17/01	2.27 ± 2.2	4.17 ± 1.5	Filtered		ES
RD-59B	Primary	02/28/02	1.58 ± 1.38	1.58 ± 1.28	Filtered		DL
RD-59B	Primary	01/31/03	1.52 ± 1.8	3.58 ± 2.2	Filtered		ES
RD-59C	Primary	08/16/94	1.9 ± 2.4	4.1 ± 2.9	Filtered		LAS
RD-59C	Primary	02/06/95	2.2 ± 2.9	3.7 ± 2.8	Filtered		LAS
D-59C	Primary	08/08/95	0.9 ± 2.2	3.2 ± 2.5	Filtered		LAS
D-59C	Primary	03/12/96	0.2 ± 3.5	4.6 ± 2.5	Filtered		LAS
RD-59C	Primary	08/21/96	1.3 ± 2.7	3.1 ± 2.7	Filtered		LAS
RD-59C	Primary	02/16/97	4.0 ± 3.6	3.1 ± 2.6	Filtered		LAS
RD-59C	Primary	08/22/97	1.6 ± 2.6	2.8 ± 3.2	Filtered		LAS
RD-59C	Primary	08/19/98	0.193 ± 0.43	2.20 ± 1.4	Filtered		TN
RD-59C	Primary	02/16/99	0.660 ± 1.5	5.17 ± 1.8	Filtered		TN
RD-59C	Primary	03/14/00	0.518 ± 1.5	4.63 ± 2.2	Filtered		TR
RD-59C	Primary	02/17/01	1.11 ± 1.7	4.17 ± 1.5	Filtered		ES
RD-59C	Primary	02/28/02	0.23 ± 1.68	1.84 ± 1.92	Filtered		DL
RD-59C	Primary	01/31/03	2.04 ± 1.8	3.54 ± 1.9	Filtered		ES ES
RD-61	Primary	05/28/98	2.72 ± 1.8	3.58 ± 1.7	Filtered		TN
RD-63	Primary	09/22/94	12.9 ± 5.6	10.3 ± 4.6	Filtered		LAS
RD-63	Primary	10/06/94	4.7 ± 4.1	9.4 ± 4.1	Filtered	Pilot extraction effluent.	LAS
RD-63	-	11/09/94	14.4 ± 5.7	10.9 ± 3.8	Filtered	Thot extraction emdert.	LAS
D-63	Primary	01/04/95	8.7 ± 5.2	7.7 ± 4.1	Filtered		LAS
(D-63	Primary				Filtered		
	Primary	02/02/99	17.6 ± 5.3	19.1 ± 3.0			TN
D-63	Primary	02/16/00	9.95 ± 4.1	9.70 ± 4.2	Filtered	•	TR
D-63	Primary	02/23/01	13.7 ± 3.7	7.73 ± 1.9	Filtered		ES
D-63	Primary	02/14/02	9,48 ± 3.51	8,14 ± 1.64	Filtered		DL
RD-63	Primary	02/05/03	6.08 ± 1.7	9.06 ± 1.3	Filtered		<u>ES</u>
RD-64	Primary	05/10/01	3.98 ± 2.6	8.63 ± 2.0	Filtered		ES
RD-64	Primary	02/28/02	5.10 ± 2.67	5.93 ± 1.10	Filtered		DL
RD-64(Z6)	Primary	01/29/03	3.90 ± 2.2	6.68 ± 2.1	Filtered		ES
RD-65	Primary	02/27/97	0.3 ± 1.7	0.5 ± 1.8	Filtered		LAS
RD-65	Primary	02/07/98	2.24 ± 1.3	4.39 ± 1.6	Filtered		TN

Date Gross Alpha **Gross Beta** Sample Well Identification Sample Type Sample Comment Laboratory Sampled (l/iDa) (pCi/l) Handling RD-69 Primary 05/28/98 2.33 ± 1.8 3.80 ± 1.4 Filtered TN RD-74 05/13/99 8.82 ± 3.4 Primary 5.29 ± 1.9 Filtered TN HAR-06 Primary 06/02/89 15.5 ± 3.7 12.1 ± 0.8 Unfiltered BC HAR-06 07/22/89 9.2 ± 2.0 11.9 ± 0.6 Unfiltered, Decanted Primary BC HAR-06 **Primary** 09/14/89 9.4 ± 4.2 20.0 ± 1.6 Unfiltered BC 09/14/89 HAR-06 Primary 4.6 ± 3.8 18.7 ± 1.4 Filtered BC HAR-07 Primary 06/05/89 9.2 ± 4.3 4.2 ± 0.9 Unfiltered BC HAR-07 Primary 07/25/89 1.6 ± 1.5 13.1 ± 0.6 Unfiltered, Decanted BC HAR-07 09/09/89 6.0 ± 1.8 10.0 ± 0.3 Unfiltered вС Primary HAR-07 09/09/89 Primary 4.0 ± 1.5 6.0 ± 0.3 Filtered BC HAR-07 03/15/93 <2 <3 CEP Primary Filtered HAR-07 Primary 06/09/93 4 ± 3 5 ± 4 Filtered Gross alpha; high statistics due to large amounts of solids. CEP HAR-07 08/09/93 5 ± 2 18 ± 4 Filtered Primary CEP HAR-07 Primary 11/04/93 4.1 ± 3.2 4.5 ± 3.2 Filtered LAS HAR-08 06/07/89 -1.0 ± 1.5 1.9 ± 0.5 Unfiltered Primary BC HAR-08 07/23/89 -1.0 ± 1.2 -1.0 ± 0.3 Unfiltered, Decanted Primary BC HAR-16 06/05/89 4.2 ± 1.9 1.7 ± 0.8 Unfiltered Primary BC **HAR-16** 07/25/89 4.6 ± 1.9 5.4 ± 0.8 Unfiltered, Decanted Primary BC 09/09/89 2.1 ± 1.3 4.5 ± 0.4 HAR-16 Primary Unfiltered BC HAR-16 09/09/89 1.0 ± 1.1 3.6 ± 0.3 Filtered вс Primary **HAR-16** 03/15/93 <2 <3 Filtered CEP Primary 3 ± 2 HAR-16 06/09/93 7 ± 4 Filtered Gross alpha: high statistics due to large amounts of solids. CEP Primary 08/09/93 HAR-16 Primary <2 <3 Filtered CEP HAR-16 11/22/93 -0.5 ± 2.0 3.0 ± 2.5 Filtered Primary LAS 06/04/89 7.3 ± 2.5 HAR-17 Primary 2.3 ± 0.6 Unfiltered BC 07/23/89 **HAR-17** Primary 4.7 ± 1.7 4.6 ± 0.5 Unfiltered, Decanted BC HAR-17 **Primary** 06/28/90 7.88 ± 5.95 5.39 ± 2.80 Filtered UST 03/17/93 CEP HAR-17 7 ± 5 4 ± 3 Filtered Primary HAR-17 Primary 06/09/93 3 ± 2 12 ± 4 Filtered Gross alpha: high statistics due to large amounts of solids. CEP **HAR-17** 08/09/93 <2 <3 Filtered CEP Primary **HAR-17** 11/08/93 2.9 ± 3.4 4.1 ± 4.2 Filtered Primary LAS HAR-18 06/05/89 11.8 ± 4.4 9.5 ± 1.1 Unfiltered BC Primary **HAR-18** 07/25/89 8.6 ± 2.6 16.7 ± 1.0 Unfiltered, Decanted BC Primary 09/11/89 21.6 ± 4.7 14.0 ± 1.9 Unfiltered BC HAR-18 **Primary HAR-18** 09/11/89 16.5 ± 4.5 20.1 ± 1.7 Filtered BC Primary HAR-18 05/08/94 19.1 ± 7.2 9.7 ± 4.5 **Filtered** LAS Primary 09/09/89 10.0 ± 2.1 11.0 ± 0.5 Unfiltered BC HAR-19 Primary 09/09/89 6.0 ± 1.9 12.0 ± 0.4 Filtered HAR-19 Primary BC HAR-20 09/09/89 20.0 ± 2.9 13.0 ± 0.72 BC Primary Unfiltered 09/09/89 12.0 ± 2.6 9.0 ± 0.6 Filtered BC HAR-20 Primary 09/09/89 15.0 ± 2.5 19.0 ± 0.9 Unfiltered HAR-21 Primary BC 09/09/89 11.0 ± 2.1 11.0 ± 0.7 Filtered BC HAR-21 Primary BC HAR-23 **Primary** 06/02/89 -1.0 ± 3.8 7.7 ± 0.8 Unfiltered HAR-23 07/22/89 4.2 ± 1.6 8.0 ± 0.3 Unfiltered, Decanted BC Primary

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
HAR-26	Primary	07/22/89	2.6 ± 1.4	3.3 ± 0.5	Unfiltered, Decanted		BC
HAR-26	Primary	02/23/94	0.8 ± 2.4	3.9 ± 2.7	Filtered		LAS
HAR-26	Primary	08/15/94	0.2 ± 2.5	3.8 ± 3.2	Filtered		LAS
WS-04A	Primary	06/03/89	9.9 ± 2.5	5.8 ± 0.7	Unfiltered		BC
WS-04A	Primary	07/23/89	-1.0 ± 1.5	7.1 ± 0.4	Unfiltered, Decanted		BC
WS-04A	Primary	09/09/89	5.6 ± 1.9	12.4 ± 0.6	Unfiltered		BC
WS-04A	Primary	09/09/89	2.1 ± 1.5	7.8 ± 0.5	Filtered		BC
WS-04A	Primary	12/06/90	2.18 ± 2.79	5.90 ± 2.66	Filtered		ΙT
WS-04A	Primary	03/18/93	<2	5 ± 2	Filtered		CEP
WS-04A	Primary	06/10/93	4 ± 3	9 ± 4	Filtered	Gross alpha: high statistics due to large amount of solids.	CEP
WS-04A	Primary	08/23/93	<2	8 ± 3	Filtered		CEP
WS-04A	Primary	11/04/93	1.3 ± 2.3	4.3 ± 3.2	Filtered		LAS
WS-05	Primary	06/01/89	-1.0 ± 2.7	6.2 ± 0.5	Unfiltered		BC
WS-05	Primary	07/22/89	3.5 ± 1.5	7.5 ± 0.4	Unfiltered, Decanted		ВС
WS-05	Primary	09/09/89	4.0 ± 1.6	10.2 ± 0.4	Unfiltered		вс
WS-05	Primary	09/09/89	1.5 ± 1.4	9.3 ± 0.3	Filtered		BC
WS-06	Primary	06/01/89	7.4 ± 4.3	5.2 ± 0.8	Unfiltered		BC
WS-06	Primary	07/23/89	5.8 ± 1.7	7.6 ± 0.4	Unfiltered, Decanted		BC
WS-06	Primary	09/11/89	2.4 ± 2.4	12.3 ± 0.8	Unfiltered		BC
WS-06	Primary	09/11/89	2.9 ± 2.3	12.9 ± 0.8	Filtered		BC
WS-07	Primary	06/04/89	3.4 ± 4.0	7.3 ± 0.8	Unfiltered		BC
WS-07	Primary	07/23/89	8.3 ± 1.9	4.7 ± 0.5	Unfiltered, Decanted		BC
WS-07	Primary	12/06/90	3.80 ± 2.03	5.07 ± 2.59	Filtered		IT
WS-07	Duplicate	12/06/90	2.10 ± 1.69	5.23 ± 2.68	Filtered		ΙT
WS-07	Primary	03/08/91	5.76 ± 2.68	4.82 ± 2.55	Filtered		IT
WS-07	Primary	12/07/91	5.18 ± 2.97	5.78 ± 1.87	Filtered		ΙT
WS-07	Split	12/07/91	<2	<3	Filtered		CEP
WS-08	Primary	06/04/89	157.0 ± 22.6	239.0 ± 8.7	Unfiltered		BC
WS-08	Primary	07/22/89	3.9 ± 1.6	5.7 ± 0.4	Unfiltered, Decanted		BC
WS-08	Primary	07/22/89	2.1 ± 1.8	1.8 ± 0.6	Filtered		BC
WS-08	Primary	09/09/89	9.7 ± 1.9	10.7 ± 0.4	Unfiltered		BC
WS-08	Primary	09/09/89	2.6 ± 1.2	9.5 ± 0.3	Filtered		BC
WS-09	Primary	06/04/89	21.2 ± 3.7	11.5 ± 0.9	Unfiltered		BC
WS-09	Primary	07/19/89	8.8 ± 1.8	12.0 ± 0.5	Unfiltered, Decanted		BC
WS-09	Primary	07/19/89	5.4 ± 2.6	10.0 ± 1.0	Filtered		BC
WS-09A	Primary	06/01/89	-1.0 ± 3.4	4.3 ± 0.6	Unfiltered		BC
WS-09A	Primary	07/23/89	1.8 ± 1.2	3.9 ± 0.3	Unfiltered, Decanted		BC
WS-09A	Primary	09/12/89	3.9 ± 3.1	10.6 ± 1.0	Unfiltered		BC
WS-09A	Primary	09/12/89	-1.0 ± 2.3	7.9 ± 0.8	Filtered		BC
WS-09B	Primary	06/06/89	-1.0 ± 3.1	11.1 ± 0.7	Unfiltered		BC
WS-09B	Primary	07/24/89	5.8 ± 2.0	9.0 ± 0.4	Unfiltered, Decanted		BC
WS-12	Primary	06/04/89	11.2 ± 3.0	9.4 ± 0.6	Unfiltered		BC
WS-12	Primary	07/24/89	3.8 ± 1.5	6.8 ± 0.4	Unfiltered, Decanted		BC

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
WS-13	Primary	06/03/89	10.5 ± 3.0	4.5 ± 0.7	Unfiltered		BC
WS-13	Primary	07/22/89	6.6 ± 1.8	6.1 ± 0.4	Unfiltered, Decanted		BC
WS-13	Primary	10/17/89	4.01 ± 2.45	3.82 ± 1.86	Filtered		UST
WS-13	Duplicate	10/17/89	2.98 ± 2.24	3.90 ± 1.90	Filtered		UST
WS-13	Primary	11/01/89	1.68 ± 1.92	5.77 ± 2.76	Unfiltered		UST
WS-13	Primary	11/01/89	1.69 ± 1.73	5.82 ± 2.75	Filtered		UST
NS-14	Primary	06/03/89	7.9 ± 4.0	2.3 ± 1.0	Unfiltered		BC
NS-14	Primary	07/22/89	3.3 ± 1.4	5.3 ± 0.3	Unfiltered, Decanted		BC
OS-01	Primary	06/05/89	-1.0 ± 3.0	5.6 ± 0.7	Unfiltered		BC
OS-01	Primary	07/24/89	5.1 ± 3.7	6.5 ± 1.2	Unfiltered, Decanted		BC
OS-01	Primary	09/13/89	3.6 ± 2.5	9.0 ± 0.9	Unfiltered		BC
DS-01	Primary	09/13/89	2.3 ± 2.3	5.5 ± 0.8	Filtered		BC
OS-01	Primary	06/28/90	2.28 ± 2.57	4.21 ± 2.51	Filtered		UST
DS-01	Primary	12/11/90	2.62 ± 1.83	5.31 ± 2.64	Filtered	,	IT.
OS-01	Primary	03/09/91	3.19 ± 2.18	5.91 ± 2.60	Filtered		iŤ
OS-01	Primary	12/09/91	4.63 ± 3.03	5.79 ± 2.01	Filtered		iT
OS-01	Primary	06/09/92	-0.2 ± 1.8	2 ± 3	Filtered		CEP
OS-01	Primary	09/15/92	0.3 ± 2.0	3±3	Filtered		CEP
08-01	Primary	12/17/92	3 ± 2	4±3	Filtered		CEP
OS-01	Primary	06/22/93	3 ± 2	17 ± 4	Filtered	Gross alpha: high statistics due to large amounts of solids.	CEP
DS-01	Primary	08/23/93	4 ± 2	9±3	Filtered	Gross dipria, riigit statistics due to large arrounts of solids.	CEP
DS-01	Primary	11/08/93	3.0 ± 3.1	21.2 ± 4.3	Filtered		LAS
DS-01	Primary	02/23/94	2 ± 3.4	4.6 ± 2.7	Filtered		LAS
DS-01	Primary	08/15/94	-1.1 ± 2.4	3.6 ± 3.4	Filtered		LAS
DS-02	Primary	06/05/89	1.3 ± 2.6	-1.0 ± 0.7	Unfiltered		BC
DS-02 DS-02	Primary	07/24/89	-1.0 ± 4.1	4.2 ± 1.4	Unfiltered, Decanted		BC
DS-02 DS-02	Primary	09/13/89	2.9 ± 2.9	8.5 ± 0.8	Unfiltered		BC
DS-02 DS-02	Primary	09/13/89	-1.0 ± 1.7	2.2 ± 0.5	Filtered		BC
DS-02 DS-02	Primary	06/28/90	2.28 ± 2.85	1.40 ± 2.15	Filtered		UST
)S-02)S-02	•	12/11/90	0.188 ± 0.827	2.10 ± 2.26	Filtered		IT
)S-02)S-02	Primary Primary	03/08/91	4.73 ± 3.42	4.05 ± 2.53	Filtered		IT
	•	03/08/91	2.83 ± 3.11	1.46 ± 2.53	Filtered		
OS-02	Duplicate						IT IT
OS-02	Primary	12/09/91	2.08 ± 2.22	1.88 ± 1.45	Filtered		IT
OS-02	Primary	06/09/92	-1 ± 2	2±3	Filtered		CEP
08-02	Primary	09/15/92	1.5 ± 2.0	1.8 ± 3.0	Filtered		CEP
OS-02	Primary	12/17/92	<2	<3	Filtered		CEP
OS-02	Primary	06/22/93	<2	7 ± 3	Filtered		CEP
OS-02	Primary	08/23/93	4±2	4±3	Filtered		CEP
08-02	Primary	11/08/93	1.1 ± 2.2	1.5 ± 2.7	Filtered		LAS
08-02	Primary	02/23/94	2.3 ± 2.4	1.3 ± 2.6	Filtered		LAS
08-02	Primary	08/15/94	0.6 ± 2.4	1.3 ± 3.2	Filtered		LAS
OS-03	Primary	06/05/89	-1.0 ± 3.1	5.6 ± 0.7	Unfiltered		BC
DS-03	Primary	07/24/89	4.2 ± 3.7	7.5 ± 1.1	Unfiltered, Decanted		BC
DS-03	Primary	09/13/89	10.2 ± 3.4	17.1 ± 1.0	Unfiltered		BC

TABLE E-I RESULTS OF ANALYSES FOR GROSS ALPHA AND GROSS BETA RADIOACTIVITY IN GROUNDWATER **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
OS-03	Primary	09/13/89	-1.0 ± 1.9	5.6 ± 0.7	Filtered		BC
OS-03	Primary	12/11/90	0.283 ± 0.909	3.76 ± 2.53	Filtered		IT
OS-03	Primary	03/08/91	1.79 ± 1.61	2.99 ± 2.34	Filtered		ΙT
OS-03	Primary	12/09/91	1,91 ± 1.90	3.04 ± 1.61	Filtered		IT
OS-03	Primary	06/09/92	-0.2 ± 1.8	3 ± 3	Filtered		CEP
OS-03	Primary	06/22/93	4 ± 3	13 ± 7	Filtered	Gross alpha: high statistics due to large amounts of solids.	CEP
OS-03	Primary	08/23/93	<2	7±3	Filtered		CEP
OS-03	Primary	11/08/93	-0.5 ± 1.4	2.6 ± 3.2	Filtered		LAS
OS-03	Primary	02/23/94	0.8 ± 2.4	3.9 ± 2.7	Filtered		LAS
OS-03	Primary	08/15/94	0.2 ± 2.5	3.8 ± 3.2	Filtered		LAS
OS-04	Primary	06/05/89	-1.0 ± 3.0	3.0 ± 0.7	Unfiltered		BC
OS-04	Primary	07/24/89	5.1 ± 2.0	12.0 ± 0.8	Unfiltered, Decanted		BC
OS-04	Primary	09/13/89	5.2 ± 3.3	14.1 ± 1.1	Unfiltered		BC
OS-04	Primary	09/13/89	-1.0 ± 2.3	8.8 ± 0.8	Filtered		BC
OS-04	Primary	12/11/90	0.731 ± 1.39	4.08 ± 2.42	Filtered		iT
OS-04	Primary	06/09/92	1 ± 2	6±3	Filtered		CEP
OS-04	Primary	06/22/93	3 ± 2	10 ± 3	Filtered	Gross alpha: high statistics due to large amounts of solids.	CEP
OS-04	Primary	08/23/93	<2	<3	Filtered	Cross dipria. High statistics due to large amounts of solids.	CEP
OS-04	Primary	02/23/94	1.3 ± 3.4	6.1 ± 3.2	Filtered		LAS
OS-04	Primary	08/15/94	1.5 ± 2.9	3.9 ± 3.6	Filtered		LAS
OS-05	Primary	06/05/89	7.4 ± 2.3	7.3 ± 0.6	Unfiltered		BC
OS-05	Primary	07/24/89	6.4 ± 2.1	9.2 ± 0.9	Unfiltered, Decanted		BC
OS-05	Primary	09/13/89	-1.0 ± 2.7	9.9 ± 1.0	Unfiltered		BC
OS-05	Primary	09/13/89	-1.0 ± 2.7	11.7 ± 1.0	Filtered		BC
OS-05	Primary	03/27/90	2.60 ± 3.33	4.30 ± 2.57	Filtered		UST
OS-05	Primary	06/28/90	2.80 ± 3.67	7.27 ± 2.84	Filtered		UST
OS-05	Primary	09/14/90	5.86 ± 4.59	9.76 ± 5.05	Filtered		UST
OS-05	Primary	12/11/90	0.515 ± 1.12	3.43 ± 2.45	Filtered		IT
OS-05	Primary	03/08/91	3.14 ± 2.75	4.17 ± 2.42	Filtered		iτ
OS-05	Primary	12/09/91	2.39 ± 2.65	6.23 ± 2.31	Filtered		iT
OS-05	Primary	06/09/92	-0.2 ± 2	5±3	Filtered		CEP
OS-05	Primary	09/15/92	1.9 ± 2.0	6±4	Filtered		CEP
OS-05 OS-05		09/15/92	1.9 ± 2.0 1.2 ± 6.3	12 ± 8	Filtered		BL
	Split	12/17/92			Filtered		CEP
O\$-05	Primary		3 ± 2	7 ± 4		Casas alabas high statistics due to large accounts of colida	CEP
OS-05	Primary	06/22/93	4±3	16 ± 7 <3	Filtered	Gross alpha: high statistics due to large amounts of solids.	CEP
OS-05	Primary	08/23/93	<2		Filtered		
OS-05	Primary	11/08/93	1.3 ± 3.3	4.9 ± 3.8	Filtered		LAS
OS-05	Primary	02/23/94	5.2 ± 4.7	7.4 ± 3.6	Filtered		LAS
OS-08	Primary	06/05/89	-1.0 ± 3.0	3.8 ± 0.5	Unfiltered		BC
OS-08	Primary	07/24/89	1.2 ± 1.2	4.5 ± 0.5	Unfiltered, Decanted		BC
OS-08	Primary	09/13/89	1.5 ± 2.6	1.6 ± 0.8	Unfiltered		BC
OS-08	Primary	09/13/89	-1.0 ± 2.2	-1.0 ± 0.7	Filtered		BC
OS-08	Primary	06/09/92	0 ± 2	1 ± 3	Filtered		CEP
OS-08	Primary	06/22/93	<2	10 ± 3	Filtered		CEP

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/I)	Sample Sample Comment	Laboratory
OS-08	Primary	08/15/94	0.2 ± 3.3	2.1 ± 4.4	Filtered	LAS
OS-10	Primary	06/05/89	-1.0 ± 1.9	4.7 ± 0.5	Unfiltered	BC
OS-10	Primary	07/24/89	2.2 ± 1.4	4.2 ± 0.6	Unfiltered, Decanted	BC
OS-10	Primary	09/13/89	-1.0 ± 1.8	-1.0 ± 0.6	Unfiltered	BC
OS-10	Primary	09/13/89	-1.0 ± 1.6	-1.0 ± 0.6	Filtered	BC
OS-10 OS-10	Primary	12/09/91	0.749 ± 1.57	0.444 ± 1.09	Filtered	IT
OS-10	Primary	06/04/89	74.9 ± 35.6	129.5 ± 8.1	Unfiltered	BC
OS-12 OS-12	Primary	07/23/89	2.6 ± 0.9	12.4 ± 3.2	Unfiltered. Decanted	BC
OS-12 OS-12	Primary	07/23/89	48 ± 27	67 ± 31	Unfiltered	FGL
OS-12 OS-15	Primary	06/07/89	18.5 ± 4.7	4.7 ± 1.6	Unfiltered	BC
OS-15	Primary	07/23/89	11.6 ± 1.1	40.1 ± 1.1	Unfiltered, Decanted	BC
OS-15	Primary	12/10/91	3.39 ± 4.83	10.9 ± 4.69	Filtered	IT BC
OS-15 OS-16	Primary	06/05/89	4.8 ± 2.3	4.7 ± 0.5	Unfiltered	BC
OS-16	Primary	07/22/89	10.8 ± 2.1	8.6 ± 0.5	Unfiltered, Decanted	BC
	•	09/14/89	5.3 ± 2.6	5.8 ± 1.1	Unfiltered	BC
OS-16	Primary		3.2 ± 2.5	5.0 ± 1.1 5.2 ± 0.9		· BC
OS-16	Primary	09/14/89 10/19/89	5.54 ± 2.72		Filtered Filtered	UST
OS-16	Primary			5.04 ± 1.99		
OS-16	Duplicate	10/19/89	5.11 ± 2.59	4.27 ± 1.82	Filtered	UST
OS-16	Primary	11/01/89	2.57 ± 2.20	6.75 ± 2.92	Unfiltered	UST
OS-16	Duplicate	11/01/89	4.05 ± 2.65	4.29 ± 2.59	Unfiltered	UST UST
OS-16	Primary	11/01/89	4.39 ± 2.73	6.73 ± 2.59	Filtered .	
OS-16	Duplicate	11/01/89	5.06 ± 2.95	6.99 ± 2.72	Filtered	UST
OS-16	Primary	12/10/91	1.65 ± 2.07	1.59 ± 1.75	Filtered	IT
OS-16	Primary	03/12/92	5±3	5±3	Filtered	CEP
OS-17	Primary	06/04/89	8.4 ± 2.8	13.9 ± 0.7	Unfiltered	BC
OS-17	Primary	07/22/89	4.5 ± 1.7	10.7 ± 0.5	Unfiltered, Decanted	BC
OS-17	Primary	09/13/89	2.5 ± 3.4	12.8 ± 1.4	Unfiltered	BC
OS-17	Primary	09/13/89	1.4 ± 3.5	7.6 ± 1.4	Filtered	BC
OS-17	Primary	12/10/91	1.64 ± 2.49	3.37 ± 2.26	Filtered	IT
OS-17	Primary	03/12/92	<2	6±3	Filtered	CEP
OS-21	Primary	06/06/89	-1.0 ± 3.0	7.1 ± 0.7	Unfiltered	BC
OS-21	Primary	07/23/89	1.6 ± 1.5	5.5 ± 0.4	Unfiltered, Decanted	BC
OS-21	Primary	09/09/89	-1.0 ± 1.2	10.0 ± 0.4	Unfiltered	BC
OS-21	Primary	09/09/89	3.0 ± 1.5	10.0 ± 0.4	Filtered	BC
OS-21	Primary	10/19/89	1.08 ± 1.56	2.91 ± 1.78	Filtered	UST
OS-21	Primary	11/01/89	2.82 ± 2.18	6.83 ± 2.83	Unfiltered	UST
OS-21	Primary	11/01/89	1.42 ± 1.90	3.56 ± 2.52	Filtered	UST
OS-21	Primary	03/09/91	0.804 ± 1.70	4.13 ± 2.44	Filtered	ΙŢ
OS-21	Primary	12/10/91	1.55 ± 2.31	2.59 ± 1.92	Filtered	, IT
OS-21	Primary	03/12/92	<2	<3	Filtered	CEP
OS-21	Primary	03/19/93	<2	<3	Filtered	CEP
OS-22	Primary	06/27/89	8.5 ± 3.4	11.0 ± 1.0	Unfiltered	BC BC
OS-23	Primary	06/28/89	14.6 ± 4.0	16.6 ± 1.1	Unfiltered	BC

Page 29 of 30

Well Identification	Sample Type	Date Sampled	Gross Alpha (pCi/l)	Gross Beta (pCi/l)	Sample Handling	Sample Comment	Laboratory
Calleguas	Primary	12/14/90	-0.00286 ± 0.418	5.50 ± 2.42	Filtered		IT
Calleguas	Primary	03/10/91	0.820 ± 1.07	3.05 ± 2.28	Filtered		IT
Calleguas	Primary	03/12/92	<2	5 ± 3	Filtered		CEP
Calleguas	Primary	09/22/92	0.7 ± 2.0	1.8 ± 2.3	Filtered		CEP

()	=	Not requested-not reported.
(<)	=	Less than; numerical value represents limit of detection for that analysis.
(U)	=	The result is less than the MDA (Minimum Detectable Activity).
Z	=	FLUTe sample port number.
pCi/l	=	picocuries per liter.
BC	=	BC Laboratories, Bakersfield, California.
BL	=	Barringer Laboratories, Inc., Golden, Colorado.
CEP	=	Controls for Environmental Pollution, Santa Fe, New Mexico.
DL	=	Davi Laboratories, Pinole, California.
ES	=	Eberline Services (formerly Thermo ReTec), Richmond, California.
FGL	=	FGL Environmental, Santa Paula, California.
IT	=	International Technologies, Inc. (formerly UST).
LAS	=	LAS Laboratories, Inc. (formerly Lockheed Martin), Las Vegas, Nevada.
STL	=	Severn Trent Laboratories, Richland, Washington.
TEL	=	Teledyne Isotopes, Westwood, New Jersey.
TMA	=	Thermoanalytical Inc.
TN	=	Thermo NUtech, Richmond, California.
TR	=	Thermo Retec (formerly Thermo NUtech), Richmond, California.
UST	=	United States Testing, Richland, Washington.
Primary	=	Primary sample
Duplicate	=	Sample duplicate
Split	=	Sample split
NOTE:	All sa	mples analyzed according to EPA method 900.0, Gross Alpha and Gross Beta Radioactivity.

Any activity detected is reported by the laboratory, though the reported activity may be less than the overall laboratory error. Analytical results that are less than the instrument background count are shown as negative values.

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per	Sample Handling	Sample Comments	Laboratory
SHALLOW WELL	S		liter)			
SH-04	Primary	09/09/89	-75.8 ± 124	Unfiltered		UST
SH-04	Split	09/09/89	<1000	Unfiltered		TMA
SH-05	Primary	11/29/89	-202 ± 239	Unfiltered		UST
SH-06	Primary	11/29/89	-12.2 ± 249	Unfiltered		UST
SH-07	Primary	09/09/89	-80.5 ± 124	Unfiltered		UST
SH-07	Split	09/09/89	<1000	Unfiltered		TMA
SH-07	Primary	11/29/89	-258 ± 235	Unfiltered		UST
SH-11	Primary	09/09/89	-43.1 ± 126	Unfiltered		UST
SH-11	Split	09/09/89	<1000	Unfiltered		TMA
RS-07	Primary	09/11/89	-74.6 ± 120	Unfiltered	····	UST
RS-07	Split	09/11/89	<100	Unfiltered		TMA
RS-11	Primary	12/06/90	43.2 ± 200	Unfiltered		IT
RS-11	Primary	03/04/91	58.2 ± 192	Unfiltered		iΤ
RS-11	Primary	12/07/91	12.0 ± 212	Unfiltered		iT
RS-11	Primary	03/05/92	<500	Unfiltered		CEP
RS-11	Primary	03/07/93	378 ± 437	Unfiltered		CEP
RS-11	Primary	02/22/94	-80 ± 130	Unfiltered		LAS
RS-11	Primary	02/15/95	30 ± 190	Unfiltered		LAS
RS-11	Primary	02/07/96	-20 ± 160	Unfiltered		LAS
RS-11	Primary	02/04/97	117 ± 59	Unfiltered		LAS
RS-11	Primary	02/04/98	-50.7 ± 120	Unfiltered		TN
RS-11	Primary	02/06/99	80.1 ± 110	Unfiltered		TN
RS-11	Primary	02/15/00	45.4 ± 110	Unfiltered		TR
RS-11	Primary	02/06/01	-11.1 ±98	Unfiltered		ES
RS-11	Primary	05/01/03	17.6 ± 100 (U)	Unfiltered		ES
RS-13	Primary	09/09/89	-148 ± 121	Unfiltered		UST
RS-13	Split	09/09/89	<1000	Unfiltered		TMA
RS-14	Primary	09/10/89	-116 ± 122	Unfiltered		UST
RS-14	Dup	09/10/89	-39.3 ± 129	Unfiltered		UST
RS-14	Split	09/10/89	-39.3 ± 129 <1000	Unfiltered		TMA
RS-14	Dup	09/10/89	<1000	Unfiltered		TMA
RS-16	Primary	03/09/92	<500	Unfiltered		CEP
RS-16	Primary	06/23/93	25 ± 442	Unfiltered		CEP
RS-16	Primary	02/09/95	-60 ± 190	Unfiltered		LAS
RS-16	Primary	02/04/97	353 ± 75	Unfiltered		LAS
RS-16	Primary Primary	05/27/98	-41.3 ± 120	Unfiltered		TN
RS-17	Primary	12/10/90	61.0 ± 197	Unfiltered		IT
RS-17	Primary	12/07/91	-5.54 ± 211	Unfiltered		iT
RS-17	Primary	12/05/92	-297 ± 499	Unfiltered		CEP
RS-18	Primary	03/10/91	102 ± 195	Unfiltered		IT
RS-18	Dup	03/10/91	75.8 ± 194	Unfiltered		IT
RS-18	Primary	03/04/92	-200 ± 496	Unfiltered		CEP
RS-18	Primary	12/15/92	434 ± 495	Unfiltered		CEP
RS-18	Primary	06/23/93	-133 ± 500	Unfiltered		CEP
RS-18	Primary	11/06/93	230 ± 140	Unfiltered		LAS
RS-18	Primary	05/04/94	230 ± 160	Unfiltered		LAS
RS-18	Primary	02/17/95	40 ± 190	Unfiltered		LAS
RS-18	Primary	08/10/95	30 ± 210	Unfiltered		LAS _

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per liter)	Sample Handling	Sample Comments	Laboratory
RS-18	Primary	05/16/96	140 ± 190	Unfiltered	<u> </u>	LAS
RS-18	Primary	02/03/97	255 ± 69	Unfiltered		LAS
RS-18	Primary	02/05/98	25.9 ± 120	Unfiltered		TN
RS-18	Primary	08/05/98	138 ± 130	Unfiltered		TN
RS-18	-	05/12/99	135 ± 130	Unfiltered		TN
	Primary					TR
RS-18	Primary	05/09/00	-1.10 ± 12	Unfiltered		
RS-18	Primary	02/19/01	124 ±120	Unfiltered		· ES
RS-18	Primary	05/02/03	68.7 ± 110(U)	Unfiltered		ES
RS-25	Primary	02/25/03	45.9 ± 110	Unfiltered		ES
RS-27	Primary	03/04/92	-472 ± 498	Unfiltered		CEP
RS-27	Primary	05/17/95	60 ± 190	Unfiltered	•	LAS
RS-27	Primary	05/07/98	-182 ± 120	Unfiltered		TN
RS-28	Primary	10/19/89	47.0 ± 195	Unfiltered		UST
RS-28	Primary	12/06/90	-25.0 ± 197	Unfiltered		IT
RS-28	Primary	03/09/91	198 ± 192	Unfiltered		IT
RS-28	Primary	12/06/91	86.9 ± 216	Unfiltered		IT
RS-28	Primary	03/06/92	<500	Unfiltered		IT
RS-28	Primary	03/09/92	<500	Unfiltered		CEP
RS-28	Primary	06/22/93	-393 ± 500	Unfiltered		CEP
RS-28	Primary	11/06/93	70 ± 120	Unfiltered		LAS
RS-28	Primary	05/07/94	30 ± 130	Unfiltered		LAS
RS-28	Primary	05/17/95	20 ± 180	Unfiltered	•	LAS
RS-28	Primary	11/08/95	120 ± 210	Unfiltered		LAS
RS-28	Primary	05/16/96	100 ± 180	Unfiltered		LAS
RS-28	Primary	05/08/98	-168 ± 120	Unfiltered		TN
RS-28	Primary	11/16/98	60.9 ± 130	Unfiltered		TN
RS-28	Primary	05/05/00	-12.3 ± 12	Unfiltered		TR
RS-28	Primary	05/10/01	6.37 ±120	Unfiltered		ES
RS-54	Primary	09/11/93	1099 ± 707	Unfiltered		CEP
RS-54	Primary	09/29/93	-98 ± 500	Unfiltered		CEP
RS-54		05/07/94		Unfiltered		LAS
	Primary		80 ± 140			
RS-54	Primary	08/07/94	200 ± 170	Unfiltered		LAS
RS-54	Primary	08/03/95	50 ± 220	Unfiltered		LAS
RS-54	Primary	05/16/96	80 ± 180	Unfiltered		LAS
RS-54	Primary	08/23/96	160 ± 140	Unfiltered		LAS
RS-54	Primary	05/03/97	120 ± 120	Unfiltered		LAS
RS-54	Primary	08/02/97	40 ± 120	Unfiltered		LAS
RS-54	Primary	08/27/97	50 ± 110	Unfiltered		LAS
RS-54	Primary	02/08/98	134 ± 120	Unfiltered		TN
RS-54	Primary	05/28/98	69.4 ± 120	Unfiltered		TN
RS-54	Primary	08/04/98	36.8 ± 120	Unfiltered		TN
RS-54	Primary	02/02/99	85.4 ± 100	Unfiltered		TN
RS-54	Primary	08/18/99	66.4 ± 96	Unfiltered		TN
RS-54	Primary	03/15/00	144 ± 110	Unfiltered		TR
RS-54	Primary	11/01/01	64 ± 108	Unfiltered		DL
RS-54	Primary	03/01/02	332 ± 58	Unfiltered		DL
RS-54	Primary	11/07/02	1.83 ± 110	Unfiltered		ES
ES-06	Primary	05/04/94	-70 ± 110	Unfiltered		LAS
ES-08	Primary	05/26/94	-100 ± 100	Unfiltered		LAS

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
	Туре	Sampled	liter)	Handling	,	
ES-24	Primary	09/10/89	-62.7 ± 124	Unfiltered		UST
ES-24	Dup	09/10/89	-58.0 ± 126	Unfiltered		UST
ES-24	Split	09/10/89	<1000	Unfiltered		TMA
ES-24	Dup	09/10/89	<1000	Unfiltered		TMA
ES-31	Primary	12/10/90	49.9 ± 196	Unfiltered		IT
ES-31	Primary	03/04/91	590 ± 221	Unfiltered		IT
ES-31	Dup	03/04/91	159 ± 197	Unfiltered		IT
ES-31	Primary	06/03/91	7.70 ± 194	Unfiltered		IT
ES-31	Primary	09/07/91	-48.1 ± 196	Unfiltered		IT
ES-31	Primary	12/07/91	-89.6 ± 206	Unfiltered		IT
ES-31	Primary	03/05/92	<500	Unfiltered		CEP '
ES-31	Primary	03/03/93	300 ± 326	Unfiltered		CEP
ES-31	Primary	02/22/94	0 ± 150	Unfiltered		LAS
ES-31	Primary	02/15/95	-40 ± 180	Unfiltered		LAS
ES-31	Primary	02/06/96	-120 ± 140	Unfiltered		LAS
ES-31	Primary	02/04/97	155 ± 64	Unfiltered		LAS
ES-31	Primary	02/04/98	38.4 ± 120	Unfiltered		TN
ES-31	Primary	02/06/99	62.7 ± 100	Unfiltered	•	TN
ES-31	Primary	02/06/00	0 ± 120	Unfiltered		TR
ES-31	Primary	02/15/01	24.8 ±120	Unfiltered		ES
ES-31	Primary	02/18/02	65 ± 121	Unfiltered		DL
ES-31	Primary	02/19/03	21.1 ± 110	Unfiltered		ES
HAR-03	Primary	09/11/89	-4.78 ± 121	Unfiltered		UST
HAR-03	Split	09/11/89	<1000	Unfiltered		TMA
HAR-04	Primary	09/11/89	-185 ± 115	Unfiltered		UST
HAR-04	Split	09/11/89	<1000	Unfiltered		TMA
HAR-04	Dup	09/11/89	<1000	Unfiltered		TMA
HAR-14	Primary	09/12/89	-22.9 ± 124	Unfiltered		UST
HAR-14	Split	09/12/89	<1000	Unfiltered		TMA
HAR-30	Primary	09/12/89	-45.0 ± 129	Unfiltered		UST
HAR-30	Split	09/12/89	<1000	Unfiltered		TMA
	FORMATION WELLS					
RD-01	Primary	09/11/89	123 ± 137	Unfiltered		UST
RD-01	Split	09/11/89	<1000	Unfiltered		TMA
RD-03	Primary	09/10/89	-155 ± 122	Unfiltered		UST
RD-03	Split	09/10/89	<1000	Unfiltered		TMA
RD-03	Primary	09/11/89	<1000	Unfiltered	•	TMA
RD-03	Primary	09/12/89	-129 ± 117	Unfiltered		UST
RD-05B	Primary	09/10/89	-10.3 ± 128	Unfiltered		UST
RD-05B	Split	09/10/89	<1000	Unfiltered		TMA
RD-05B	Primary	09/10/91	144 ± 202	Unfiltered		IT
RD-06	Primary	09/10/89	-44.0 ± 126	Unfiltered		UST
RD-06	Split	09/10/89	<1000	Unfiltered		TMA
RD-06	Primary	03/06/91	83.1 ± 193	Unfiltered		ΙΤ
RD-06	Primary	09/10/91	58.6 ± 197	Unfiltered		ΙΤ
RD-06	Primary	03/10/92	<500	Unfiltered		CEP
RD-06	Primary	08/06/95	23.5 ± 5.9	Unfiltered	Analysis conducted using electrolytic enrichment.	LAS

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

	Sample	Date	Concentration	Sample		
Well Identifier	Туре	Sampled	(picoCuries per liter)	Handling	Sample Comments	Laborator
RD-07	Primary	09/11/89	-101 ± 128	Unfiltered		UST
RD-07	Split	09/11/89	<1000	Unfiltered		TMA
RD-07	Primary	12/05/90	-8.63 ± 201	Unfiltered		IT
RD-07	Primary	03/09/91	32.3 ± 192	Unfiltered		ΙΤ
RD-07	Primary	12/07/91	68.4 ± 215	Unfiltered		IT
RD-07	Primary	03/06/92	<500	Unfiltered		CEP
RD-07	Primary	03/07/93	342 ± 429	Unfiltered		CEP
RD-07	Primary	02/27/94	100 ± 160	Unfiltered		LAS
RD-07	Primary	08/09/94	-10 ± 140	Unfiltered		LAS
RD-07	Primary	02/09/95	90 ± 200	Unfiltered		LAS
RD-07	Dup	02/09/95	-30 ± 190	Unfiltered		LAS
RD-07	Primary	08/04/95	-10 ± 210	Unfiltered		LAS
RD-07	Primary	02/07/96	30 ± 160	Unfiltered		LAS
RD-07 RD-07	•	08/18/96	-40 ± 110	Unfiltered		LAS
	Primary			Unfiltered		
RD-07	Primary	02/25/97	60 ± 120			LAS
RD-07	Primary	08/25/97	-9 ± 99	Unfiltered		LAS
RD-07	Primary	02/05/98	16 4 ± 120	Unfiltered		TN
RD-07	Primary	08/05/98	-48.2 ± 130	Unfiltered		TN
RD-07	Primary	02/06/99	59.3 ± 100	Unfiltered		TN
RD-07	Primary	08/19/99	-18.1 ± 96	Unfiltered		TN
RD-07	Primary	03/16/00	-21.1 ± 110	Unfiltered		TR
RD-07	Primary	08/10/00	-33.0 ± 130	Unfiltered		TR
RD-07	Primary	02/23/01	51.2 ± 130	Unfiltered		ES
RD-07	Primary	11/07/01	0.00 ± 77	Unfiltered		DL
RD-07	Primary	02/22/02	0.00 ± 200	Unfiltered		DL
RD-07	Primary	08/20/02	-10.6 ± 120	Unfiltered		ES
RD-07(Z3)	Primary	02/10/03	0.00 ± 110	Unfiltered		ES
RD-07(Z13)	Primary	08/28/03	-37.4 ± 110 (U)	Unfiltered		ES
RD-08	Primary	09/11/89	-136 ± 126	Unfiltered		UST
RD-08	Split	09/11/89	<1000	Unfiltered		TMA
RD-10	Primary	09/10/89	-72.1 ± 125	Unfiltered		UST
RD-10	Split	09/10/89	<1000	Unfiltered		TMA
RD-10	Primary	03/06/91	21.2 ± 190	Unfiltered		IT
RD-10	Primary	03/07/92	<500	Unfiltered		CEP
RD-13	Primary	09/10/89	<1000	Unfiltered		TMA
RD-13	Primary	09/12/89	-167 ± 115	Unfiltered		UST
RD-13	Primary	10/17/89	-88.1 ± 229	Unfiltered		UST
RD-13	Primary	12/06/90	-28.8 ± 197	Unfiltered		IT
RD-13	Primary	03/08/91	-33.32 ± 189	Unfiltered		IT
RD-13	Primary	12/10/91	-65.4 ± 214	Unfiltered		IT
RD-13	Primary	03/12/92	<500	Unfiltered		CEP
RD-13	Primary	03/08/93	63 ± 327	Unfiltered		CEP
RD-13	Primary	08/08/95	7.1 ± 6.6	Unfiltered	Analysis conducted using electrolytic enrichment.	LAS
RD-13	Primary	08/26/97	-60 ± 92	Unfiltered		LAS
RD-14	Primary	10/18/89	-157 ± 226	Unfiltered		UST
RD-14	Dup	10/18/89	161 ± 202	Unfiltered		UST
RD-14	Primary	12/07/90	2.77 ± 195	Unfiltered		IT
RD-14	Primary	03/09/91	26 8 ± 191	Unfiltered		iT
RD-14	Primary	12/06/91	-90.6 ± 206	Unfiltered		IT
(D-17	i innary	12/00/31	-90.6 ± 208 <500	Unfiltered		CEP

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
	Туре	Sampled	liter)	Handling	24p.4 201111101110	
RD-14	Primary	03/07/93	475 ± 499	Unfiltered		CEP
RD-14	Primary	02/24/94	50 ± 150	Unfiltered		LAS
RD-14	Primary	02/08/95	-50 ± 190	Unfiltered		LAS
RD-14	Primary	02/16/96	-130 ± 170	Unfiltered		LAS
RD-15	Primary	02/07/97	40 ± 120	Unfiltered		LAS
RD-15	Primary	10/19/89	-12.2 ± 192	Unfiltered		UST
RD-15	Primary	12/07/90	49.9 ± 198	Unfiltered		IT
RD-15	Primary	03/10/91	85.5 ± 186	Unfiltered		IT
RD-15	Primary	12/06/91	-26.8 ± 210	Unfiltered		IT
RD-15	Primary	03/11/92	<500	Unfiltered		CEP
RD-15	Split	03/11/92	<100	Unfiltered		TEL
RD-15	Primary	05/10/01	75.2 ± 120	Unfiltered		ES
RD-15	Primary	03/06/02	0 ± 78	Unfiltered		DL.
RD-15	Primary	02/26/03	68.7 ± 120	Unfiltered		ES
RD-16	Primary	10/25/89	176 ± 222	Unfiltered		UST
RD-16	Primary	12/07/90	56.3 ± 198	Unfiltered		IT
RD-16	Primary	03/09/91	98.1 ± 187	Unfiltered		IT
RD-16	Primary	12/05/91	67.4 ± 219	Unfiltered		IT
RD-16	Primary	06/06/92	564 ± 529	Unfiltered		CEP
RD-16	Primary	05/27/98	-160 ± 120	Unfiltered		TN
RD-17	Primary	10/18/89	77.8 ± 243	Unfiltered		UST
RD-17	Dup	10/18/89	14.1 ± 194	Unfiltered		UST
RD-17	Primary	12/04/90	108 ± 199	Unfiltered		IT
RD-17	Primary	03/05/91	1.85 ± 189	Unfiltered		IT
RD-17	Primary	12/07/91	-44.4 ± 209	Unfiltered		iT
RD-17	Split	12/07/91	<500	Unfiltered		CEP
RD-17	Primary	03/04/92	-98 ± 498	Unfiltered		CEP
RD-17	Primary	03/05/93	160 ± 300	Unfiltered		CEP
RD-17	Primary	02/26/94	-70 ± 130	Unfiltered		LAS
RD-17	Primary	02/08/95	-10 ± 200	Unfiltered		LAS
RD-17	Primary	02/04/96	-30 ± 150	Unfiltered		LAS
RD-17	Primary	02/08/97	10 ± 120	Unfiltered		LAS
RD-17	Primary	02/04/98	-80.3 ± 110	Unfiltered		TN
RD-17	Primary	02/08/99	-13.1 ± 120	Unfiltered		TN
RD-17	Primary	02/21/00	62.8 ± 120	Unfiltered	•	TR
RD-17	Primary	02/14/01	71.9 ± 120	Unfiltered		ES
RD-17	Primary	03/01/02	264 ± 58	Unfiltered		DL
RD-17	Primary	02/24/03	-52.5 ± 110	Unfiltered		ES
RD-18	Primary	10/26/89	53.6 ± 215	Unfiltered		UST
RD-18	Primary	12/08/90	26.8 ± 195	Unfiltered		IT
RD-18	Primary	03/09/91	201 ± 192	Unfiltered		iT
RD-18	Primary	12/11/91	-18.3 ± 217	Unfiltered		iT
RD-18	Primary	03/12/92	<500	Unfiltered		CEP
RD-18	Primary	02/22/94	40 ± 150	Unfiltered		LAS
RD-18	Primary	02/17/95	-90 ± 170	Unfiltered		LAS
RD-18	Primary	02/05/96	20 ± 160	Unfiltered		LAS
RD-18	Primary	02/06/97	100 ± 60	Unfiltered		LAS
RD-18	Primary	02/06/98	13.7 ± 110	Unfiltered		TN
RD-19	Primary	10/26/89	27.3 ± 214	Unfiltered		UST
RD-19	Primary	12/08/90	-20.3 ± 193	Unfiltered		IT
RD-19	Primary	03/08/91	11.5 ± 182	Unfiltered		IT

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per liter)	Sample Handling	Sample Comments	Laboratory
RD-19	Dup	03/08/91	225 ± 193	Unfiltered		IT
RD-19	Primary	12/11/91	-22.1 ± 217	Unfiltered		iT .
RD-19	Primary	03/12/92	<500	Unfiltered		CEP
RD-19	Primary	03/08/93	262 ± 499	Unfiltered		CEP
RD-19	Primary	02/26/94	-80 ± 130	Unfiltered		LAS
RD-19	Primary	02/15/95	-40 ± 180	Unfiltered		LAS
RD-19	Primary	02/06/96	-40 ± 150	Unfiltered		LAS
RD-19	Primary	02/07/97	-60 ± 100	Unfiltered		LAS
RD-19	Primary	02/06/98	49.9 ± 120	Unfiltered		TN
RD-19	Primary	10/17/89	-72.1 ± 230	Unfiltered		UST
RD-20	· · · · · · · · · · · · · · · · · · ·	12/07/90	-72.1 ± 230 49.9 ± 197	Unfiltered		
RD-20	Primary	12/10/90	49.9 ± 197 26.8 ± 192			IT
	Primary			Unfiltered		IT
RD-20	Primary	03/05/91	132 ± 196	Unfiltered		IT
RD-20	Primary	12/10/91	20.2 ± 219	Unfiltered	·	IT
RD-20	Primary	03/04/92	-274 ± 486	Unfiltered		CEP
RD-20	Primary	02/22/94	-120 ± 120	Unfiltered		LAS
RD-20	Primary	02/16/95	-40 ± 180	Unfiltered		LAS
RD-20	Dup	02/16/95	-50 ± 180	Unfiltered		LAS
RD-20	Primary	02/04/96	-110 ± 150	Unfiltered		LAS
RD-20	Primary	02/08/97	30 ± 120	Unfiltered		LAS
RD-20	Primary	02/04/98	-16.4 ± 120	Unfiltered		TN
RD-21	Primary	10/20/89	-100 ± 229	Unfiltered		UST
RD-21	Dup	10/20/89	35.7 ± 194	Unfiltered		UST
RD-21	Primary	12/03/90	182 ± 202	Unfiltered		IT
RD-21	Primary	03/08/91	119 ± 188	Unfiltered		ΙΤ
RD-21	Primary	12/05/91	184 ± 225	Unfiltered		!T
RD-21	Primary	03/04/92	-256 ± 497	Unfiltered		CEP
RD-21	Primary	03/06/93	314 ± 335	Unfiltered		CEP
RD-21	Primary	06/22/93	-570 ± 500	Unfiltered		CEP
RD-21	Primary	08/06/93	560 ± 510	Unfiltered		CEP
RD-21	Primary	11/06/93	0.000 ± 120	Unfiltered		LAS
RD-21	Primary	02/25/94	50 ± 150	Unfiltered		LAS
RD-21	Primary	08/08/94	-150 ± 110	Unfiltered		LAS
RD-21	Primary	02/08/95	40 ± 210	Unfiltered		LAS
RD-21	Primary	08/31/95	-60 ± 220	Unfiltered		LAS
RD-21	Primary	02/16/96	-110 ± 170	Unfiltered		LAS
RD-21	Primary	08/18/96	-40 ± 110	Unfiltered		LAS
RD-21	Primary	02/06/97	117 ± 61	Unfiltered		LAS
RD-21	Primary	02/09/98	13.7 ± 110	Unfiltered		TN
RD-21	Primary	02/16/99	0 ± 120	Unfiltered		TN
RD-21	Primary	03/15/00	25.0 ± 110	Unfiltered		TR
RD-21	Primary	10/24/01	0.00 ± 106	Unfiltered		DL
RD-21	Primary	03/06/02	0.00 ± 77	Unfiltered		DL
RD-21(Z2)	Primary	02/25/03	86.9 ± 120	Unfiltered		ES
RD-22	Primary	10/19/89	-47.9 ± 189	Unfiltered		UST
RD-22	Primary	12/04/90	41.3 ± 195	Unfiltered		IT
RD-22	Dup	12/04/90	116 ± 198	Unfiltered		IT
RD-22	Primary	03/11/91	-90.5 ± 186	Unfiltered		iT
RD-22	Primary	12/06/91	-26.8 ± 210	Unfiltered		iT
RD-22	Primary	06/05/92	75 ± 517	Unfiltered		CEP
RD-22	Primary	03/20/93	-627 ± 490	Unfiltered		CEP

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per	Sample Handling	Sample Comments	Laboratory
RD-22	Primary	06/22/93	liter) 118 ± 500	Unfiltered		CEP
RD-22	Primary	08/05/93	440 ± 500	Unfiltered		CEP
RD-22	Primary	11/21/93	-100 ± 110	Unfiltered		LAS
	-			Unfiltered		LAS
RD-22	Primary	02/24/94	70 ± 150			
RD-22	Primary	08/09/94	20 ± 140	Unfiltered		LAS
RD-22	Primary	02/17/95	-20 ± 180	Unfiltered		LAS
RD-22	Primary	08/29/95	100 ± 240	Unfiltered		LAS
RD-22	Primary	02/16/96	20 ± 190	Unfiltered		LAS
RD-22	Primary	08/18/96	-20 ± 110	Unfiltered		LAS
RD-22	Primary	02/26/97	140 ± 130	Unfiltered		LAS
RD-22	Primary	05/28/98	43.7 ± 110	Unfiltered		TN
RD-22	Primary	02/17/99	41.5 ± 120	Unfiltered		TN
RD-22	Primary	02/06/00	-139 ± 120	Unfiltered		TR
RD-22	Primary	02/16/01	-6.18 ± 120	Unfiltered		ES
RD-22	Primary	02/20/02	228 ± 80	Unfiltered		DL
RD-22(Z2)	Primary	02/24/03	16.5 ± 110	Unfiltered		ES
RD-23	Primary	10/20/89	589 ± 267	Unfiltered		UST
RD-23	Primary	06/29/90	129 ± 218	Unfiltered		UST
RD-23	Primary	12/05/90	88.3 ± 206	Unfiltered		IT
RD-23	Primary	03/11/91	106 ± 195	Unfiltered		ΙΤ
RD-23	Dup	03/11/91	64.7 ± 193	Unfiltered		IT
RD-23	Primary	12/05/91	256 ± 229	Unfiltered		IT
RD-23	Primary	03/04/92	-66 ± 517	Unfiltered		CEP
RD-23	Primary	03/21/93	455 ± 499	Unfiltered		CEP
RD-23	Primary	06/23/93	1574 ± 702	Unfiltered		CEP
RD-23	Reanalysis of Primary	06/23/93	672 ± 735	Unfiltered		CEP
RD-23	Primary	08/06/93	1108 ± 514	Unfiltered		CEP
RD-23	Reanalysis of Primary	08/06/93	406 ± 500	Unfiltered		CEP
RD-23	Primary	02/25/94	850 ± 250	Unfiltered		CEP
RD-23	Primary	08/08/94	500 ± 210	Unfiltered		LAS
RD-23	Primary	11/22/94	630 ± 250	Unfiltered		LAS
RD-23	Primary	02/05/95	340 ± 230	Unfiltered		LAS
RD-23	Primary	08/03/95	400 ± 250	Unfiltered		LAS
RD-23	Primary	02/16/96	430 ± 210	Unfiltered		LAS
RD-23	Primary	08/18/96	450 ± 180	Unfiltered		LAS
RD-23	Primary	02/27/97	350 ± 150	Unfiltered		LAS
RD-23	Primary	02/07/98	234 ± 120	Unfiltered		TN
RD-23	Primary	02/08/99	294 ± 130	Unfiltered		TN
RD-23	Primary	02/05/00	64.4 ± 120	Unfiltered		TR
RD-23	Primary	10/25/01	46 ± 108	Unfiltered		DL
RD-23						
RD-23(Z1)	Primary	03/01/02	304 ± 59	Unfiltered		DL
RD-23(21)	Primary	02/26/03	116 ± 120	Unfiltered	·	<u>ES</u> UST
RD-24	Primary	09/12/89	-22 ± 122	Unfiltered		
	Dup Briman	09/12/89	<1000	Unfiltered		AMT
RD-24	Primary Primary	10/17/89	-89.0 ± 229	Unfiltered		UST
RD-24	Primary	12/05/90	37.4 ± 204	Unfiltered		IT.
RD-24	Primary	03/06/91	158 ± 197	Unfiltered		IT
RD-24	Primary	12/11/91	-33.7 ± 216	Unfiltered		IT CED
RD-24	Primary	03/06/92	<500	Unfiltered		CEP
RD-24 RD-24	Primary Primary	02/23/94 08/08/94	230 ± 180 80 ± 150	Unfiltered Unfiltered		LAS LAS

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
	Туре	Sampled	liter)	Handling	·	
RD-24	Primary	02/16/95	320 ± 220	Unfiltered		LAS
RD-24	Primary	08/10/95	170 ± 230	Unfiltered		LAS
RD-24	Primary	02/07/96	400 ± 190	Unfiltered		LAS
RD-24	Primary	08/07/96	320 ± 160	Unfiltered		LAS
RD-24	Primary	02/07/97	500 ± 180	Unfiltered		LAS
RD-24	Primary	08/04/97	390 ± 160	Unfiltered		LAS
RD-24	Primary	02/18/98	358 ± 130	Unfiltered		TN
RD-24	Primary	05/05/98	161 ± 130	Unfiltered		TN
RD-24	Primary	08/04/98	299 ± 140	Unfiltered		TN
RD-24	Primary	02/02/99	220 ± 120	Unfiltered		TN
RD-24	Primary	08/11/99	401 ± 110	Unfiltered		TN
RD-24	Primary	02/03/00	317 ± 130	Unfiltered		TR
RD-24	Primary	08/04/00	267 ± 140	Unfiltered		TR
RD-24	Primary	02/06/01	245 ± 110	Unfiltered		ES
RD-24	Primary	10/25/01	493 ± 113	Unfiltered		DL
RD-24	Primary	02/25/02	285 ± 58	Unfiltered		DL
RD-24	Primary	11/06/02	162 ± 110	Unfiltered		ES
RD-24	Primary	02/12/03	257 ± 120	Unfiltered		ES
RD-24	Primary	11/14/03	185 ± 120 (U)	Unfiltered		ES
RD-24	Split	11/14/03	237 ± 65	Unfiltered		STL
RD-25	Primary	09/12/89	-162 ± 116	Unfiltered		UST
RD-25	₹	09/12/89				
	Dup		<1000	Unfiltered		TMA
RD-25	Split	09/12/89	<1000	Unfiltered		TMA
RD-25	Primary	10/20/89	-99.3 ± 229	Unfiltered		UST
RD-25	Primary	12/05/90	17.3 ± 202	Unfiltered		IT •=
RD-25	Primary	03/06/91	-45.3 ± 187	Unfiltered		IT
RD-25	Primary	12/10/91	93.3 ± 222	Unfiltered		IT
RD-25	Primary	03/06/92	<500	Unfiltered		CEP
RD-25	Primary	03/17/93	257 ± 427	Unfiltered		CEP
RD-25	Primary	02/28/94	-40 ± 130	Unfiltered		LAS
RD-25	Primary	08/17/94	-30 ± 130	Unfiltered		LAS
RD-25	Primary	02/09/95	-40 ± 190	Unfiltered		LAS
RD-25	Primary	08/18/95	-100 ± 200	Unfiltered		LAS
RD-25	Primary	02/06/96	-20 ± 150	Unfiltered		LAS
RD-25	Primary	08/20/96	50 ± 120	Unfiltered		LAS
RD-25	Primary	02/07/97	240 ± 150	Unfiltered		LAS
RD-25	Primary	08/21/97	-30 ± 110	Unfiltered		LAS
RD-25	Primary	02/05/98	-59.0 ± 110	Unfiltered		TN
RD-25	Primary	08/18/98	-66.5 ± 120	Unfiltered		TN
RD-25	Primary	02/16/99	81.0 ± 120	Unfiltered		TN
RD-25	Primary	08/19/99	-20.3 ± 98	Unfiltered		TN
RD-25	Primary	02/16/00	23.4 ± 110	Unfiltered		TR
RD-25	Primary	08/09/00	3.69 ± 130	Unfiltered		TR
RD-25	Primary	02/07/01	-48.4 ± 98	Unfiltered		ES
RD-25	Primary	10/25/01	0.00 ± 78	Unfiltered		DL
RD-25	Primary	03/07/02	0.00 ± 78	Unfiltered		DL
RD-25	Primary	11/06/02	-95.2 ± 100	Unfiltered		ES
RD-25	Primary	02/24/03	-31.8 ± 110	Unfiltered		ES
RD-25	Primary	11/13/03	9.52 ± 120 (U)	Unfiltered		ES
RD-26	Primary	10/20/89	45.9 ± 237	Unfiltered		UST
RD-26	Primary	12/04/90	209 ± 204	Unfiltered		IT

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per	Sample Handling	Sample Comments	Laboratory
			liter)			
RD-26	Primary	03/07/91	110 ± 187	Unfiltered		IT
RD-26	Primary	03/11/92	<500	Unfiltered		CEP
RD-27	Primary	10/19/89	2.82 ± 193	Unfiltered		UST
RD-27	Primary	12/04/90	90 2 ± 197	Unfiltered		IT
RD-27	Primary	03/07/91	27.9 ± 183	Unfiltered		IT
RD-27	Primary	12/06/91	-48 1 ± 209	Unfiltered		IT .
RD-27	Primary	03/09/92	<500	Unfiltered		CEP
RD-27	Primary	03/08/93	293 ± 322	Unfiltered		CEP
RD-27	Primary	08/09/93	324 ± 500	Unfiltered		CEP
RD-27	Primary	02/28/94	0 ± 140	Unfiltered		LAS
RD-27	Primary	08/18/94	-110 ± 120	Unfiltered		LAS
RD-27	Primary	02/17/95	-60 ± 180	Unfiltered		LAS
RD-27	Primary	08/18/95	80 ± 220	Unfiltered		LAS
RD-27	Primary	02/05/96	-30 ± 150	Unfiltered		LAS
RD-27	Primary	08/19/96	240 ± 150	Unfiltered		LAS
RD-27	Primary	02/05/97	87 ± 58	Unfiltered		LAS
RD-27	Primary	08/27/97	-16 ± 98	Unfiltered		LAS
RD-27	Primary	02/04/98	11.4 ± 120	Unfiltered		TN
RD-27	Primary	08/07/98	-83.9 ± 130	Unfiltered		TN
RD-27	Primary	02/16/99	3.33 ± 120	Unfiltered		TN
RD-27	Primary	08/17/99	-48.0 ± 94	Unfiltered		TN
RD-27	Primary	02/21/00	31.2 ± 110	Unfiltered		TR
RD-27	Primary	08/04/00	73.6 ± 130	Unfiltered		TR
RD-27	Primary	02/14/01	8.32 ± 120	Unfiltered		ES
RD-27	Primary	10/26/01	30 ± 107	Unfiltered		DL
RD-27	Primary	03/06/02	0 ± 77	Unfiltered		DL
RD-27	Primary	08/22/02	-24.9 ± 120	Unfiltered		ES
RD-27	Primary	02/21/03	29.8 ± 110	Unfiltered		ES
RD-27	Primary	11/14/03	-11.2 ± 110 (U)	Unfiltered		ES
RD-27	Split	11/14/03	9.54 ± 48.9 (U)	Unfiltered		STL
RD-28	Primary	09/13/89	665 ± 149	Unfiltered	······································	UST
RD-28	Split	09/13/89	<1000	Unfiltered		TMA
RD-28	Primary	10/19/89	699 ± 234	Unfiltered		UST
RD-28	Primary	03/27/90	819 ± 236	Unfiltered		UST
RD-28	Primary	07/01/90	612 ± 244	Unfiltered		UST
RD-28	Primary	09/16/90	814 ± 242	Unfiltered		UST
RD-28	Dup	09/16/90	839 ± 242	Unfiltered		UST
RD-28	Primary	12/05/90	567 ± 232	Unfiltered		IT.
RD-28	Primary	03/06/91	638 ± 223	Unfiltered		iT
RD-28	Primary	06/10/91	431 ± 227	Unfiltered		IT
RD-28	Primary	09/11/91	620 ± 247	Unfiltered		iT
RD-28	Primary	12/10/91	575 ± 250	Unfiltered		iT
RD-28	Split	12/10/91	<500	Unfiltered		CEP
RD-28	Primary	03/06/92	420 ± 110	Unfiltered		TEL
RD-28	Split	03/06/92	<500	Unfiltered		CEP
RD-28	Primary	06/10/92	1025 ± 505	Unfiltered		CEP
RD-28	Split	06/10/92	540 ± 120	Unfiltered		TEL
RD-28 RD-28		09/16/92		Unfiltered		CEP
RD-28 RD-28	Primary		300 ± 500	Unfiltered		BL
RD-28	Dup Primani	09/16/92	450 ± 290			CEP
RD-28	Primary Primary	12/07/92 03/17/93	465 ± 500 0 ± 490	Unfiltered Unfiltered		CEP

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per	Sample Handling	Sample Comments	Laboratory
	•		liter)			
RD-28	Primary	08/05/93	1684 ± 522	Unfiltered		CEP
RD-28	Reanalysis of Primary	08/05/93	369 ± 500	Unfiltered		CEP
RD-28	Primary	02/24/94	490 ± 210	Unfiltered		LAS
RD-28	Primary	08/17/94	870 ± 240	Unfiltered		LAS
RD-28	Primary	02/09/95	380 ± 230	Unfiltered		LAS
RD-28	Primary	08/18/95	680 ± 280	Unfiltered		LAS
RD-28	Primary	02/06/96	430 ± 190	Unfiltered		LAS
RD-28	Primary	08/20/96	450 ± 170	Unfiltered		LAS
RD-28	Primary	02/06/97	496 ± 83	Unfiltered		LAS
RD-28	Primary	08/28/97	320 ± 140	Unfiltered	•	LAS
RD-28	Primary	02/05/98	267 ± 130	Unfiltered		TN
RD-28	Primary	08/18/98	50.6 ± 130	Unfiltered		TN
RD-28	Primary	02/16/99	55.3 ± 120	Unfiltered		TN
RD-28	Primary	11/03/99	-50 ± 98	Unfiltered		TN
RD-28	Primary	02/16/00	744 ± 140	Unfiltered		TR
RD-28	Primary	08/09/00	916 ± 150	Unfiltered		TR
RD-28	Primary	02/07/01	1100 ± 130	Unfiltered		ES
RD-28	Primary	10/25/01	0.00 ± 100	Unfiltered		DL
RD-28	Primary	02/25/02	484 ± 36	Unfiltered		DL
RD-28	Primary	11/06/02	1280 ± 140	Unfiltered		ES
RD-28	Primary	02/24/03	756 ± 130	Unfiltered		ES
RD-28	Primary	11/14/03	1430 ± 210	Unfiltered		ES
RD-29	Primary	10/18/89	-101 ± 230	Unfiltered		UST
RD-29	Primary	12/06/90	55.7 ± 201	Unfiltered		IT
RD-29	Primary	03/05/91		Unfiltered		IT
RD-29	Primary	12/10/91	105 ± 194 89.5 ± 222	Unfiltered		IT
RD-29						
	Split Briman	12/10/91	<500	Unfiltered		CEP
RD-29	Primary	03/03/92	-447 ± 520	Unfiltered		CEP
RD-29	Primary	03/05/93	366 ± 499	Unfiltered		CEP
RD-29	Primary	08/08/93	345 ± 500	Unfiltered		CEP
RD-29	Primary	02/26/94	70 ± 150	Unfiltered		LAS
RD-29	Primary	08/17/94	10 ± 260	Unfiltered		LAS
RD-29	Primary	05/09/01	19.0 ± 120	Unfiltered		ES
RD-29	Primary	05/03/02	56 ± 118	Unfiltered		DL
RD-29	Primary	05/13/03	-12.4 ± 100 (U)	Unfiltered		ES
RD-30	Primary	10/19/89	108 ± 199	Unfiltered		UST
RD-30	Primary	12/06/90	34.6 ± 200	Unfiltered		IT
RD-30	Primary	03/09/91	89.6 ± 195	Unfiltered		ΙΤ
RD-30	Primary	09/09/91	20.3 ± 199	Unfiltered		ΙΤ
RD-30	Primary	12/06/91	28.7 ± 213	Unfiltered		ΙΤ
RD-30	Primary	06/03/92	-76 ± 518	Unfiltered		CEP
RD-30	Split	06/03/92	<200	Unfiltered		TEL
RD-30	Primary	03/21/93	-686 ± 499	Unfiltered		CEP
RD-30	Primary	02/26/94	70 ± 150	Unfiltered		LAS
RD-30	Primary	08/09/94	-30 ± 130	Unfiltered		LAS
RD-30	Primary	02/08/95	10 ± 200	Unfiltered		LAS
RD-30	Primary	08/19/95	30 ± 220	Unfiltered		LAS
RD-30	Primary	02/28/96	-40 ± 180	Unfiltered		LAS
RD-30	Primary	08/20/96	40 ± 120	Unfiltered		LAS
RD-30	Primary	02/25/97	40 ± 110	Unfiltered		LAS
RD-30	Primary	08/27/97	50 ± 110	Unfiltered		LAS

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
	Type	Sampled	liter)	Handling	•	
RD-30	Primary	05/28/98	78.6 ± 110	Unfiltered		TN
RD-30	Primary	08/05/98	-85.0 ± 130	Unfiltered		TN
RD-30	Primary	02/05/99	38 5 ± 99	Unfiltered		TN
RD-30	Primary	05/05/00	-0.880 ± 12	Unfiltered		TR
RD-30	Primary	08/08/00	197 ± 130	Unfiltered		TR
RD-30	Primary	05/09/01	72.5 ± 120	Unfiltered		ES
RD-30	Primary	11/09/01	136 ± 104	Unfiltered		DL
RD-30	Primary	03/11/02	264 ± 82	Unfiltered		DL
RD-30	Primary	08/30/02	52.6 ± 120	Unfiltered		ES
RD-30	Primary	02/07/03	83.8 ± 110	Unfiltered		ES
RD-30	Primary	11/14/03	-76.9 ± 110 (U)	Unfiltered		ES
RD-31	Primary	10/24/89	188 ± 227	Unfiltered		UST
RD-31	Primary	12/05/90	-56.6 ± 198	Unfiltered		IT .
RD-31	Primary	03/10/91	182 ± 191	Unfiltered		iT
RD-31	Primary	03/05/92	<500	Unfiltered		CEP
RD-33A	Primary	12/05/91	97.2 ± 221	Unfiltered		IT IT
RD-33A	Primary	12/12/91	-14.4 ± 214	Unfiltered		IT
RD-33A				Unfiltered		CEP
	Split	12/12/91	<500			
RD-33A	Primary	06/08/92	335 ± 515	Unfiltered		CEP
RD-33A	Primary	09/15/92	299 ± 500	Unfiltered		CEP
RD-33A	Primary	12/05/92	-43 ± 500	Unfiltered		CEP
RD-33A	Primary	06/24/93	-468 ± 437	Unfiltered		CEP
RD-33A	Primary	08/24/93	436 ± 500	Unfiltered		CEP
RD-33A	Primary	11/17/93	-70 ± 120	Unfiltered		LAS
RD-33A	Primary	02/27/94	-120 ± 120	Unfiltered		LAS
RD-33A	Primary	05/10/94	60 ± 130	Unfiltered		LAS
RD-33A	Primary	08/18/94	-20 ± 130	Unfiltered		LAS
RD-33A	Primary	02/07/95	-50 ± 200	Unfiltered		LAS
RD-33A	Primary	02/07/95	4.6 ± 5.5	Unfiltered	Analysis conducted using electrolytic enrichment.	LAS
RD-33A	Primary	08/09/95	90 ± 220	Unfiltered		LAS
RD-33A	Primary	02/19/96	10 ± 180	Unfiltered		LAS
RD-33A	Primary	08/23/96	120 ± 140	Unfiltered		LAS
RD-33A	Primary	02/25/97	120 ± 130	Unfiltered		LAS
RD-33A	Primary	08/27/97	-78 ± 86	Unfiltered		LAS
RD-33A	Primary	05/27/98	-125 ± 120	Unfiltered		TN
RD-33A	Primary	08/17/98	0 ± 130	Unfiltered		TN
RD-33A	Primary	02/03/99	-2.34 ± 100	Unfiltered		TN
RD-33A	Primary	02/09/00	-59.1 ± 120	Unfiltered		TR
RD-33A	Primary	05/14/01	-57.4 ± 120	Unfiltered		ES
RD-33A	Primary	02/15/02	257 ± 122	Unfiltered		DL
RD-33A(Z4)	Primary	01/30/03	8.31 ± 120	Unfiltered		ES
RD-33B	Primary	12/12/91	51.9 ± 218	Unfiltered		IT .
RD-33B	Split	12/12/91	<500	Unfiltered		CEP
RD-33B	Primary	06/24/92	-219 ± 492	Unfiltered		CEP
RD-33B	Primary	09/15/92	500 ± 500	Unfiltered		CEP
RD-33B	Primary	12/05/92	4 ± 500	Unfiltered		CEP
RD-33B	Primary	06/24/93	-346 ± 500	Unfiltered		CEP
RD-33B	Primary	08/24/93	0 ± 500	Unfiltered		CEP
RD-33B	Primary	11/17/93	-60 ± 120	Unfiltered		LAS
RD-33B	Primary	02/27/94	-60 ± 120	Unfiltered		LAS

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
110111001101101	Туре	Sampled	liter)	Handling	Sumple Somments	cabbiatory
RD-33B	Primary	05/10/94	-20 ± 120	Unfiltered		LAS
RD-33B	Primary	08/18/94	-130 ± 120	Unfiltered		LAS
RD-33B	Primary	02/07/95	20 ± 200	Unfiltered		LAS
RD-33B	Primary	08/09/95	-80 ± 200	Unfiltered		LAS
RD-33B	Primary	02/19/96	-40 ± 180	Unfiltered		LAS
RD-33B	Primary	08/23/96	-20 ± 110	Unfiltered		LAS
RD-33B	Primary	02/25/97	30 ± 110	Unfiltered		LAS
RD-33B	Primary	08/22/97	-60 ± 110	Unfiltered		LAS
RD-33B	Primary	05/27/98	-173 ± 120	Unfiltered		TN
RD-33B	Primary	08/17/98	-22.9 ± 120	Unfiltered		TN
RD-33B	Primary	02/03/99	-6.96 ± 100	Unfiltered		TH
RD-33B	Primary	08/11/99	-1.67 ± 88	Unfiltered		TN
RD-33B	Primary	05/17/00	-38.6 ± 100	Unfiltered		TR
RD-33B	Primary	08/09/00	64.1 ± 130	Unfiltered		TR
RD-33B	Primary	02/17/01	-67.1 ± 120	Unfiltered		ES
RD-33B	Primary	10/30/01	0.00 ± 80	Unfiltered		DL
RD-33B	Primary	02/15/02	0.00 ± 118	Unfiltered		DL
RD-33B	Primary	08/21/02	-56.4 ± 120	Unfiltered		ES
RD-33B	Primary	02/11/03	87.7 ± 120	Unfiltered		ES
RD-33B	Primary	11/13/03	52.0 ± 120 (U)	Unfiltered		ES
RD-33C	Primary	12/05/91	68.3 ± 219	Unfiltered		IT IT
RD-33C	Primary	12/12/91	-21.1 ± 214	Unfiltered		IT
RD-33C	Split	12/12/91	<500	Unfiltered		CEP
RD-33C	Primary	06/08/92	368 ± 518	Unfiltered		CEP
RD-33C RD-33C	Primary	09/15/92	241 ± 500	Unfiltered		CEP
RD-33C RD-33C	Primary	12/05/92	-215 ± 500	Unfiltered		CEP
RD-33C	Primary	06/24/93	-219 ± 500 -280 ± 500	Unfiltered		CEP
RD-33C	•	08/24/93	-280 ± 500 159 ± 500			CEP
RD-33C	Primary	11/17/93	30 ± 130	Unfiltered Unfiltered		LAS
RD-33C	Primary					
	Primary	02/27/94	0 ± 140	Unfiltered		LAS
RD-33C RD-33C	Primary	05/09/94 08/17/94	-20 ± 120 -40 ± 130	Unfiltered Unfiltered		LAS LAS
RD-33C	Primary					LAS
RD-33C	Primary	02/07/95	-10 ± 200	Unfiltered		LAS
RD-33C	Primary	08/09/95	0 ± 210	Unfiltered Unfiltered		LAS
	Primary	02/19/96	40 ± 190			LAS
RD-33C	Primary	08/22/96	30 ± 120	Unfiltered		
RD-33C	Primary	02/25/97	40 ± 120	Unfiltered		LAS
RD-33C	Primary	08/21/97	-20 ± 120	Unfiltered		LAS
RD-33C	Primary	05/27/98	-149 ± 120	Unfiltered		TN
RD-33C	Primary	08/17/98	37.4 ± 130	Unfiltered		TN
RD-33C	Primary	02/03/99	-2.30 ± 99	Unfiltered		TN
RD-33C	Primary	08/11/99	1.70 ± 90	Unfiltered		TN
RD-33C	Primary	02/09/00	-90.6 ± 110	Unfiltered		TR
RD-33C	Primary	08/09/00	77.5 ± 130	Unfiltered		TR
RD-33C	Primary	02/17/01	-50.0 ± 120	Unfiltered		ES D'
RD-33C	Primary	10/30/01	0.00 ± 78	Unfiltered		DL
RD-33C	Primary	02/15/02	175 ± 121	Unfiltered		DL
RD-33C	Primary	08/20/02	55.8 ± 120	Unfiltered		ES
RD-33C	Primary	02/10/03	73.1 ± 120	Unfiltered		ES
RD-33C	Primary	11/13/03	107 ± 110 (U)	Unfiltered		ES
RD-33C	Split	11/13/03	-23.3 ± 46.7 (U)	Unfiltered		STL

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration	Sample	Comple Correction	Lohart
vveii identifier	Туре	Sampled	(picoCuries per liter)	Handling	Sample Comments	Laboratory
RD-34A	Primary	12/05/91	7040 ± 685	Unfiltered		!T
RD-34A	Split	12/05/91	7155 ± 632	Unfiltered		CEP
RD-34A	Primary	03/10/92	7069 ± 598	Unfiltered		CEP
RD-34A	Split	03/10/92	6700 ± 200	Unfiltered		TEL
RD-34A	Primary	06/08/92	2529 ± 548	Unfiltered		CEP
RD-34A	Primary	09/13/92	1841 ± 527	Unfiltered		CEP
RD-34A	Split	09/13/92	1800 ± 300	Unfiltered		BL
RD-34A	Primary	12/05/92	3006 ± 545	Unfiltered		CEP
RD-34A	Reanalysis of Primary	12/05/92	4180 ± 768	Unfiltered		CEP
RD-34A	Split	12/05/92	3500 ± 400	Unfiltered		BL.
RD-34A	Primary	03/09/93	1119 ± 743	Unfiltered		CEP
RD-34A	Primary	06/22/93	657 ± 500	Unfiltered		CEP
RD-34A	•					
	Primary	08/24/93	812 ± 639	Unfiltered		CEP
RD-34A	Primary	11/18/93	990 ± 230	Unfiltered		LAS
RD-34A	Primary	02/26/94	3550 ± 440	Unfiltered		LAS
RD-34A	Primary	05/09/94	3430 ± 390	Unfiltered		LAS
RD-34A	Primary	08/09/94	2710 ± 380	Unfiltered		LAS
RD-34A	Primary	11/09/94	1860 ± 340	Unfiltered		LAS
RD-34A	Primary	02/07/95	3200 ± 440	Unfiltered		LAS
RD-34A	Primary	08/09/95	2080 ± 380	Unfiltered		LAS
RD-34A	Primary	02/19/96	4020 ± 420	Unfiltered		LAS
RD-34A	Primary	08/18/96	4250 ± 470	Unfiltered		LAS
RD-34A	Primary	02/07/97	4870 ± 500	Unfiltered		LAS
RD-34A	Primary	05/27/98	2210 ± 180	Unfiltered		TN
RD-34A	Primary	08/18/98	2060 ± 180	Unfiltered		TN
RD-34A	Primary	08/29/00	2440 ± 150	Unfiltered		TR
RD-34A	Primary	05/09/01	3120 ± 200	Unfiltered		ES
RD-34A	Primary	05/16/03	2420 ± 300	Unfiltered		ES
RD-34B	Primary	12/05/91	336 ± 234	Unfiltered		ĪT
RD-34B	Primary	12/11/91	820 ± 538	Unfiltered		CEP
RD-34B	Split	12/11/91	236 ± 230	Unfiltered		IT
RD-34B	Primary Primary	03/10/92	<500	Unfiltered		CEP
RD-34B	Split	03/10/92	390 ± 100	Unfiltered		TEL
RD-34B	Primary	06/08/92	534 ± 520	Unfiltered		CEP
RD-34B	Primary	09/13/92	400 ± 500	Unfiltered		CEP
RD-34B	Split	09/13/92	420 ± 290	Unfiltered		BL
RD-34B	Primary	12/05/92	121 ± 500	Unfiltered		CEP
RD-34B	Primary	03/21/93	125 ± 490	Unfiltered		CEP
RD-34B	Primary	06/23/93	-387 ± 500	Unfiltered		CEP
RD-34B	Primary	08/24/93	286 ± 500	Unfiltered		CEP
RD-34B	Primary	11/18/93	210 ± 150	Unfiltered		LA\$
RD-34B	Primary	02/26/94	60 ± 150	Unfiltered		LAS
RD-34B	Primary	05/10/94	220 ± 150	Unfiltered		LAS
RD-34B	Primary	08/09/94	0 ± 140	Unfiltered		LAS
RD-34B	Primary	11/09/94	170 ± 190	Unfiltered		LAS
RD-34B	Primary	02/07/95	220 ± 220	Unfiltered		LAS
RD-34B	Primary	02/07/95	205 ± 12	Unfiltered	Analysis conducted using	LAS
170-040	r minary	02/01/80	200 E 12	Orinitered.	electrolytic enrichment.	LAO
RD-34B	Primary	08/09/95	90 ± 220	Unfiltered		LAS
RD-34B	Primary ·	02/19/96	448 ± 21	Unfiltered	Analysis conducted using	LAS
		J., 10100		J	electrolytic enrichment.	

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

141-11 1-1	Sample	Date	Concentration	Sample	0	1 -1 - 1
Well Identifier	Type	Sampled	(picoCuries per liter)	Handling	Sample Comments	Laboratory
RD-34B	Primary	02/19/96	440 ± 55	Unfiltered		LAS
RD-34B	Primary	08/18/96	330 ± 160	Unfiltered		LAS
RD-34B	Primary	02/07/97	150 ± 130	Unfiltered		LAS
RD-34B	Primary	08/21/97	200 ± 140	Unfiltered		LAS
RD-34B	Primary	05/27/98	372 ± 130	Unfiltered		TN
RD-34B	Primary	08/18/98	376 ± 140	Unfiltered		TN
RD-34B	Primary	02/04/99	650 ± 120	Unfiltered		TN
RD-34B	Primary	08/11/99	176 ± 100	Unfiltered		TN
RD-34B	Primary	02/05/00	200 ± 120	Unfiltered		TR
RD-34B	Primary	02/16/01	180 ± 130	Unfiltered		ES
RD-34B	Primary	11/02/01	89 ± 103	Unfiltered		DL
RD-34B	Primary	02/15/02	151 ± 121	Unfiltered		DL
RD-34B	Primary	08/23/02	-40.8 ± 120	Unfiltered		ES
RD-34B	Primary	02/06/03	171 ± 110	Unfiltered		ES
RD-34B	Primary	11/13/03	254 ± 120	Unfiltered		ES
RD-34C	Primary	12/06/91	71.2 ± 215	Unfiltered		IT
RD-34C	Primary	12/12/91	30.8 ± 217	Unfiltered		IT
RD-34C	Split	12/12/91	<500			CEP
RD-34C	Primary	03/10/92	<500 <500	Unfiltered		
RD-34C	-		<100	Unfiltered		CEP
	Split	03/10/92		Unfiltered		TEL
RD-34C	Primary	06/08/92	455 ± 519	Unfiltered		CEP
RD-34C	Primary	09/13/92	357 ± 500	Unfiltered		CEP
RD-34C	Split	09/13/92	-140 ± 270	Unfiltered		BL
RD-34C	Primary	12/05/92	-373 ± 494	Unfiltered		CEP
RD-34C	Primary	03/09/93	300 ± 499	Unfiltered		CEP
RD-34C	Primary	06/24/93	158 ± 500	Unfiltered		CEP
RD-34C	Primary	08/24/93	101 ± 500	Unfiltered		CEP
RD-34C	Primary	11/06/93	140 ± 140	Unfiltered		LAS
RD-34C	Primary	02/26/94	-30 ± 140	Unfiltered		LAS
RD-34C	Primary	05/09/94	-20 ± 120	Unfiltered		LAS
RD-34C	Primary	08/09/94	-80 ± 130	Unfiltered		LAS
RD-34C	Primary	11/09/94	40 ± 170	Unfiltered		LAS
RD-34C	Primary	02/07/95	-10 ± 200	Unfiltered		LAS
RD-34C	Primary	08/10/95	-240 ± 180	Unfiltered		LAS
RD-34C	Primary	02/19/96	-290 ± 160	Unfiltered		LAS
RD-34C	Primary	08/19/96	30 ± 110	Unfiltered		LAS
RD-34C	Primary	02/07/97	40 ± 120	Unfiltered		LAS
RD-34C	Primary	08/21/97	-30 ± 110	Unfiltered		LAS
RD-34C	Primary	05/27/98	-184 ± 120	Unfiltered		TN
RD-34C	Primary	08/17/98	127 ± 120	Unfiltered		TN
RD-34C	Primary	02/04/99	11.4 ± 99	Unfiltered		TN
RD-34C	Primary	08/12/99	45.0 ± 93	Unfiltered		TN
RD-34C	Primary	02/05/00	-75.5 ± 120	Unfiltered		TR
RD-34C	Primary	08/08/00	16.0 ± 130	Unfiltered		TR
RD-34C	Primary	02/16/01	-111 ± 120	Unfiltered		ES
RD-34C	Primary	11/02/01	20 ± 102	Unfiltered		DL
RD-34C	Primary	02/14/02	0 ± 115	Unfiltered		DL
RD-34C	Primary	08/28/02	-74.5 ± 120	Unfiltered		ES
RD-34C	Primary	02/06/03	-78.4 ± 110	Unfiltered		ES
RD-34C	Primary	11/13/03	-33.1 ± 110 (U)	Unfiltered		ES
RD-35B	Primary	05/07/99	17.4 ± 100	Unfiltered		TN

Concentration Sample Date Sample Well Identifier (picoCuries per Sample Comments Laboratory Type Sampled Handling liter) 02/17/99 **RD-38B** Primary 20.1 ± 120 Unfiltered TN RD-45A Primary 05/05/94 30 ± 130 Unfiltered LAS RD-45C 10/06/94 -70 ± 120 Unfiltered LAS Primary RD-46B Primary 02/15/99 125 ± 120 Unfiltered $\overline{\mathsf{TN}}$ RD-47 Primary 08/07/95 1.4 ± 5.2 Unfiltered Analysis conducted using LAS electrolytic enrichment. RD-48A 08/06/95 11.6 ± 6.6 Unfiltered Analysis conducted using Primary LAS electrolytic enrichment. **RD-48B** Primary 08/07/95 3.0 ± 5.6 Unfiltered Analysis conducted using LAS electrolytic enrichment. RD-48C Primary 08/06/95 14.9 ± 6.4 Unfiltered Analysis conducted using LAS electrolytic enrichment. RD-50 Unfiltered LAS Primary 05/05/94 60 ± 130 **RD-50** Primary 05/19/95 -30 ± 180 Unfiltered LAS **RD-50** Primary 05/14/96 -30 ± 170 Unfiltered LAS LAS **RD-50** Primary 05/05/97 550 ± 170 Unfiltered **RD-50** Primary 05/28/98 -18.6 ± 110 Unfiltered TN **RD-51C** Primary 12/14/91 32.7 ± 219 Unfiltered IT **RD-51C** Primary 03/06/92 <500 Unfiltered CEP RD-54A 09/12/93 -52 ± 500 Unfiltered CEP Primary 169 ± 500 RD-54A Primary 09/29/93 Unfiltered CEP RD-54A Primary 05/26/94 270 ± 160 Unfiltered LAS RD-54A Primary 08/09/94 130 ± 160 Unfiltered LAS RD-54A Primary 08/03/95 60 ± 220 Unfiltered LAS 270 ± 200 Unfiltered LAS RD-54A Primary 05/16/96 RD-54A Primary 08/23/96 440 ± 150 Unfiltered LAS RD-54A Primary 05/05/97 430 ± 150 Unfiltered LAS RD-54A Primary 08/22/97 370 ± 160 Unfiltered LAS RD-54A Primary 02/08/98 354 ± 130 Unfiltered TN RD-54A 497 ± 140 Unfiltered TN Primary 08/07/98 RD-54A 697 ± 160 TN Primary 02/08/99 Unfiltered **RD-54A** Primary 08/18/99 491 ± 110 Unfiltered TN RD-54A **Primary** 03/15/00 332 ± 120 Unfiltered TR DL RD-54A **Primary** 10/26/01 139 ± 109 Unfiltered RD-54A 67 ± 56 Unfiltered DL Primary 02/27/02 RD-54A ES Primary 105 ± 120 Unfiltered 08/14/02 ES RD-54A(Z2) Primary 02/18/03 10.7 ± 110 Unfiltered RD-54A(Z2) 08/26/03 Unfiltered ES Primary 25.3 ± 110 (U) Primary **RD-54B** 09/12/93 77 ± 500 Unfiltered CEP RD-54B Unfiltered CEP Primary 09/29/93 378 ± 500 RD-54B 05/08/94 -20 ± 120 LAS Primary Unfiltered RD-54B Primary 08/08/94 -110 ± 120 Unfiltered LAS RD-54B 08/30/95 100 ± 240 Unfiltered LAS Primary 40 ± 180 LAS RD-54B Primary 05/16/96 Unfiltered **RD-54B** Primary 08/21/96 -27 ± 91 Unfiltered LAS RD-54B Primary 08/22/97 -80 ± 100 Unfiltered LAS RD-54B Primary 40.8 ± 110 Unfiltered TN 02/08/98 RD-54B Primary 08/07/98 26.4 ± 130 Unfiltered TN RD-54B Primary 02/08/99 -59.8 ± 120 Unfiltered TN RD-54B TN Primary 08/18/99 -6.88 ± 92 Unfiltered

03/15/00

 0 ± 0

Unfiltered

Primary

RD-54B

TR

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date Sampled	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
	Туре	Sampled	liter)	Handling		•
RD-54B	Primary	10/25/01	0.00 ± 79	Unfiltered		DL
RD-54B	Primary	02/27/02	191 ± 59	Unfiltered		DL
RD-54B	Primary	08/21/02	-21.9 ± 120	Unfiltered		ES
RD-54B	Primary	08/07/03	-31.7 ± 110 (U)	Unfiltered		ES
RD-54C	Primary	09/11/93	58 ± 500	Unfiltered		CEP
RD-54C	Primary	09/29/93	236 ± 500	Unfiltered		CEP
RD-54C	Primary	05/08/94	0 ± 120	Unfiltered		LAS
RD-54C	Primary	08/08/94	-30 ± 140	Unfiltered		LAS
RD-54C	Primary	08/30/95	-10 ± 230	Unfiltered		LAS
RD-54C	Primary	05/16/96	-40 ± 170	Unfiltered		LAS
RD-54C	Primary	08/23/96	50 ± 100	Unfiltered		LAS
RD-54C	Primary	05/05/97	20 ± 110	Unfiltered		LAS
RD-54C	Primary	08/24/97	10 ± 110	Unfiltered		LAS
RD-54C	Primary	02/08/98	38.3 ± 110	Unfiltered		TN
RD-54C	Primary	08/07/98	35.4 ± 130	Unfiltered		TN
RD-54C	Primary	02/09/99	81.0 ± 120	Unfiltered		TN
RD-54C	Primary	08/18/99	28.2 ± 96	Unfiltered		TN
RD-54C	Primary	03/15/00	28.8 ± 110	Unfiltered		TR
RD-54C	Primary	11/02/01	36 ± 81	Unfiltered		DL
RD-54C	Primary	02/27/02	221 ± 57	Unfiltered		DL
RD-54C	Primary	08/22/02	67.4 ± 130	Unfiltered		ES
RD-54C	Primary	02/26/03	-79.1 ± 110	Unfiltered		ES
RD-54C	Primary	08/26/03	-12.4 ± 110	Unfiltered		ES
RD-56A	Primary	05/10/94	-40 ± 110	Unfiltered		LAS
RD-56A	Primary	02/20/96	-10 ± 180	Unfiltered		LAS
RD-56A	Primary	02/06/97	96 ± 59	Unfiltered		LAS
RD-56A	Primary	05/28/98	16.2 ± 110	Unfiltered		TN
RD-56B	Primary	05/28/98	-35.2 ± 110	Unfiltered		TN
RD-57	Primary	03/16/94	-50 ± 100	Unfiltered		LAS
RD-57	Primary	05/10/94	-60 ± 110	Unfiltered		LAS
RD-57	Primary	08/18/94	60 ± 150	Unfiltered		LAS
RD-57	Primary	02/07/95	-100 ± 190	Unfiltered		LAS
RD-57	Primary	08/09/95	-110 ± 200	Unfiltered		LAS
RD-57	Primary	02/19/96	-150 ± 170	Unfiltered		LAS
RD-57	Primary	08/22/96	-19 ± 92	Unfiltered		LAS
RD-57	Primary	02/25/97	150 ± 130	Unfiltered		LAS
RD-57	Primary	08/27/97	0 ± 100	Unfiltered		LAS
RD-57	Primary	05/26/98	-144 ± 120	Unfiltered		TN
RD-57	Primary	08/17/98	-7.03 ± 130	Unfiltered		TN
RD-57	Primary	05/13/99	17.4 ± 100	Unfiltered		TN
RD-57	Primary	08/11/99	48.8 ± 94	Unfiltered		TN
RD-57	Primary	02/09/00	-84.4 ± 110	Unfiltered		TR
RD-57	Primary	08/08/00	-14.7 ± 130	Unfiltered		TR
RD-57	Primary	05/11/01	-35.8 ± 120	Unfiltered		ES
RD-57	Primary	10/31/01	0.00 ± 80	Unfiltered		DL
RD-57	Primary	02/14/02	10 ± 120	Unfiltered		DL
RD-57	Primary	08/14/02	0±0	Unfiltered		ES
RD-57	Primary	01/29/03	-57.7 ± 110	Unfiltered		ES
RD-57(Z8)	Primary	04/30/03	18.8 ± 99 (U)	Unfiltered		ES
RD-57(Z8)	Primary	08/27/03	-24.8 ± 110 (U)	Unfiltered		ES
RD-59A	Primary	08/16/94	-70 ± 120	Unfiltered		LAS

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
vven identifier	Туре	Sampled	liter)	Handling	Sample Comments	Laboratory
RD-59A	Primary	02/06/95	160 ± 220	Unfiltered		LAS
RD-59A	Primary	02/06/95	69.5 ± 7.2	Unfiltered	Analysis conducted using electrolytic enrichment.	LAS
RD-59A	Dup	02/06/95	-140 ± 190	Unfiltered	•	LAS
RD-59A	Primary	08/08/95	-100 ± 200	Unfiltered		LAS
RD-59A	Primary	03/12/96	29.4 ± 6.6	Unfiltered	Analysis conducted using electrolytic enrichment.	LAS
RD-59A	Primary	08/21/96	-28 ± 91	Unfiltered	•	LAS
RD-59A	Primary	02/16/97	200 ± 150	Unfiltered		LAS
RD-59A	Primary	08/22/97	-30 ± 110	Unfiltered		LAS
RD-59A	Primary	08/19/98	-2.44 ± 130	Unfiltered		TN
RD-59A	Primary	02/16/99	107 ± 120	Unfiltered		TN
RD-59A	Primary	08/06/99	52.9 ± 95	Unfiltered		TN
RD-59A	Primary	03/14/00	19.2 ± 110 ·	Unfiltered		TR
RD-59A	Primary	08/10/00	13.0 ± 140	Unfiltered		TR
RD-59A	Primary	05/16/01	-23.2 ± 120	Unfiltered		ES
RD-59A	Primary	11/12/01	968 ± 115	Unfiltered		DL
RD-59A	Primary	02/28/02	536 ± 115	Unfiltered		DL
RD-59A	Primary	08/08/02	74.2 ± 120	Unfiltered		ES
RD-59A	Primary	01/31/03	23.9 ± 110	Unfiltered		ES
RD-59A	Primary	05/15/03	29.7 ± 100 (U)	Unfiltered		ES
RD-59A	Split	05/15/03	-12.3 ± 51.5 (U)	Unfiltered		STL
RD-59A	Primary	08/08/03	-33.7 ± 110 (U)	Unfiltered		ES
RD-59A	-					STL
RD-59A	Split Primary	08/08/03	17.1 ± 49 (U)	Unfiltered		ES
RD-59A	-	11/14/03	-82.5 ± 110 (U)	Unfiltered		STL
RD-59B	Split Briman/	11/14/03 08/29/94	-8.74 ± 46.3 (U)	Unfiltered		LAS
RD-59B	Primary		40 ± 150	Unfiltered		
	Primary	02/06/95	-150 ± 180	Unfiltered		LAS
RD-59B	Primary	08/08/95	-90 ± 200	Unfiltered		LAS
RD-59B	Primary	03/12/96	-80 ± 100	Unfiltered		LAS
RD-59B	Primary	08/21/96	38 ± 98	Unfiltered		LAS
RD-59B	Primary	02/16/97	20 ± 120	Unfiltered		LAS
RD-59B	Primary	08/22/97	-30 ± 110	Unfiltered		LAS
RD-59B	Primary	08/19/98	68.8 ± 130	Unfiltered		TN
RD-59B	Primary	02/16/99	26.3 ± 110	Unfiltered		TN
RD-59B	Primary	08/06/99	24.3 ± 93	Unfiltered		TN
RD-59B	Primary	03/14/00	-67.2 ± 100	Unfiltered		TR
RD-59B	Primary	08/10/00	-23.7 ± 130	Unfiltered		TR
RD-59B	Primary	02/17/01	-68.1 ± 120	Unfiltered		ES
RD-59B	Primary	11/12/01	101 ± 104	Unfiltered		DL
RD-59B	Primary	02/28/02	222 ± 58	Unfiltered		DL
RD-59B	Primary	08/08/02	55.1 ± 120	Unfiltered		ES
RD-59B	Primary	01/31/03	-31.1 ± 110	Unfiltered		ES
RD-59B	Primary	08/08/03	-21.2 ± 110 (U)	Unfiltered		ES
RD-59C	Primary	6/20/1994 (225-271')	20 ± 140	Unfiltered		LAS
RD-59C	Primary	08/16/94	-30 ± 130	Unfiltered		LAS
RD-59C	Primary	02/06/95	-50 ± 190	Unfiltered		LAS
RD-59C	Primary	08/08/95	-200 ± 190	Unfiltered		LAS
RD-59C	Primary	03/12/96	-60 ± 100	Unfiltered		LAS
RD-59C	Primary	08/21/96	50 ± 100	Unfiltered		LAS

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIÁ

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample Handling	Sample Comments	Laboratory
	Туре	Sampled	liter)	Handing		
RD-59C	Primary	02/16/97	40 ± 130	Unfiltered		LAS
RD-59C	Primary	08/22/97	-70 ± 110	Unfiltered		LAS
RD-59C	Primary	08/19/98	43.3 ± 120	Unfiltered		TN
RD-59C	Primary	02/16/99	30.6 ± 120	Unfiltered		TN
RD-59C	Primary	08/06/99	-30.5 ± 94	Unfiltered		TN
RD-59C	Primary	03/14/00	7.68 ± 110	Unfiltered		TR
RD-59C	Primary	08/10/00	54.4 ± 130	Unfiltered		TR
RD-59C	Primary	02/17/01	30.6 ± 130	Unfiltered		ES
RD-59C	Primary	11/12/01	132 ± 104	Unfiltered		DL
RD-59C	Primary	02/28/02	0 ± 59	Unfiltered		DL
RD-59C	Primary	08/08/02	-43.8 ± 120	Unfiltered		ES
RD-59C	Primary	01/31/03	1.97 ± 110	Unfiltered		ES
RD-59C	Primary	08/08/03	50.7 ± 110 (U)	Unfiltered		ES
RD-61	Primary	05/28/98	-50.5 ± 110	Unfiltered		TN
RD-63	Primary	05/19/94	40 ± 130	Unfiltered		LAS
RD-63	Primary	09/22/94	80 ± 150	Unfiltered		LAS
RD-63	Primary	10/06/94	60 ± 150	Unfiltered	Pilot extraction effluent.	LAS
RD-63	Primary	11/09/94	90 ± 180	Unfiltered		LAS
RD-63	Primary	01/04/95	350 ± 210	Unfiltered	•	LAS
RD-63	Primary	02/02/99	362 ± 110	Unfiltered		TN
RD-63	Primary	02/16/00	266 ± 120	Unfiltered		TR
RD-63	•	02/23/01	-26.9 ±130	Unfiltered		ES
RD-63	Primary	02/14/02		Unfiltered		DL DL
	Primary		41 ± 120			
RD-63 RD-64	Primary	02/05/03 05/10/01	152 ± 120 181 ± 130	Unfiltered Unfiltered		ES ES
RD-64	Primary Primary	02/28/02	204 ± 58	Unfiltered		DL
	-	01/29/03	21.3 ± 110			ES
RD-64(Z6) RD-65	Primary	02/27/97	380 ± 160	Unfiltered Unfiltered		LAS
RD-65	Primary	02/07/98		Unfiltered		TN
	Primary		322 ± 130			
RD-69	Primary	05/28/98	68.6 ± 110	Unfiltered		TN
RD-74	Primary	05/13/99	30.2 ± 110	Unfiltered		TN
HAR-06	Primary	09/14/89	45.9 ± 133	Unfiltered		UST
HAR-06	Split	09/14/89	<1000	Unfiltered		TMA
HAR-07	Primary	09/09/89	-88.9 ± 128	Unfiltered		UST
HAR-07	Split	09/09/89	<1000	Unfiltered		TMA
HAR-16	Primary	09/09/89	-57.4 ± 126	Unfiltered		UST
HAR-16	Split	09/09/89	<1000	Unfiltered		TMA
HAR-18	Primary	09/11/89	-68.4 ± 133	Unfiltered		UST
HAR-18	Split	09/11/89	<1000	Unfiltered		TMA
HAR-19	Primary	09/09/89	329 ± 137	Unfiltered		UST
HAR-19	Split	09/09/89	<1000	Unfiltered		TMA
HAR-19	Primary	06/28/90	12.9 ± 212	Unfiltered		UST
HAR-20	Primary	09/09/89	-65.0 ± 125	Unfiltered		UST
HAR-20	Split	09/09/89	<1000	Unfiltered		TMA
HAR-21	Primary	09/09/89	-39.2 ± 121	Unfiltered		UST
HAR-21	Split	09/09/89	<1000	Unfiltered		TMA
WS-04A	Primary	09/09/89	-155 ± 125	Unfiltered		UST
WS-04A	Split	09/09/89	<1000	Unfiltered		TMA
WS-04A	Primary	12/06/90	-67.2 ± 195	Unfiltered		IT
WS-05	Primary	09/09/89	-216 ± 119	Unfiltered		UST

	Sample	Date	Concentration	Sample		
Well Identifier	Туре	Sampled	(picoCuries per liter)	Handling	Sample Comments	Laboratory
WS-05	Split	09/09/89	<1000	Unfiltered	······································	TMA
WS-05	Primary	05/06/94	-40 ± 110	Unfiltered		LAS
WS-06	Primary	09/11/89	-128 ± 125	Unfiltered		UST
WS-06	Split	09/11/89	<1000	Unfiltered		TMA
WS-07	Primary	12/06/90	187 ± 235	Unfiltered		IT
WS-07	Dup	12/06/90	78.0 ± 229	Unfiltered	•	IT
WS-07	Primary -	03/08/91	-70.2 ± 178	Unfiltered		IT.
WS-07	Primary	12/07/91	-48.1 ± 209	Unfiltered		IT
WS-07	Split	12/07/91	<500	Unfiltered		CEP
WS-07	Primary	03/25/92	<500	Unfiltered		CEP
WS-08	Primary	09/09/89	-258 ± 138	Unfiltered		UST
WS-08	Split	09/09/89	<1000	Unfiltered		TMA
WS-09A	Primary	09/12/89	-53.4 ± 127	Unfiltered		UST
WS-09A	Split	09/12/89	<1000	Unfiltered		TMA
OFF-SITE PRIVA	TE WELLS AND SP	RINGS				
OS-01	Primary	09/13/89	-227 ± 121	Unfiltered		UST
OS-01	Split	09/13/89	<1000	Unfiltered		TMA
OS-01	Primary	12/11/90	-17.5 ± 207	Unfiltered		ſΤ
OS-01	Primary	03/09/91	-109 ± 185	Unfiltered		ΙΤ
OS-01	Primary	09/09/91	63.8 ± 201	Unfiltered		IT
OS-01	Primary	12/09/91	-49.0 ± 209	Unfiltered		ΙΤ
OS-01	Primary	06/09/92	-129 ± 489	Unfiltered		CEP
OS-01	Primary	09/15/92	411 ± 500	Unfiltered		CEP
OS-01	Primary	12/17/92	187 ± 498	Unfiltered		CEP
OS-01	Primary	06/22/93	-17 ± 446	Unfiltered		CEP
OS-01	Primary	08/23/93	-436 ± 500	Unfiltered		CEP
OS-01	Primary	11/08/93	60 ± 120	Unfiltered		LAS
OS-01	Primary	02/23/94	-70 ± 130	Unfiltered		LAS
OS-01	Primary	08/15/94	-70 ± 120	Unfiltered		LAS
OS-01	Primary	02/06/95	10 ± 200	Unfiltered		LAS
OS-01	Primary	08/08/95	-110 ± 200	Unfiltered		LAS
OS-01	Primary	08/21/96	-20 ± 110	Unfiltered		LAS
OS-02	Primary	09/13/89	-90.8 ± 128	Unfiltered		UST
OS-02	Split	09/13/89	<1000	Unfiltered		TMA
OS-02	Primary	12/11/90	-39.7 ± 206	Unfiltered		IT
OS-02	Primary	03/08/91	86.5 ± 186	Unfiltered		IT
OS-02	Dup	03/08/91	-80.4 ± 186	Unfiltered		IT
OS-02	Primary	09/09/91	0.00 ± 198	Unfiltered		IT
OS-02	Primary	12/09/91	-61.0 ± 208	Unfiltered		IT
OS-02	Primary	06/09/92	348 ± 493	Unfiltered		CEP
OS-02	Primary	09/15/92	299 ± 500	Unfiltered		CEP
OS-02	Primary	12/17/92	-607 ± 520	Unfiltered		CEP
OS-02	Primary	06/22/93	74 ± 500	Unfiltered		CEP
OS-02	Primary	08/23/93	51 ± 426	Unfiltered		CEP
OS-02	Primary	11/08/93	20 ± 120	Unfiltered		LAS
OS-02	Primary	02/23/94	-20 ± 140	Unfiltered	•	LAS
OS-02	Primary	08/15/94	10 ± 140	Unfiltered		LAS
OS-02	Primary	02/06/95	-20 ± 200	Unfiltered		LAS
OS-02	Primary	08/08/95	-50 ± 200	Unfiltered		LAS
OS-02	Primary	08/21/96	70 ± 120	Unfiltered		LAS
OS-02	Primary	08/22/97	-40 ± 110	Unfiltered		LAS _

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample	Date	Concentration (picoCuries per	Sample	Sample Comments	Laboratory
VVCII IGOTILIIO.	Туре	Sampled	liter)	Handling	Campio Comments	Laboratory
OS-02	Primary	08/19/98	-83.2 ± 120	Unfiltered		TN
OS-03	Primary	09/13/89	7.49 ± 132	Unfiltered		UST
OS-03	Split	09/13/89	<1000	Unfiltered		TMA
OS-03	Primary	12/11/90	-35.1 ± 207	Unfiltered		1T
OS-03	Primary	03/08/91	44.4 ± 192	Unfiltered		ΙΤ
OS-03	Primary	12/09/91	-9.24 ± 211,	Unfiltered		IT
OS-03	Primary	06/09/92	-223 ± 485	Unfiltered		CEP ·
OS-03	Primary	06/22/93	104 ± 500	Unfiltered		CEP
OS-03	Primary	08/23/93	-120 ± 421	Unfiltered		CEP
OS-03	Primary	11/08/93	80 ± 140	Unfiltered		LAS
OS-03	Primary	02/23/94	0 ± 140	Unfiltered		LAS
OS-03	Primary	08/15/94	-60 ± 130	Unfiltered		LAS
OS-03	Primary	02/06/95	-140 ± 190	Unfiltered		LAS
OS-03	Primary	08/08/95	150 ± 230	Unfiltered		LAS
OS-03	Primary	08/21/96	60 ± 130	Unfiltered		LAS
OS-03	Primary	08/22/97	-73 ± 99	Unfiltered		LAS
OS-03	Primary	08/19/98	63.1 ± 130	Unfiltered		TN
OS-04	Primary	09/13/89	71.2 ± 135	Unfiltered		UST
OS-04	Split	09/13/89	<1000	Unfiltered		TMA
OS-04	Primary	12/11/90	-26.8 ± 208	Unfiltered		IT
OS-04 OS-04	Primary	06/09/92	169 ± 488	Unfiltered		CEP
OS-04 OS-04	•	06/22/93	-385 ± 500	Unfiltered		CEP
OS-04 OS-04	Primary					CEP
OS-04 OS-04	Primary	08/23/93	-477 ± 500	Unfiltered Unfiltered		
	Primary	02/23/94	-70 ± 130			LAS
OS-04 OS-04	Primary	08/15/94	-80 ± 120	Unfiltered Unfiltered		LAS
	Primary	02/06/95	-20 ± 200			LAS
OS-04	Primary	08/08/95	-90 ± 210	Unfiltered		LAS
OS-04	Primary	08/21/96	110 ± 130	Unfiltered		LAS
OS-04	Primary	08/22/97	0 ± 120	Unfiltered		LAS
OS-04	Primary	08/19/98_	-2.28 ± 120	Unfiltered		TN
OS-05	Primary	09/13/89	-52.4 ± 129	Unfiltered		UST
OS-05	Split	09/13/89	<1000	Unfiltered		TMA
OS-05	Primary	12/11/90	-80.3 ± 205	Unfiltered		IT •
OS-05	Primary	03/08/91	-162 ± 182	Unfiltered		IT
OS-05	Primary	09/09/91	129 ± 204	Unfiltered		IT —
OS-05	Primary	12/09/91	61.9 ± 214	Unfiltered		IT
OS-05	Primary	06/09/92	91 ± 492	Unfiltered		CEP
OS-05	Primary	09/15/92	620 ± 509	Unfiltered		CEP
OS-05	Split	09/15/92	-220 ± 270	Unfiltered		BL
OS-05	Primary	12/17/92	20 ± 498	Unfiltered		CEP
OS-05	Primary	06/22/93	-628 ± 500	Unfiltered		CEP
OS-05	Primary	08/23/93	-89 ± 434	Unfiltered		CEP
OS-05	Primary	11/08/93	20 ± 120	Unfiltered		LAS
OS-05	Primary	02/23/94	50 ± 150	Unfiltered		LAS
OS-05	Primary	08/08/95	60 ± 210	Unfiltered		LAS
OS-05	Primary	08/21/96	-20 ± 110	Unfiltered		LAS
OS-05	Primary	08/22/97	-40 ± 110	Unfiltered		LAS
OS-05	Primary	08/19/98	-39.4 ± 120	Unfiltered		TN
OS-05A	Primary	02/06/95	-60 ± 190	Unfiltered		LAS
OS-05A	Primary	08/08/95	330 ± 250	Unfiltered		LAS
OS-08	Primary	09/13/89	101 ± 140	Unfiltered		UST

TABLE E-II
RESULTS OF ANALYSES FOR TRITIUM IN GROUNDWATER
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Concentration (picoCuries per liter)	Sample Handling	Sample Comments	Laboratory
OS-08	Split	09/13/89	<1000	Unfiltered		TMA
OS-08	Primary	06/09/92	-172 ± 490	Unfiltered		CEP
OS-08	Primary	06/22/93	-332 ± 500	Unfiltered	•	CEP
OS-08	Primary	08/15/94	-10 ± 140	Unfiltered		LAS
OS-10	Primary	09/13/89	-121 ± 126	Unfiltered		UST
OS-10	Split	09/13/89	<1000	Unfiltered		·TMA
OS-10	Primary	12/09/91	-120 ± 205	Unfiltered		IT
OS-10	Primary	08/15/94	10 ± 140	Unfiltered		LAS
OS-15	Primary	12/10/91	127 ± 224	Unfiltered		IT
OS-16	Primary	09/14/89	-100 ± 127	Unfiltered		UST
OS-16	Split	09/14/89	<1000	Unfiltered		TMA
OS-16	Primary	09/09/91	-93.3 ± 193	Unfiltered		IT
OS-16	Primary	12/10/91	148 ± 226	Unfiltered		· IT
OS-16	Primary	03/12/92	<500	Unfiltered		CEP
OS-17	Primary	09/13/89	37.5 ± 132	Unfiltered		UST
OS-17	Split	09/13/89	<1000	Unfiltered		TMA
OS-17	Primary	09/12/91	306 ± 230	Unfiltered		ΙΤ
OS-17	Primary	12/10/91	31.7 ± 219	Unfiltered		ΙΤ
OS-17	Primary	03/12/92	<500	Unfiltered		CEP
OS-21	Primary	09/09/89	-160 ± 121	Unfiltered		UST
OS-21	Split	09/09/89	<1000	Unfiltered		TMA
OS-21	Primary	03/09/91	-38.8 ± 188	Unfiltered		IT
OS-21	Primary	12/10/91	-165 ± 209	Unfiltered		IT
OS-21	Primary	03/12/92	<500	Unfiltered		CEP
OS-21	Primary	03/19/93	119 ± 490	Unfiltered		CEP
Calleguas	Primary	12/14/90	117 ± 230	Unfiltered		IT
Calleguas	Primary	03/12/92	<500	Unfiltered		CEP

NOTE:

values.

(<)	=	Less than; numerical value represents limit of detection for that analysis.
(U)	=	The result is less than the MDA (Minimum Detectable Activity).
Z	=	FLUTe sample port number.
BL	=	Barringer Laboratories, Inc., Golden, Colorado.
CEP	=	Controls for Environmental Pollution, Santa Fe, New Mexico.
DL	=	Davi Laboratories, Pinole, California.
ES	=	Eberline Services (formerly Thermo Retec), Richmond, California.
IT	=	International Technologies Analytical Services
		(formerly UST), Richland, Washington.
LAS	=	LAS Laboratories, Inc. (formerly Lockheed Martin), Las Vegas, Nevada.
STL	=	Severn Trent Laboratories, Richland, Washington
TEL	***	Teledyne Isotopes, Westwood, New Jersey.
TMA	=	Thermoanalytical, Inc. (TMA/NORCAL), Richmond, California.
TN	=	Thermo NUtech, Richmond, California.
TR	=	Thermo Retec (formerly Thermo NUtech), Richmond, California.
UST	=	United States Testing Laboratory, Richland, Washington.
Primary	=	Primary sample
Dup	=	Sample duplicate
Split	=	Sample split

Any activity detected is reported by the laboratory, though the reported activity may be less than the overall laboratory error. Analytical results that are less than the instrument background count are shown as negative

Samples analyzed for tritium by EPA Method 906.0.

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
Shallow W	'ells		·	per mor)		· · · · · · · · · · · · · · · · · · ·
SH-11	Primary	10/17/89	ND		Filtered	UST
SH-11	Primary	10/31/89	ND		Unfiltered	UST
SH-11	Primary	10/31/89	ND		Filtered	UST
RS-05	Primary	10/31/89	ND		Unfiltered	UST
RS-05	Primary	10/31/89	ND		Filtered	UST
RS-11	Primary	12/06/90	ND		Filtered	IT
RS-11	Primary	03/04/91	ND		Filtered	IT
RS-11	Primary	12/07/91	ND		Filtered	IT
RS-11	Primary	03/05/92	ND		Filtered	CEP
RS-11	Primary	02/06/99	ND	way and	Filtered	TN
RS-11	Primary	02/15/00	ND		Filtered	TR
RS-11	Primary	02/06/01	ND		Filtered	ES
RS-11	Primary	05/01/03	ND		Filtered	ES
RS-16	Primary	03/09/92	ND	***	Filtered	CEP
RS-17	Primary	12/10/90	ND		Filtered	IT
RS-17	Primary	12/07/91	ND		Filtered	iT
RS-17	Primary	12/05/92	ND		Filtered	CEP
RS-18	Primary	03/10/91	ND	*****	Filtered	IT
RS-18	Duplicate	03/10/91	ND	***	Filtered	IT
RS-18	Primary	03/04/92	ND ND		Filtered	CEP
RS-18	•		K-40	20 + E	Filtered	CEP
	Primary	09/10/92		29 ± 6		
RS-18	Primary	12/15/92	ND		Filtered	CEP
RS-18	Split	12/15/92	ND	<5.2	Filtered	BL
RS-18	Primary	06/23/93	ND	Myssic dia	Filtered	CEP
RS-18	Primary	11/06/93	ND	*	Filtered	LAS
RS-18	Primary	05/04/94	ND		Filtered	LAS
RS-18	Primary	02/17/95	ND		Filtered	LAS
RS-18	Primary	08/10/95	ND		Filtered	LAS
RS-18	Primary	05/16/96	ND		Filtered	LAS
RS-18	Primary	02/03/97	ND		Filtered	LAS
RS-18	Primary	02/05/98	ND		Filtered	TN
RS-18	Primary	08/05/98	ND		Filtered	TN
RS-18	Primary	05/12/99	ND	1	Filtered	TN
RS-18	Primary	05/09/00	ND		Filtered	TR
RS-18	Primary	02/19/01	ND		Filtered	ES
RS-18	Primary	05/02/03	ND		Filtered	ES
RS-25	Primary	02/25/03	ND		Filtered	ES
RS-27	Primary	03/04/91	ND		Filtered	CEP
RS-28	Primary	10/19/89	ND		Filtered	UST
RS-28	Primary	11/01/89	ND		Unfiltered	UST
RS-28	Primary	11/01/89	ND		Filtered	UST
RS-28	Primary	12/06/90	ND		Filtered	IT
RS-28	Primary	03/09/91	ND		Filtered	IT
RS-28	Primary	12/06/91	ND		Filtered	ΙΤ
RS-28	Primary	03/09/92	ND		Filtered	CEP
RS-28	Primary	06/22/93	ND		Filtered	CEP

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RS-28	Primary	11/06/93	ND		Filtered	LAS
RS-28	Primary	05/07/94	ND		Filtered	LAS
RS-28	Primary	05/17/95	ND		Filtered	LAS
RS-28	Primary	11/08/95	ND		Filtered	LAS
RS-28	Primary	05/16/96	ND		Filtered	LAS
RS-28	Primary	05/08/98	ND		Filtered	TN
RS-28	Primary	11/16/98	ND		Filtered	TN
RS-28	Primary	05/05/00	ND		Filtered	TR
RS-28	Primary	05/10/01	ND		Filtered	ES
RS-54	Primary	09/11/93	ND		Filtered	CEP
RS-54	Primary	09/29/93	ND		Filtered	CEP
RS-54	Primary	05/07/94	ND		Filtered	LAS
RS-54	Primary	08/07/94	ND		Filtered	LAS
RS-54	Primary	08/03/95	ND		Filtered	LAS
RS-54	Primary	05/16/96	ND		Filtered	LAS
RS-54	Primary	08/23/96	ND		Filtered	LAS
RS-54	Primary	05/03/97	ND		Filtered	LAS
RS-54	Primary	08/02/97	ND		Filtered	LAS
RS-54	Primary	08/27/97	ND		Filtered	LAS
RS-54	Primary	08/27/97	ND		Unfiltered	LAS
RS-54	Primary	02/08/98	ND		Filtered	TN
RS-54	Primary	08/04/98	ND		Filtered	TN
RS-54	Primary	02/02/99	ND		Unfiltered	TN
RS-54	Primary	08/18/99	ND		Filtered	TN
RS-54	Primary	03/15/00	ND	W-w-w	Filtered	TR
RS-54	Primary	11/01/01	ND		Filtered	DL
RS-54	Primary	03/01/02	ND		Filtered	DL
RS-54	Primary	11/07/02	ND		Filtered	ES
ES-31	Primary	12/10/90	ND	**-	Filtered	IT
ES-31	Primary	03/04/91	ND		Filtered	ΙΤ
ES-31	Duplicate	03/04/91	ND		Filtered	ſΤ
ES-31	Primary	06/03/91	ND		Filtered	IT
ES-31	Primary	06/06/91	ND		Filtered	IT
ES-31	Primary	12/07/91	ND		Filtered	ŧΤ
ES-31	Primary	03/05/92	ND		Filtered	CEP
ES-31	Primary	02/06/99	ND		Filtered	TN
ES-31	Primary	02/06/00	ND		Filtered	TR
ES-31	Primary	02/15/01	ND		Filtered	ES
ES-31	Primary	02/18/02	ND		Filtered	DL
ES-31	Primary	02/19/03	ND	***	Filtered	ES
HAR-14	Primary	09/12/89	ND		Unfiltered	UST
HAR-14	Primary	09/12/89	ND		Filtered	UST
HAR-14	Split	09/12/89	ND		Filtered	TMA
HAR-14	Split	09/12/89	ND		Unfiltered	TMA
	h Formation Wells					
RD-06	Primary	10/18/89	ND		Unfiltered	UST
RD-06	Primary	10/31/89	ND		Unfiltered	UST

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-06	Primary	10/31/89	ND		Filtered	UST
RD-06	Primary	03/06/91	ND		Filtered	IT
RD-06	Primary	03/10/92 '	ND		Filtered	CEP
RD-07	Primary	12/05/90	ND		Filtered	IT
RD-07	Primary	03/09/91	ND		Filtered	1T
RD-07	Primary	12/07/91	ND		Filtered	IT
RD-07	Primary	03/06/92	ND		Filtered	CEP
RD-07	Primary	08/25/97	ND		Filtered	LAS
RD-07	Primary	08/25/97	ND		Unfiltered	LAS
RD-07	Primary	02/06/99	ND .		Filtered	TN
RD-07	Primary	03/16/00	ND		Filtered	TR
RD-07	Primary	02/23/01	ND		Filtered	ES
RD-07	Primary	02/22/02	ND		Filtered	DL
RD-07	Primary	01/29/03	ND		Filtered	ES
RD-10	Primary	03/06/91	ND		Filtered	IT IT
RD-10	Primary	03/07/92	ND		Filtered	CEP
RD-13	Primary	09/12/89	ND		Unfiltered	UST
RD-13	Primary	09/12/89	ND		Filtered	UST
RD-13	Split	09/12/89	ND		Unfiltered	TMA
RD-13	Split	09/12/89	ND		Filtered	TMA
RD-13	Primary	10/17/89	ND		Filtered	UST
RD-13	Primary	10/31/89	ND		Filtered	UST
RD-13	Primary	12/06/90	ND		Filtered	IT
RD-13	Primary	03/08/91	ND		Filtered	iT
RD-13	Primary	12/10/91	ND		Filtered	iT
RD-13	Primary	03/12/92	ND		Filtered	CEP
RD-13	Primary	08/26/97	ND		Filtered	LAS
RD-13	Primary	08/26/97	ND		Unfiltered	LAS
RD-14	Primary	10/18/89	ND ND		Unfiltered	UST
RD-14	Primary	10/18/89	ND		Filtered	UST
RD-14	Primary	10/10/09	ND		Unfiltered	UST
RD-14	Primary	10/31/89	ND		Filtered	UST
RD-14	Primary	12/07/90	ND		Filtered	IT
RD-14	Primary	03/09/91	ND		Filtered	iT
RD-14	Primary	12/06/91	ND		Filtered	iT
RD-14	Primary	03/05/92	ND		Filtered	CEP
RD-15	Primary	10/19/89	ND		Filtered	UST
RD-15	Primary	12/07/90	ND		Filtered	IT
RD-15	Primary	03/10/91	ND		Filtered	iT
RD-15	Primary	12/06/91	ND ND		Filtered	IT
RD-15	Primary	03/11/92	ND		Filtered	CEP
RD-15	Split	03/11/92	ND ND		Filtered	TEL
RD-15	Primary	05/10/01	ND ND		Filtered	ES
RD-15	Primary	03/06/02	ND ND		Filtered	DL
RD-15	-				Filtered	ES
RD-16	Primary Primary	02/26/03	ND ND		Filtered	UST
RD-16	•	10/25/89				
1/10-10	Primary	12/07/90	ND		Filtered	IT

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-16	Primary	03/09/91	ND		Filtered	TIT TI
RD-16	Primary	12/05/91	ND		Filtered	IT
RD-16	Primary	06/06/92	ND		Filtered	CEP
RD-16	Primary	05/27/98	ND		Filtered	TN
RD-17	Primary	10/18/89	ND		Filtered	UST
RD-17	Duplicate	10/18/89	ND -		Filtered	UST
RD-17	Primary	10/31/89	ND		Unfiltered	UST
RD-17	Primary	12/04/90	ND	***	Filtered	IT
RD-17	Primary	03/05/91	ND		Filtered	IT
RD-17	Primary	12/07/91	ND	****	Filtered	IT
RD-17	Split	12/07/91	ND		Filtered	CEP
RD-17	Primary	03/04/92	ND		Filtered	CEP
RD-17	Primary	02/08/99	ND		Filtered	TN
RD-17	Primary	02/21/00	ND	NA COL COL	Filtered	TR
RD-17	Primary	02/14/01	ND		Filtered	ES
RD-17	Primary	03/01/02	ND		Filtered	DL
RD-17	Primary	02/24/03	ND		Filtered	ES
RD-18	Primary	10/26/89	ND		Filtered	UST
RD-18	Primary	12/08/90	ND ·	·	Filtered	IT
RD-18	Primary	03/09/91	ND		Filtered	IT
RD-18	Primary	12/11/91	ND	400 to the	Filtered	IT
RD-18	Primary	03/12/92	ND		Filtered	CEP
RD-19	Primary	10/26/89	ND		Filtered	UST
RD-19	Primary	12/08/90	ND		Filtered	IT
RD-19	Duplicate	12/08/90	ND		Filtered	IT
RD-19	Primary	03/08/91	ND		Filtered	IT
RD-19	Duplicate	03/08/91	ND	4850mm	Filtered	IT
RD-19	Primary	12/11/91	ND		Filtered	IT
RD-19	Primary	03/12/92	ND		Filtered	CEP
RD-20	Primary	10/17/89	ND		Filtered	UST
RD-20	Primary	10/31/89	ND	-	Unfiltered	UST
RD-20	Primary	12/07/90	ND		Filtered	IT
RD-20	Primary	12/10/90	ND		Filtered	IT
RD-20	Primary	03/05/91	ND	***	Filtered	ΙΤ
RD-20	Primary	12/10/91	ND		Filtered	ΙΤ
RD-20	Primary	03/04/92	ND		Filtered	CEP
RD-21	Primary	10/31/89	ND		Filtered	UST
RD-21	Primary	12/03/90	ND		Filtered	IT
RD-21	Primary	03/08/91	ND	****	Filtered	IT
RD-21	Primary	12/05/91	ND		Filtered	IT
RD-21	Primary	03/04/92	ND		Filtered	CEP
RD-21	Primary	03/06/93	ND		Filtered	CEP
RD-21	Primary	06/22/93	ND		Filtered	CEP
RD-21	Primary	08/06/93	ND		Filtered	CEP
RD-21	Primary	11/06/93	ND		Filtered	LAS
RD-21	Primary	02/25/94	ND		Filtered	LAS
RD-21	Primary	08/08/94	ND		Filtered	LAS

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-21	Primary	02/08/95	ND		Filtered	LAS
RD-21	Primary	08/31/95	ND		Filtered	LAS
RD-21	Primary	02/16/96	ND		Filtered	LAS
RD-21	Primary	08/18/96	ND		Filtered	LAS
RD-21	Primary	02/06/97	ND		Filtered	LAS
RD-21	Primary	02/09/98	ND		Filtered	TN
RD-21	Primary	02/16/99	ND		Filtered	TN
RD-21	Primary	03/15/00	ND		Filtered	TR
RD-21	Primary	10/24/01	ND		Filtered	DL
RD-21	Primary	03/06/02	ND		Filtered	DL
RD-21	Primary_	02/25/03	ND		Filtered	ES
RD-22	Primary	10/19/89	ND		Filtered	UST
RD-22	Primary	12/04/90	ND		Filtered	IT
RD-22	Duplicate	12/04/90	ND		Filtered	iT
RD-22	Primary	03/11/91	ND		Filtered	iT
RD-22	Primary	12/06/91	ND		Filtered	iT
RD-22	Primary	06/05/92	ND		Filtered	CEP
RD-22	Primary	03/20/93	ND		Filtered	CEP
RD-22	Primary	06/22/93	ND		Filtered	CEP
RD-22	Primary	08/05/93	ND		Filtered	CEP
RD-22	Primary	11/21/93	ND	·	Filtered	LAS
RD-22	Primary	02/24/94	ND		Filtered	LAS
RD-22	Primary	08/09/94	ND		Filtered	LAS
RD-22	Primary	02/17/95	ND		Filtered	LAS
RD-22	Primary	08/29/95	ND		Filtered	LAS
RD-22	Primary	02/16/96	ND		Filtered	LAS
RD-22	Primary	08/18/96	ND		Filtered	LAS
RD-22	Primary	02/26/97	ND		Filtered	LAS
RD-22	Primary	05/28/98	ND		Filtered	TN
RD-22	Primary	02/17/99	ND		Filtered	TN
RD-22	Primary	02/06/00	ND		Filtered	TR
RD-22	Primary	02/16/01	ND		Filtered	ES
RD-22	Primary	02/20/02	ND		Filtered	DL
RD-22	Primary	02/24/03	ND		Filtered	ES
RD-23	Primary	11/01/89	ND		Filtered	UST
RD-23	Primary	06/29/90	ND		Filtered	UST
RD-23	Primary	12/05/90	ND		Filtered	IT .
RD-23	Primary	03/11/91	ND		Filtered	iT
RD-23	Duplicate	03/11/91	ND		Filtered	İT
RD-23	Primary	12/05/91	ND		Filtered	iT
RD-23	Primary	03/04/92	ND	***	Filtered	CEP
RD-23	Primary	03/21/93	ND		Filtered	CEP
RD-23	Primary	06/23/93	ND		Filtered	CEP
RD-23	Primary	08/06/93	ND	***	Filtered	CEP
RD-23	Primary	11/06/93	ND		Filtered	LAS
RD-23	Primary	02/25/94	ND	***	Filtered	LAS
RD-23	Primary	08/08/94	ND		Filtered	LAS

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-23	Primary	11/22/94	ND		Filtered	LAS
RD-23	Primary	02/05/95	ND		Filtered	LAS
RD-23	Primary	08/03/95	ND		Filtered	LAS
RD-23	Primary	02/16/96	ND		Filtered	LAS
RD-23	Primary	08/18/96	ND		Filtered	LAS
RD-23	Primary	02/27/97	ND		Filtered	LAS
RD-23	Primary	02/07/98	ND		Filtered	TN
RD-23	Primary	02/08/99	ND		Filtered	TN
RD-23	Primary	02/05/00	ND		Filtered	TR
RD-23	Primary	10/25/01	ND		Filtered	DL
RD-23	Primary	03/01/02	ND		Filtered	DL
RD-23	Primary	02/26/03	ND		Filtered	ES
RD-24	Primary	09/12/89	ND		Unfiltered	UST
RD-24	•	09/12/89	ND			UST
RD-24	Primary	09/12/89	ND ND		Filtered Unfiltered	TMA
RD-24	Split					
	Split	09/12/89	ND ND		Filtered	TMA
RD-24	Primary	10/17/89	ND ND		Filtered	UST
RD-24	Primary	10/31/89	ND		Unfiltered	UST
RD-24	Primary	12/05/90	ND		Filtered	IT
RD-24	Primary	03/06/91	ND		Filtered	IT -
RD-24	Primary	12/11/91	ND		Filtered	IT
RD-24	Primary	03/06/92	ND		Filtered	CEP
RD-24	Primary	02/23/94	ND		Filtered	LAS
RD-24	Primary	08/08/94	ND		Filtered	LAS
RD-24	Primary	02/16/95	ND		Filtered	LAS
RD-24	Primary	02/07/96	ND		Filtered	LAS
RD-24	Primary	02/07/97	ND		Filtered	LAS
RD-24	Primary	02/18/98	ND		Filtered	TN
RD-24	Primary	05/05/98	ND		Filtered	TN
RD-24	Primary	02/02/99	ND		Filtered	TN
RD-24	Primary	08/11/99	ND		Filtered	TN
RD-24	Primary	02/03/00	ND		Filtered	TR
RD-24	Primary	08/04/00	ND		Filtered	TR
RD-24	Primary	02/06/01	ND		Filtered	ES
RD-24	Primary	02/25/02	ND		Filtered	DL
RD-24	Primary	11/06/02	ND		Filtered	ES
RD-24	Primary	02/12/03	ND .		Filtered	ES
RD-24	Primary	11/14/03	ND		Filtered	ES
RD-24	Split	11/14/03	ND		Filtered	STL
RD-25	Primary	09/12/89	ND		Unfiltered	UST
RD-25	Primary	09/12/89	ND		Filtered	UST
RD-25	Split	09/12/89	ND		Unfiltered	TMA
RD-25	Split	09/12/89	ND	***	Filtered	TMA
RD-25	Primary	10/31/89	ND		Unfiltered	UST
RD-25	Primary	12/05/90	ND		Filtered	IT.
RD-25	Primary	03/06/91	ND		Filtered	łT
RD-25	Primary	12/10/91	ND	Alfr and may	Filtered	ΙΤ

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-25	Primary	03/06/92	ND		Filtered	CEP
RD-25	Primary	02/28/94	ND		Filtered	LAS
RD-25	Primary	08/17/94	ND		Filtered	LAS
RD-25	Primary	02/09/95	ND		Filtered	LAS
RD-25	Primary	08/18/95	ND	-	Filtered	LAS
RD-25	Primary	02/06/96	ND		Filtered	LAS
RD-25	Primary	08/20/96	ND		Filtered	LAS
RD-25	Primary	02/07/97	ND	***	Filtered	LAS
RD-25	Primary	08/21/97	ND		Filtered	LAS
RD-25	Primary	02/05/98	ND		Filtered	TN
RD-25	Primary	08/18/98	ND		Filtered	TN
RD-25	Primary	02/16/99	ND		Filtered	TN
RD-25	Primary	08/19/99	ND		Filtered	TN
RD-25	Primary	02/16/00	ND	*******	Filtered	TR
RD-25	Primary	08/09/00	ND		Filtered	TR
RD-25	Primary	02/07/01	ND		Filtered	ES
RD-25	Primary	10/25/01	ND		Filtered	DL
RD-25	Primary	03/07/02	ND		Filtered	DL.
RD-25	Primary	11/06/02	ND		Filtered	ES
RD-25	Primary	02/24/03	ND		Filtered	ES
RD-25	Primary	11/13/03	ND		Filtered	ES
RD-25	Primary	10/31/89	ND ND		Unfiltered	UST
RD-26 RD-26	•		ND ND	*****		IT
RD-26 RD-26	Primary	12/04/90			Filtered	IT
	Primary	03/07/91	ND ND		Filtered	CEP
RD-26	Primary	03/11/91	ND		Filtered	
RD-27	Primary	10/19/89	ND		Unfiltered	UST
RD-27	Primary	12/04/90	ND ND	***	Filtered	IT IT
RD-27	Primary	03/07/91	ND		Filtered	IT IT
RD-27	Primary	12/06/91	ND		Filtered	IT
RD-27	Primary	03/09/92	ND ND	the sa	Filtered	CEP
RD-27	Primary	02/05/96	ND		Filtered	LAS
RD-27	Primary	08/27/97	ND		Filtered	LAS
RD-27	Primary	08/27/97	ND		Unfiltered	LAS
RD-27	Primary	02/16/99	ND		Filtered	TN
RD-27	Primary	08/17/99	ND	****	Filtered	TN
RD-27	Primary	02/21/00	ND		Filtered	TR
RD-27	Primary	08/04/00	ND	***	Filtered	TR
RD-27	Primary	02/14/01	ND	~~~	Filtered	ES
RD-27	Primary	10/27/01	ND		Filtered	DL
RD-27	Primary	03/06/02	ND	***	Filtered	DL
RD-27	Primary	08/22/02	ND	-	Filtered	ES
RD-27	Primary	05/14/03	ND		Filtered	ES
RD-27	Primary	11/14/03	ND		Filtered	ES
RD-27	Split	11/14/03	ND	***	Filtered	STL
RD-28	Primary	09/13/89	ND	· ·	Filtered	UST
RD-28	Primary	09/13/89	ND		Unfiltered	UST
RD-28	Split	09/13/89	ND	***	Unfiltered	TMA

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-28	Split	09/13/89	ND		Filtered	TMA
RD-28	Primary	10/19/89	ND		Filtered	UST
RD-28	Primary	12/05/90	ND		Filtered	IT
RD-28	Primary	03/06/91	ND		Filtered	IT
RD-28	Primary	12/10/91	ND		Filtered	IT
RD-28 ·	Split	12/10/91	ND		Filtered	CEP
RD-28	Primary	03/06/92	ND		Filtered	CEP
RD-28	Split	03/06/92	ND		Filtered	TEL
RD-28	Primary	03/17/93	ND		Filtered	CEP
RD-28	Primary	02/24/94	ND		Filtered	LAS
RD-28	Primary	08/17/94	ND		Filtered	LAS
RD-28	Primary	02/09/95	ND	***	Filtered	LAS
RD-28	Primary	08/18/95	ND		Filtered	LAS
RD-28	Primary	02/06/96	ND	*****	Filtered	LAS
RD-28	Primary	08/20/96	ND	****	Filtered	LAS
RD-28	Primary	02/06/97	ND		Filtered	LAS
RD-28	Primary	08/28/97	ND		Filtered	LAS
RD-28	Primary	08/28/97	ND		Unfiltered	LAS
RD-28	Primary	02/05/98	ND		Filtered	TN
RD-28	Primary	08/18/98	ND		Filtered	TN
RD-28	Primary	02/16/99	ND		Filtered	TN
RD-28	Primary	08/19/99	ND		Filtered	TN
RD-28	Primary	02/16/00	ND		Filtered	TR
RD-28	Primary	08/09/00	ND		Filtered	TR
RD-28	Primary	02/07/01	ND		Filtered	ES
RD-28	Primary	10/25/01	ND		Filtered	DL
RD-28	Primary	02/25/02	ND		Filtered	DL
RD-28	Primary	11/06/02	ND		Filtered	ES
RD-28	Primary	02/24/03	ND		Filtered	ES
RD-28	Primary	11/14/03	ND		Filtered	ES
RD-29	Primary	10/18/89	ND	*****	Filtered	UST
RD-29	Primary	10/31/89	ND		Filtered	UST
RD-29	Primary	12/06/90	ND		Filtered	IT
RD-29	Duplicate	12/06/90	ND		Filtered	IT
RD-29	Primary	03/05/91	ND		Filtered	iT
RD-29	Primary	12/10/91	ND		Filtered	IT
RD-29	Split	12/10/91	ND		Filtered	CEP
RD-29	Primary	03/03/92	ND		Filtered	CEP
RD-29	Primary	03/05/93	ND		Filtered	CEP
RD-29	Primary	02/26/94	ND		Filtered	LAS
RD-29	Primary	05/09/01	ND		Filtered	ES
RD-29	Primary	05/03/02	ND		Filtered	DL
RD-29	Primary	05/03/02	ND		Filtered	ES
RD-30	Primary	10/19/89	ND		Filtered	UST
RD-30	Primary	06/29/90	ND		Filtered	UST
RD-30	Primary	12/06/90	ND ND		Filtered	IT
RD-30	Primary	03/09/91	ND		Filtered	IT

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-30	Primary	12/06/91	ND		Filtered	IT
RD-30	Primary	06/03/92	ND		Filtered	CEP
RD-30	Split	06/03/92	ND	***	Filtered	TEL
RD-30	Primary	03/21/93	ND		Filtered	CEP
RD-30	Primary	02/26/94	ND		Filtered	LAS
RD-30	Primary	08/09/94	ND		Filtered	LAS
RD-30	Primary	02/08/95	ND		Filtered	LAS
RD-30	Primary	08/19/95	ND		Filtered	LAS
RD-30	Primary	02/28/96	ND		Filtered	LAS
RD-30	Primary	08/20/96	ND		Filtered	LAS
RD-30	Primary	02/25/97	ND		Filtered	LAS
RD-30	Primary	08/27/97	ND		Filtered	LAS
RD-30	Primary	08/27/97	ND		Unfiltered	LAS
RD-30	Primary	05/28/98	ND		Filtered	TN
RD-30	Primary	08/05/98	ND		Filtered	TN
RD-30	Primary	02/05/99	ND		Filtered	TN
RD-30	Primary	05/05/00	ND	****	Filtered	TR
RD-30	•	08/08/00	ND ND		Filtered	TR
RD-30	Primary		ND ND		Filtered	ES
RD-30	Primary	05/09/01			Filtered	
	Primary	11/09/01	ND ND			DL
RD-30	Primary	03/11/02	ND		Filtered	DL
RD-30	Primary	08/30/02	ND		Filtered	ES
RD-30	Primary	02/07/03	ND NB		Filtered	ES
RD-30	Primary	11/14/03	ND ND		Filtered	ES
RD-31	Primary	10/24/89	ND		Unfiltered	UST
RD-31	Primary	12/05/90	ND		Filtered	IT IT
RD-31	Primary	03/10/91	ND		Filtered	IT OFF
RD-31	Primary	03/05/92	ND		Filtered	CEP
RD-33A	Primary	12/05/91	ND		Filtered	IT
RD-33A	Primary	12/12/91	ND		Filtered	IT
RD-33A	Split	12/12/91	ND		Filtered	CEP
RD-33A	Primary	06/08/92	ND		Filtered	CEP
RD-33A	Primary	09/15/92	ND		Filtered	CEP
RD-33A	Primary	12/05/92	ND		Filtered	CEP
RD-33A	Primary	08/24/93	ND	4-4**	Filtered	CEP
RD-33A	Primary - :	02/27/94	ND	destinate	Filtered	LAS
RD-33A	Primary	05/10/94	ND		Filtered	LAS
RD-33A	Primary	05/10/94	ND		Unfiltered	LAS
RD-33A	Primary	08/18/94	ND		Filtered	LAS
RD-33A	Primary	02/07/95	ND		Filtered	LAS
RD-33A	Primary	08/09/95	ND		Filtered	LAS
RD-33A	Primary	02/19/96	ND		Filtered	LAS
RD-33A	Primary	08/23/96	ND		Filtered	LAS
RD-33A	Primary	02/25/97	ND		Filtered	LAS
RD-33A	Primary	08/27/97	ND		Filtered	LAS
RD-33A	Primary	08/27/97	ND		Unfiltered	LAS
RD-33A	Primary	05/27/98	ND		Filtered	TN

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-33A	Primary	08/17/98	ND		Filtered	TN
RD-33A	Primary	02/03/99	ND		Filtered	TN
RD-33A	Primary	02/09/00	ND		Filtered	TR
RD-33A	Primary	05/14/01	ND		Filtered	ES
RD-33A	Primary	02/15/02	ND		Filtered	DL
RD-33A	Primary	01/30/03	ND		Filtered	ES
RD-33B	Primary	12/12/91	ND		Filtered	IT
RD-33B	Split	12/12/91	ND		Filtered	CEP
RD-33B	Primary	06/24/92	ND		Filtered	CEP
RD-33B	Primary	09/15/92	ND		Filtered	CEP
RD-33B	Primary	12/05/92	ND		Filtered	CEP
RD-33B	Primary	08/24/93	ND		Filtered	CEP
RD-33B	Primary	02/27/94	Cobalt-60	8.9 ± 2	Filtered	LAS
RD-33B	Primary	02/27/94	Cesium-137	21.6 ± 7.6	Filtered	LAS
RD-33B	Reanalysis of Primary	02/27/94	ND		Filtered	LAS
RD-33B	Primary	05/10/94	ND	****	Filtered	LAS
RD-33B	Primary	05/10/94	ND		Unfiltered	LAS
RD-33B	Primary	08/18/94	ND		Filtered	LAS
RD-33B	Primary	02/07/95	ND		Filtered	LAS
RD-33B	Primary	08/09/95	ND		Filtered	LAS
RD-33B	Primary	02/19/96	ND		Filtered	LAS
RD-33B	Primary	08/23/96	ND		Filtered	LAS
RD-33B	Primary	02/25/97	ND		Filtered	LAS
RD-33B	Primary	08/22/97	ND		Filtered	LAS
RD-33B	Primary	05/27/98	ND		Filtered	TN
RD-33B	Primary	08/17/98	ND		Filtered	TN
RD-33B	Primary	02/03/99	ND	***	Filtered	TN
RD-33B	Primary	02/09/00	ND		Filtered	TR
RD-33B	Primary	02/17/01	ND		Filtered	ES
RD-33B	Primary	02/15/02	ND		Filtered	DL
RD-33B	Primary	02/11/03	ND		Filtered	ES
RD-33C	Primary	12/05/91	ND		Filtered	IT IT
RD-33C	Primary	12/12/91	ND		Filtered	iΤ
RD-33C	Split	12/12/91	ND		Filtered	CEP
RD-33C	Primary	06/08/92	ND		Filtered	CEP
RD-33C	Primary	09/15/92	ND		Filtered	CEP
RD-33C	Primary	12/05/92	ND		Filtered	CEP
RD-33C	Primary	08/24/93	ND		Filtered	CEP
RD-33C	Primary	02/27/94	ND		Filtered	LAS
RD-33C	Primary	05/09/94	ND		Filtered	LAS
RD-33C	Primary	05/09/94	ND		Unfiltered	LAS
RD-33C	Primary	08/17/94	ND		Filtered	LAS
RD-33C	Primary	02/07/95	ND		Filtered	LAS
RD-33C	Primary	08/09/95	ND		Filtered	LAS
RD-33C	Primary	02/19/96	ND		Filtered	LAS
RD-33C	Primary	08/22/96	ND	***	Filtered	LAS
RD-33C	Primary	02/25/97	ND		Filtered	LAS

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-33C	Primary	08/21/97	ND		Filtered	LAS
RD-33C	Primary	05/27/98	ND	****	Filtered	TN
RD-33C	Primary	08/17/98	ND		Filtered	TN
RD-33C	Primary	02/03/99	ND		Filtered	TN
RD-33C	Primary	02/09/00	ND		Filtered	TR
RD-33C	Primary	02/17/01	ND		Filtered	ES
RD-33C	Primary	02/17/01	ND		Filtered	DL
RD-33C	Primary	02/10/03	ND		Filtered	ES
RD-34A	Primary	12/05/91	ND	•••	Filtered	IT
RD-34A	Split	12/05/91	ND		Filtered	CEP
RD-34A	Primary	03/10/92	ND		Filtered	CEP
RD-34A	<u>-</u>	03/10/92	ND ND		Filtered	TEL
	Split Brimen					
RD-34A	Primary	06/08/92	ND		Filtered	CEP
RD-34A	Primary	09/13/92	ND		Filtered	CEP
RD-34A	Split	09/13/92	ND .	<24	Filtered	BL
RD-34A	Primary	12/05/92	ND		Filtered	CEP
RD-34A	Split	12/05/92	ND	<2	Filtered	BL
RD-34A	Primary	03/09/93	ND		Filtered	CEP
RD-34A	Primary	08/24/93	ND		Filtered	CEP
RD-34A	Primary	11/18/93	ND		Filtered	LAS
RD-34A	Primary	02/26/94	Cobalt-60	14.6 ± 2.3	Filtered	LAS
RD-34A	Primary	02/26/94	Cesium-137	19 ± 7.3	Filtered	LAS
RD-34A	Reanalysis of primary	02/26/94	ND		Filtered	LAS
RD-34A	Primary	05/09/94	ND		Filtered	LAS
RD-34A	Primary	05/09/94	ND		Unfiltered	LAS
RD-34A	Primary	08/09/94	Cesium-137	9.2 ± 4.4	Filtered	LAS
RD-34A	Reanalysis of primary	08/09/94	ND		Filtered	LAS
RD-34A	Primary	02/07/95	ND		Filtered	LAS
RD-34A	Primary	08/09/95	ND		Filtered	LAS
RD-34A	Primary	02/19/96	ND		Filtered	LAS
RD-34A	Primary	08/18/96	ND		Filtered	LAS
RD-34A	Primary	02/07/97	ND		Filtered	LAS
RD-34A	Primary	05/27/98	ND		Filtered	TN
RD-34A	Primary	08/18/98	ND		Filtered	TN
RD-34A	Primary	05/09/01	ND		Filtered	ES
RD-34A	Primary	05/16/03	ND		Filtered	ES
RD-34B	Primary	12/05/91	ND		Filtered	iT
RD-34B	Primary	03/10/92	ND		Filtered	CEP
RD-34B	Split	03/10/92	ND		Filtered	TEL
RD-34B	Primary	06/08/92	ND		Filtered	CEP
RD-34B	Primary	09/13/92	ND	₩ -19-44	Filtered	CEP
RD-34B	Split	09/13/92	ND	<26	Filtered `	BL
RD-34B	Primary	12/05/92	ND		Filtered	CEP
RD-34B	Primary	03/09/93	Cobalt-60	80 ± 17	Filtered	CEP
RD-34B	Reanalysis of primary	03/09/93	ND		Filtered	CEP
RD-34B	Primary	08/24/93	ND		Filtered	CEP
RD-34B	Primary	02/26/94	ND		Filtered	LAS

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-34B	Primary	05/10/94	ND		Filtered	LAS
RD-34B	Primary	05/10/94	ND		Unfiltered	LAS
RD-34B	Primary	08/09/94	ND		Filtered	LAS
RD-34B	Primary	02/07/95	ND	****	Filtered	LAS
RD-34B	Primary	08/09/95	ND		Filtered	LAS
RD-34B	Primary	02/19/96	ND		Filtered	LAS
RD-34B	Primary	08/18/96	ND		Filtered	LAS
RD-34B	Primary	02/07/97	ND		Filtered	LAS
RD-34B	Primary	08/21/97	ND		Filtered	LAS
RD-34B	Primary	05/27/98	ND		Filtered	TN
RD-34B	Primary	08/18/98	ND		Filtered	TN
RD-34B	Primary	02/04/99	ND		Filtered	TN
RD-34B	Primary	02/05/00	ND		Filtered	TR
RD-34B	Primary	02/16/01	ND		Filtered	ES
RD-34B	Primary	02/15/02	ND		Filtered	DL
RD-34B	Primary	02/06/03	ND		Filtered	ES
RD-34C	Primary	12/06/91	ND		Filtered	IT
RD-34C	Primary	03/10/92	ND		Filtered	CEP
RD-34C	Split	03/10/92	ND		Filtered	TEL
RD-34C	Primary	06/08/92	ND		Filtered	CEP
RD-34C	Primary	09/13/92	ND		Filtered	CEP
RD-34C	Split	09/13/92	ND	<29	Filtered	BL
RD-34C	Primary	12/05/92	ND		Filtered	CEP
RD-34C	Primary	03/09/93	ND		Filtered	CEP
RD-34C	Primary	08/24/93	ND		Filtered	CEP
RD-34C	Primary	02/26/94	ND		Filtered	LAS
RD-34C	Primary	05/09/94	ND		Filtered	LAS
RD-34C	Primary	05/09/94	ND		Unfiltered	LAS
RD-34C	Primary	08/09/94	ND		Filtered	LAS
RD-34C	Primary	02/07/95	ND		Filtered	LAS
RD-34C	Primary	08/10/95	ND		Filtered	LAS
RD-34C	Primary	02/19/96	ND		Filtered	LAS
RD-34C	Primary	08/19/96	ND		Filtered	LAS
RD-34C	Primary	02/07/97	ND		Filtered	LAS
RD-34C	Primary	08/21/97	ND		Filtered	LAS
RD-34C	Primary	05/27/98	ND	***	Filtered	TN
RD-34C	Primary	08/17/98	ND		Filtered	TN
RD-34C	Primary	02/04/99	ND		Filtered	TN
RD-34C	Primary	02/05/00	ND		Filtered	TR
RD-34C	Primary	02/16/01	ND		Filtered	ES
RD-34C	Primary	02/14/02	ND		Filtered	DL
RD-34C	Primary	02/06/03	ND		Filtered	ES
RD-35B	Primary	05/07/99	ND		Filtered	TN
RD-38B	Primary	02/17/99	ND		Filtered	TN
RD-44	Primary	08/24/97	ND	***	Filtered	LAS
RD-45C	Primary	10/06/94	ND		Filtered	LAS
RD-46B	Primary	02/15/99	ND		Filtered	TN

RADIONUCLIDES IN GROUNDWATER SAMPLES BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-47	Primary	08/24/97	ND		Filtered	LAS
RD-50	Primary	05/05/94	ND		Filtered	LAS
RD-50	Primary	05/19/95	ND		Filtered	LAS
RD-50	Primary	05/14/96	ND		Filtered	LAS
RD-50	Primary	05/05/97	ND		Filtered	LAS
RD-50	Primary	05/28/98	ND		Filtered	TN
RD-51C	Primary	12/14/91	ND		Filtered	ΙΤ
RD-51C	Primary	03/06/92	ND		Filtered	CEP
RD-54A	Primary	09/12/93	ND		Filtered	CEP
RD-54A	Primary	09/29/93	ND	***	Filtered	CEP
RD-54A	Primary	05/08/94	ND		Filtered	LAS
RD-54A	Primary	08/09/94	ND		Filtered	LAS
RD-54A	Primary	08/03/95	ND		Filtered	LAS
RD-54A	Primary	05/16/96	ND		Filtered	LAS
RD-54A	Primary	08/23/96	ND		Filtered	LAS
RD-54A	Primary	05/05/97	ND	***	Filtered	LAS
RD-54A	Primary	08/22/97	ND		Filtered	LAS
RD-54A	Primary	02/08/98	ND		Filtered	TN
RD-54A	Primary	08/07/98	ND		Filtered	TN
RD-54A	Primary	02/08/99	ND		Filtered	TN
RD-54A	Primary	03/15/00	ND		Filtered	TR
RD-54A	Primary	10/26/01	ND .		Filtered	DL
RD-54A	Primary	02/27/02	ND		Filtered	DL
RD-54A	Primary	02/18/03	ND		Filtered	ES
RD-54B	Primary	09/12/93	ND	****	Filtered	CEP
RD-54B	Primary	09/29/93	ND		Filtered	CEP
RD-54B	Primary	05/08/94	ND		Filtered	LAS
RD-54B	Primary	08/08/94	ND		Filtered	LAS
RD-54B	Primary	08/30/95	ND		Filtered	LAS
RD-54B	Primary	05/14/96	ND		Filtered	LAS
RD-54B	Primary	08/23/96	ND		Filtered	LAS
RD-54B	Primary	08/22/97	ND		Filtered	LAS
RD-54B	Primary	02/08/98	ND		Filtered	TN
RD-54B	Primary	08/07/98	ND		Filtered	TN
RD-54B	Primary	02/08/99	ND		Filtered	TN
RD-54B	Primary	03/15/00	ND		Filtered	TR
RD-54B	Primary	10/25/01	ND		Filtered	DL
RD-54B	Primary	02/27/02	ND	wings age	Filtered	DL
RD-54B	Primary	02/26/03	ND	₩171- -	Filtered	ES
RD-54C	Primary	09/11/93	ND		Filtered	CEP
RD-54C	Primary	09/29/93	ND		Filtered	CEP
RD-54C	Primary	05/08/94	ND		Filtered	LAS
RD-54C	Primary	08/08/94	ND		Filtered	LAS
RD-54C	Primary	08/30/95	ND		Filtered	LAS
RD-54C	Primary	05/16/96	ND	•	Filtered	LAS
RD-54C	Primary	08/23/96	ND	~	Filtered	LAS
RD-54C	Primary	05/05/97	ND		Filtered	LAS

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-54C	Primary	08/24/97	ND		Filtered	LAS
RD-54C	Primary	02/08/98	ND		Filtered	TN
RD-54C	Primary	08/07/98	ND		Filtered	TN
RD-54C	Primary	02/09/99	ND		Filtered	TN
RD-54C	Primary	03/15/00	ND		Filtered	TR
RD-54C	Primary	11/02/01	ND	***	Filtered	DL
RD-54C	Primary	02/27/02	ND		Filtered	DL
RD-54C	Primary	02/26/03	ND		Filtered	ES
RD-56A	Primary	05/10/94	ND		Filtered	LAS
RD-56A	Primary	05/28/98	ND	****	Filtered	TN
RD-56B	Primary	05/28/98	ND		Filtered	TN
RD-57	Primary	03/16/94	ND		Filtered	LAS
RD-57	Primary	05/10/94	ND		Filtered	LAS
RD-57	Primary	08/18/94	ND		Filtered	LAS
RD-57	Primary	02/07/95	ND		Filtered	LAS
RD-57	Primary	08/09/95	ND		Filtered	LAS
RD-57	Primary	02/19/96	ND		Filtered	LAS
RD-57	Primary	08/22/96	ND		Filtered	LAS
RD-57	Primary	02/25/97	ND		Filtered	LAS
RD-57	Primary	08/27/97	ND		Filtered	LAS
RD-57	Primary	08/27/97	ND		Unfiltered	LAS
RD-57	Primary	05/26/98	ND		Filtered	TN
RD-57	Primary	08/17/98	ND		Filtered	TN
RD-57	Primary	05/13/99	ND		Filtered	TN
RD-57	Primary	02/09/00	ND		Filtered	TR
RD-57	Primary	05/11/01	ND		Filtered	ES
RD-57	Primary	02/14/02	ND		Filtered	DL
RD-57	Primary	01/29/03	ND		Filtered	ES
RD-57	Primary	04/30/03	ND		Filtered	ES
RD-59A	Primary	08/16/94	ND		Filtered	LAS
RD-59A	Primary	02/06/95	ND		Filtered	LAS
RD-59A	Duplicate	02/06/95	ND		Filtered	LAS
RD-59A	Primary	08/08/95	ND		Filtered	LAS
RD-59A	Primary	03/12/96	ND	*	Filtered	LAS
RD-59A	Primary	08/21/96	ND		Filtered	LAS
RD-59A	Primary	02/16/97	ND		Filtered	LAS
RD-59A	Primary	08/22/97	ND		Filtered	LAS
RD-59A	Primary	08/19/98	ND		Filtered	TN
RD-59A	Primary	02/16/99	ND	****	Filtered	TN
RD-59A	Primary	03/14/00	ND		Filtered	TR
RD-59A	Primary	05/16/01	ND		Filtered	ES
RD-59A	Primary	02/28/02	ND		Filtered	DL
RD-59A	Primary	01/31/03	ND		Filtered	ES
RD-59A	Primary	05/15/03	ND		Filtered	ES
RD-59A	Split	05/15/03	ND		Filtered	ES
RD-59B	Primary	08/16/94	ND		Filtered	LAS
RD-59B	Primary	02/06/95	ND		Filtered	LAS

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
RD-59B	Primary	08/08/95	ND		Filtered	LAS
RD-59B	Primary	03/12/96	ND		Filtered	LAS
RD-59B	Primary	08/21/96	ND		Filtered	LAS
RD-59B	Primary	02/16/97	ND		Filtered	LAS
RD-59B	Primary	08/22/97	ND		Filtered	LAS
RD-59B	Primary	08/19/98	ND		Filtered	TN
RD-59B	Primary	02/16/99	ND		Filtered	TN
RD-59B	Primary	03/14/00	ND		Filtered	TR
RD-59B	Primary	02/17/01	ND		Filtered	ES
RD-59B	Primary	02/28/02	ND		Filtered	DL.
RD-59B	Primary	01/31/03	ND		Filtered	ES
RD-59C	Primary	08/16/94	ND		Filtered	LAS
RD-59C	Primary	02/06/95	ND		Filtered	LAS
RD-59C	Primary	08/08/95	ND		Filtered	LAS
RD-59C	Primary	03/12/96	ND		Filtered	LAS
RD-59C	Primary	08/21/96	ND		Filtered	LAS
RD-59C	Primary	02/16/97	ND		Filtered	LAS
RD-59C	Primary	08/22/97	ND		Filtered	LAS
RD-59C	Primary	08/19/98	ND	***	Filtered	TN
RD-59C	Primary	02/16/99	ND		Filtered	TN
RD-59C	Primary	03/14/00	ND		Filtered	TR
RD-59C	Primary	02/17/01	ND		Filtered	ES
RD-59C	Primary	02/28/02	ND		Filtered	DL
RD-59C	Primary	01/31/03	ND		Filtered	ES
RD-61	Primary	05/28/98	ND	+	Filtered	TN
RD-63	Primary	01/04/95	ND		Filtered	LAS
RD-63	Primary	02/02/99	ND		Filtered	TN
RD-63	Primary	02/16/00	ND		Filtered	TR
RD-63	Primary	02/23/01	ND		Filtered	ES
RD-63	Primary	02/14/02	ND		Filtered	DL
RD-63	Primary	02/05/03	ND		Filtered	ES
RD-64	Primary	05/10/01	ND		Filtered	ES
RD-64	Primary	02/28/02	ND	***	Filtered	DL
RD-64	Primary	01/29/03	ND		Filtered	ES
RD-69	Primary	05/28/98	ND		Filtered	TN
RD-74	Primary	05/13/99	ND		Filtered	TN
WS-04A	Primary	12/05/90	ND		Filtered	IT
WS-07	Primary	12/06/90	ND		Filtered	TÎT T
WS-07	Duplicate	12/06/90	ND		Filtered	iT
WS-07	Primary	03/08/91	ND		Filtered	iT
WS-07	Primary	12/07/91	ND		Filtered	iT
WS-07	Split	12/07/91	ND		Filtered	CEP
WS-07	Primary	03/25/92	ND		Filtered	CEP
WS-13	Primary	10/17/89	ND		Filtered	UST
WS-13	Duplicate	10/17/89	ND		Filtered	UST
WS-13	Primary	11/01/89	ND		Unfiltered	UST

TABLE E-III
RESULTS OF ANALYSES FOR MAN-MADE*, GAMMA-EMITTING
RADIONUCLIDES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
Off-Site Pr	rivate Wells and Spring	js		_		
OS-01	Primary	12/11/90	ND	*	Filtered	IT
OS-01	Primary	03/09/91	ND		Filtered	(T
OS-01	Primary	12/09/91	ND		Filtered	IT
OS-01	Primary	06/09/92	ND		Filtered	CEP
OS-01	Primary	09/15/92	ND		Filtered	CEP
OS-01	Primary	12/17/92	ND		Filtered	CEP
OS-01	Primary	08/23/93	ND	 '	Filtered	CEP
OS-01	Primary	02/23/94	ND		Filtered	LAS
OS-01	Primary	08/15/94	ND		Filtered	LAS
OS-02	Primary	12/11/90	ND		Filtered	IT
OS-02	Primary	03/08/91	ND		Filtered	IT
OS-02	Duplicate	03/08/91	ND		Filtered	ΙΤ
OS-02	Primary	12/09/91	ND		Filtered	ΙΤ
OS-02	Primary	06/09/92	ND		Filtered	CEP
OS-02	Primary	09/15/92	ND		Filtered	CEP
OS-02	Primary	12/17/92	ND		Filtered	CEP
OS-02	Primary	08/23/93	ND		Filtered	CEP
OS-02	Primary	02/23/94	ND		Filtered	LAS
OS-02	Primary	08/15/94	ND		Filtered	LAS
OS-03	Primary	12/11/90	ND		Filtered	ΙΤ
OS-03	Primary	03/08/91	ND		Filtered	IT
OS-03	Primary	12/09/91	ND		Filtered	ΙΤ
OS-03	Primary	06/09/92	ND		Filtered	CEP
OS-03	Primary	08/23/93	ND		Filtered	CEP
OS-03	Primary	02/23/94	ND		Filtered	LAS
OS-03	Primary	08/15/94	ND		Filtered	LAS
OS-04	Primary	12/11/90	ND		Filtered	IT
OS-04	Primary	06/09/92	ND		Filtered	CEP
OS-04	Primary	06/22/93	ND		Filtered	CEP
OS-04	Primary	08/23/93	ND		Filtered	CEP
OS-04	Primary	02/23/94	ND		Filtered	LAS
OS-04	Primary	08/15/94	ND	***	Filtered	LAS
OS-05	Primary	12/11/90	ND		Filtered	ΙΤ
OS-05	Primary	03/08/91	ND		Filtered	IT
OS-05	Primary	12/09/91	ND		Filtered	ίΤ
OS-05	Primary	06/09/92	ND		Filtered	CEP
OS-05	Primary	09/15/92	ND		Filtered	CEP
OS-05	Split	09/15/92	ND	<32	Filtered	BL
OS-05	Primary	12/17/92	ND		Filtered	CEP
OS-05	Primary	08/23/93	ND		Filtered	CEP
OS-05	Primary	02/23/94	ND		Filtered	LAS
OS-08	Primary	06/09/92	ND		Filtered	CEP
OS-08	Primary	08/15/94	ND		Filtered	LAS
OS-10	Primary	12/09/91	ND		Filtered	IT
OS-10	Primary	08/05/94	ND		Filtered	LAS
OS-15	Primary	12/10/91	ND		Filtered	IT

RADIONUCLIDES IN GROUNDWATER SAMPLES BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

Well Identifier	Sample Type	Date Sampled	Radionuclide(s) Detected	Concentration (picoCuries per liter)	Sample Handling	Lab
OS-16	Primary	11/01/89	ND		Unfiltered	UST
OS-16	Primary	11/01/89	ND		Filtered	UST
OS-16	Duplicate	11/01/89	ND		Unfiltered	UST
OS-16	Duplicate	11/01/89	ND		Filtered	UST
OS-16	Primary	12/10/91	ND		Filtered	IT
OS-16	Primary	03/12/92	ND		Filtered	CEP
OS-17	Primary	12/09/91	ND		Filtered	IT
OS-17	Primary	03/12/92	ND		Filtered	CEP
OS-21	Primary	11/01/89	ND		Unfiltered	UST
OS-21	Primary	11/01/89	ND		Filtered	UST
OS-21	Primary	03/09/91	ND		Filtered	IT
OS-21	Primary	12/10/91	ND		Filtered	IT
OS-21	Primary	03/12/92	ND		Filtered	CEP
OS-21	Primary	03/19/93	ND		Filtered	CEP
Calleguas	Primary	12/14/90	ND		Filtered	IT
Calleguas	Primary	03/10/91	ND		Filtered	IT
Calleguas	Primary	03/12/92	ND		Filtered	CEP

Page 17 of 18

Page 18 of 18

(*)	=	Man-made gamma-emitting radionuclides include cobalt-57, cobalt-60, cesium-134 and cesium-137.
ND	=	No gamma-emitting radionuclides detected above minimum detectable activities.
()	=	See ND.
BL	=	Barringer Laboratories, Inc., Golden, Colorado.
CEP	=	Controls for Environmental Pollution, Santa Fe, New Mexico.
DL	=	Davi Laboratories, Pinole, California.
ES	=	Eberline Services (formerly Thermo Retec), Richmond, California.
ΙΤ	=	International Technologies Analytical Services (formerly UST), Richland, Washington.
LAS	=	LAS Laboratories, Inc. (formerly Lockheed Martin), Las Vegas, Nevada.
STL	=	Severn Trent Laboratories, Richland, Washington.
TEL	=	Teledyne Isotopes, Westwood, New Jersey.
TMA	=	Thermoanalytical, Inc. (TMA/NORCAL), Richmond, California.
TN	=	Thermo NUtech, Richmond, California.
TR	=	Thermo Retec (formerly Thermo NUtech), Richmond, California.
UST	=	United States Testing Laboratory, Richland, Washington.
Primary	=	Primary sample
Duplicate	=	Sample duplicate
Split	=	Sample split

NOTE: Samples analyzed for gamma-emitting radionuclides by EPA Method 901.1

Page 1 of 22

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
Shallow Wells	1115-	O/MIL FED		(picocuries per itter)	HANDLING	
SH-04	Primary	03/18/93	Radium-226	3.3 ± 2.6	Filtered	CEP
SH-04	Primary	03/18/93	Radium-228	<1	Filtered	CEP
SH-04	Primary	06/09/93	Radium-226	3.1 ± 1.0	Filtered	CEP
SH-04	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
SH-04	Primary	11/04/93	Radium-226	0.14 ± 0.12	Filtered	LAS
SH-04	Primary	05/06/94	Uranium-233/234	4.54 ± 0.79	Filtered	LAS
SH-04	Primary	05/06/94	Uranium-235	0.43 ± 0.24	Filtered	LAS
SH-04	Primary	05/06/94	Uranium-238	3.73 ± 0.71	Filtered	LAS
SH-11	Primary	10/31/89	Uranium-234	3.91 ± 0.702	Unfiltered	CEP
SH-11	Primary	10/31/89	Uranium-234	3.29 ± 0.577	Filtered	UST
SH-11	Primary	10/31/89	Uranium-235	0.144 ± 0.127	Unfiltered	UST
SH-11	Primary	10/31/89	Uranium-235	0.0843 ± 0.0848	Filtered	UST
SH-11	Primary	10/31/89	Uranium-238	2.94 ± 0.608	Unfiltered	UST
SH-11	Primary	10/31/89	Uranium-238	3.42 ± 0.585	Filtered	UST
SH-11	Primary	10/31/89	Radium-226	0.425 ± 0.120	Unfiltered	UST
SH-11	Primary	10/31/89	Radium-226	0.254 ± 0.0976	Filtered	UST
SH-11	Primary	10/31/89	Radium-228	1.23 ± 0.493	Unfiltered	UST
SH-11	Primary	10/31/89	Radium-228	0.842 ± 0.405	Filtered	UST
SH-11	Primary	10/31/89	Thorium-228	0.575 ± 0.333	Unfiltered	UST
SH-11	Primary	10/31/89	Thorium-228	-0.0205 ± 0.0239	Filtered	UST
SH-11	Primary	10/31/89	Thorium-230	0.284 ± 0.137	Unfiltered	UST
SH-11	Primary	10/31/89	Thorium-230	0.00785 ± 0.00789	Filtered	UST
SH-11	Primary	10/31/89	Thorium-232	0.583 ± 0.201	Unfiltered	UST
SH-11	Primary	10/31/89	Thorium-232	0.00981 ± 0.0104	Filtered	UST
RS-05	Primary	10/31/89	Uranium-234	5.73 ± 0.988	Unfiltered	UST
RS-05	Primary	10/31/89	Uranium-234	5.81 ± 0.830	Filtered	UST
RS-05	Primary	10/31/89	Uranium-235	0.241 ± 0.202	Unfiltered	UST
RS-05	Primary	10/31/89	Uranium-235	0.0883 ± 0.0823	Filtered	UST
RS-05	Primary	10/31/89	Uranium-238	5.83 ± 0.991	Unfiltered	UST
RS-05	Primary	10/31/89	Uranium-238	5.04 ± 0.741	Filtered	UST
RS-05	Primary	10/31/89	Radium-226	0.359 ± 0.124	Unfiltered	UST
RS-05	Primary	10/31/89	Radium-226	-0.00350 ± 0.0459	Filtered	UST
RS-05	Primary	10/31/89	Radium-228	2.19 ± 0.657	Unfiltered	UST

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	
IDENTIFIER	TYPE	SAMPLED	ISOTOPE	(picocuries per liter)	HANDLING	LABORATORY
RS-05	Primary	10/31/89	Radium-228	1.16 ± 0.487	Filtered	UST
RS-05	Primary	10/31/89	Thorium-228	1.20 ± 0.463	Unfiltered	UST
RS-05	Primary	10/31/89	Thorium-228	0.0345 ± 0.0346	Filtered	UST
RS-05	Primary	10/31/89	Thorium-230	0.917 ± 0.309	Unfiltered	UST
RS-05	Primary	10/31/89	Thorium-230	0.00827 ± 0.0117	Filtered	UST
RS-05	Primary	10/31/89	Thorium-232	1.68 ± 0.440	Unfiltered	UST
RS-05	Primary	10/31/89	Thorium-232	0.0393 ± 0.0202	Filtered	UST
RS-08	Primary	03/18/93	Radium-226	3 ± 2.3	Filtered	CEP
RS-08	Primary	03/18/93	Radium-228	<1	Filtered	CEP
RS-08	Primary	06/08/93	Radium-226	2.4 ± 1.0	Filtered	CEP
RS-08	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
RS-08	Primary	11/08/93	Radium-226	0.09 ± 0.13	Filtered	CEP
RS-08	Primary	11/08/93	Uranium-233/234 (dissolved)	15.0 ± 2.0	Filtered	LAS
RS-08	Primary	11/08/93	Uranium-235 (dissolved)	0.62 ± 0.32	Filtered	LAS
RS-08	Primary	11/08/93	Uranium-238 (dissolved)	14.6 ± 1.9	Filtered	LAS
RS-18	Primary	03/04/92	Uranium-234	2.75 ± 0.62	Unfiltered	CEP
RS-18	Primary	03/04/92	Uranium-235	<0.6	Unfiltered	CEP
RS-18	Primary	03/04/92	Uranium-238	3.60 ± 0.70	Unfiltered	CEP
RS-18	Primary	09/10/92	Radium-226	3.5 ± 2.0	Filtered	CEP
RS-18	Primary	09/10/92	Radium-228	<1	Filtered	CEP
RS-18	Primary	09/10/92	Uranium-234	36.6 ± 6.0	Unfiltered	CEP
RS-18	Primary	09/10/92	Uranium-235	1.80 ± 0.90	Unfiltered	CEP
RS-18	Primary	09/10/92	Uranium-238	41.9 ± 6.6	Unfiltered	CEP
RS-18	Primary	12/15/92	Uranium-234	5.17 ± 0.69	Unfiltered	CEP
RS-18	Primary	12/15/92	Uranium-235	<0.6	Unfiltered	CEP
RS-18	Primary	12/15/92	Uranium-238	5.67 ± 0.77	Unfiltered	CEP
RS-18	Primary	12/15/92	Thorium-228	<0.6	Filtered	CEP
RS-18	Primary	12/15/92	Thorium-230	<0.6	Filtered	CEP
RS-18	Primary	12/15/92	Thorium-232	<0.6	Filtered	CEP
RS-18	Primary	06/23/93	Uranium-234	1.8 ± 3	Filtered	CEP
RS-18	Primary	06/23/93	Uranium-235	0.1 ± 0.1	Filtered	CEP
RS-18	Primary	06/23/93	Uranium-236	2.1 ± 0.4	Filtered	CEP
RS-18	Primary	06/23/93	Thorium-228	0.00 ± 0.05	Filtered	CEP
RS-18	Primary	06/23/93	Thorium-230	0.00 ± 0.05	Filtered	CEP

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
RS-18	Primary	06/23/93	Thorium-232	0.00 ± 0.05	Filtered	CEP
RS-18	Primary	11/06/93	Uranium-233/234	16.3 ± 2.2	Filtered	LAS
RS-18	Primary	11/06/93	Uranium-235	0.42 ± 0.27	Filtered	LAS
RS-18	Primary	11/06/93	Uranium-238	14.6 ± 2.0	Filtered	LAS
RS-18	Primary	11/06/93	Thorium-228	0.20 ± 0.27	Filtered	LAS
RS-18	Primary	11/06/93	Thorium-230	0.53 ± 0.30	Filtered	LAS
RS-18	Primary	11/06/93	Thorium-232	0.19 ± 0.18	Filtered	LAS
RS-18	Primary	05/04/94	Uranium-233/234	19.9 ± 1.8	Filtered	LAS
RS-18	Primary	05/04/94	Uranium-235	0.9 ± 0.33	Filtered	LAS
RS-18	Primary	05/04/94	Uranium-238	19.2 ± 1.8	Filtered	LAS
RS-18	Primary	05/04/94	Thorium-228	-0.014 ± 0.058	Filtered	LAS
RS-18	Primary	05/04/94	Thorium-230	0.103 ± 0.058	Filtered	LAS
RS-18	Primary	05/04/94	Thorium-232	0.056 ± 0.025	Filtered	LAS
RS-18	Primary	02/17/95	Uranium-233/234	8.98 ± 0.96	Filtered	LAS
RS-18	Primary	02/17/95	Uranium-235	0.49 ± 0.21	Filtered	LAS
RS-18	Primary	02/17/95	Uranium-238	7.67 ± 0.87	Filtered	LAS
RS-18	Primary	02/17/95	Thorium-228	-0.05 ± 0.18	Filtered	LAS
RS-18	Primary	02/17/95	Thorium-230	0.24 ± 0.16	Filtered	LAS
RS-18	Primary	02/17/95	Thorium-232	0.057 ± 0.079	Filtered	LAS
RS-18	Primary	08/10/95	Uranium-233/234	15.00 ± 0.92	Filtered	LAS
RS-18	Primary	08/10/95	Uranium-235	0.78 ± 0.13	Filtered	LAS
RS-18	Primary	08/10/95	Uranium-238	15.19 ± 0.93	Filtered	LAS
RS-18	Primary	08/10/95	Thorium-228	-0.05 ± 0.28	Filtered	LAS
RS-18	Primary	08/10/95	Thorium-230	-0.022 ± 0.076	Filtered	LAS
RS-18	Primary	08/10/95	Thorium-232	0.037 ± 0.095	Filtered	LAS
RS-18	Primary	05/16/96	Uranium-233/234	11.5 ± 1.1	Filtered	LAS
RS-18	Primary	05/16/96	Uranium-235	0.89 ± 0.28	Filtered	LAS
RS-18	Primary	05/16/96	Uranium-238	10.8 ± 1.1	Filtered	LAS
RS-18	Primary	05/16/96	Thorium-228	-0.07 ± 0.17	Filtered	LAS
RS-18	Primary	05/16/96	Thorium-230	-0.027 ± 0.048	Filtered	LAS
RS-18	Primary	05/16/96	Thorium-232	0.013 ± 0.070	Filtered	LAS
RS-18	Primary	02/03/97	Uranium-233/234	14.2 ± 1.3	Filtered	LAS
RS-18	Primary	02/03/97	Uranium-235	0.53 ± 0.21	Filtered	LAS
RS-18	Primary	02/03/97	Uranium-238	13.9 ± 1.3	Filtered	LAS

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	13010FL	(picocuries per liter)	HANDLING	LABORATORT
RS-18	Primary	02/03/97	Thorium-228	0.1 ± 0.17	Filtered	LAS
RS-18	Primary	02/03/97	Thorium-230	0.009 ± 0.043	Filtered	LAS
RS-18	Primary	02/03/97	Thorium-232	-0.009 ± 0.034	Filtered	LAS
RS-18	Primary	02/05/98	Uranium-233/234	14.2 ± 0.94	Filtered	TN
RS-18	Primary	02/05/98	Uranium-235	0.943 ± 0.17	Filtered	TN
RS-18	Primary	02/05/98	Uranium-238	12.9 ± 0.88	Filtered	TN
RS-18	Primary	02/05/98	Thorium-228	-0.009 ± 0.023	Filtered	TN
RS-18	Primary	02/05/98	Thorium-230	<0.138	Filtered	TN
RS-18	Primary	02/05/98	Thorium-232	0 ± 0.012	Filtered	TN
RS-18	Primary	08/05/98	Thorium-228	0.014 ± 0.019	Filtered	TN
RS-18	Primary	08/05/98	Thorium-230	<0.080	Filtered	TN
RS-18	Primary	08/05/98	Thorium-232	0.005 ± 0.019	Filtered	TN
RS-18	Primary	08/05/98	Uranium-233/234	13.7 ± 0.72	Filtered	TN
RS-18	Primary	08/05/98	Uranium-235	0.793 ± 0.13	Filtered	TN
RS-18	Primary	08/05/98	Uranium-238	13.3 ± 0.71	Filtered	TN
RS-18	Primary	05/09/00	Thorium-228	<0.166	Filtered	TR
RS-18	Primary	05/09/00	Thorium-230	<0.219	Filtered	TR
RS-18	Primary	05/09/00	Thorium-232	0.037 ± 0.050	Filtered	TR
RS-18	Primary	05/09/00	Uranium-233/234	15.1 ± 0.97	Filtered	TR
RS-18	Primary	05/09/00	Uranium-235	0.795 ± 0.19	Filtered	TR
RS-18	Primary	05/09/00	Uranium-238	13.2 ± 0.89	Filtered	TR
RS-18	Primary	02/19/01	Thorium-228	0.04 ± 0.081	Filtered	ES
RS-18	Primary	02/19/01	Thorium-230	0.00 ± 0.069	Filtered	ES
RS-18	Primary	02/19/01	Thorium-232	0.00 ± 0.035	Filtered	ES
RS-18	Primary	02/19/01	Uranium-233/234	8.4 ± 0.38	Filtered	ES
RS-18	Primary	02/19/01	Uranium-235	0.442 ± 0.072	Filtered	ES
RS-18	Primary	02/19/01	Uranium-238	7.89 ± 0.36	Filtered	ES
RS-18	Primary	05/02/03	Thorium-228	-0.009U ± 0.037	Filtered	ES
RS-18	Primary	05/02/03	Thorium-230	0.018U ± 0.046	Filtered	ES
RS-18	Primary	05/02/03	Thorium-232	$0.005U \pm 0.009$	Filtered	ES
RS-18	Primary	05/02/03	Uranium-233/234	20.3 ± 1.2	Filtered	ES
RS-18	Primary	05/02/03	Uranium-235	1.05 ± 0.12	Filtered	ES
RS-18	Primary	05/02/03	Uranium-238	19.3 ± 1.1	Filtered	ES

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	ISOTOPE	(picocuries per liter)	HANDLING	LABORATORT
RS-25	Primary	02/25/03	Uranium-233/234	1.98 ± 0.16	Filtered	ES
RS-25	Primary	02/25/03	Uranium-235	0.090 ± 0.035	Filtered	E\$
RS-25	Primary	02/25/03	Uranium-238	2.02 ± 0.16	Filtered	ES
RS-28	Primary	11/01/89	Uranium-234	4.59 ± 0.181	Filtered	UST
RS-28	Primary	11/01/89	Uranium-235	0.153 ± 0.0139	Filtered	UST
RS-28	Primary	11/01/89	Uranium-238	4.24 ± 0.147	Filtered	UST
RS-28	Primary	11/01/89	Radium-226	0.105 ± 0.0854	Unfiltered	UST
RS-28	Primary	11/01/89	Radium-226	0.0296 ± 0.0596	Filtered	UST
RS-28	Primary	11/01/89	Radium-228	0.726 ± 0.669	Unfiltered	UST
RS-28	Primary	11/01/89	Radium-228	0.686 ± 0.540	Filtered	UST
RS-28	Primary	11/01/89	Thorium-228	0.586 ± 0.0930	Unfiltered	UST
RS-28	Primary	11/01/89	Thorium-228	0.0222 ± 0.0283	Filtered	UST
RS-28	Primary	11/01/89	Thorium-230	0.147 ± 0.0377	Unfiltered	UST
RS-28	Primary	11/01/89	Thorium-230	0.00580 ± 0.0102	Filtered	UST
RS-28	Primary	11/01/89	Thorium-232	0.662 ± 0.0961	Unfiltered	UST
RS-28	Primary	11/01/89	Thorium-232	0.00193 ± 0.00387	Filtered	UST
RS-54	Primary	05/07/94	Uranium-233/234	26.4 ± 2.4	Filtered	LAS
RS-54	Primary	05/07/94	Uranium-235	2.15 ± 0.59	Filtered	LAS
RS-54	Primary	05/07/94	Uranium-238	26.5 ± 2.4	Filtered	LAS
RS-54	Primary	08/03/97	Uranium-233/234	16.4 ± 1.2	Filtered	LAS
RS-54	Primary	08/03/97	Uranium-235	0.69 ± 0.19	Filtered	LAS
RS-54	Primary	08/03/97	Uranium-238	14.8 ± 1.2	Filtered	LAS
RS-54	Primary	08/27/97	Uranium-233/234	15.9 ± 1.2	Filtered	LAS
RS-54	Primary	08/27/97	Uranium-235	0.84 ± 0.19	Filtered	LAS
RS-54	Primary	08/27/97	Uranium-238	14.5 ± 1.1	Filtered	LAS
RS-54	Primary	08/27/97	Uranium-233/234	16.6 ± 1.2	Unfiltered	LAS
RS-54	Primary	08/27/97	Uranium-235	0.75 ± 0.20	Unfiltered	LAS
RS-54	Primary	08/27/97	Uranium-238	15.6 ± 1.2	Unfiltered	LAS
RS-54	Primary	02/08/98	Uranium-233/234	8.75 ± 0.39	Filtered	TN
RS-54	Primary	02/08/98	Uranium-235	0.478 ± 0.072	Filtered	TN
RS-54	Primary	02/08/98	Uranium-238	7.90 ± 0.36	Filtered	TN
RS-54	Primary	02/08/98	Thorium-228	-0.011 ± 0.028	Filtered	TN
RS-54.	Primary	02/08/98	Thorium-230	0.039 ± 0.044	Filtered	TN
RS-54	Primary	02/08/98	Thorium-232	0.006 ± 0.011	Filtered	TN

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	ISOTOPE	(picocuries per liter)	HANDLING	LABORATORT
RS-54	Primary	08/04/98	Thorium-228	0.028 ± 0.028	Filtered	TN
RS-54	Primary	08/04/98	Thorium-230	<0.081	Filtered	TN
RS-54	Primary	08/04/98	Thorium-232	0.018 ± 0.028	Filtered	TN
RS-54	Primary	08/04/98	Uranium-233/234	7.91 ± 0.48	Filtered	TN
RS-54	Primary	08/04/98	Uranium-235	0.509 ± 0.098	Filtered	TN
RS-54	Primary	08/04/98	Uranium-238	7.24 ± 0.45	Filtered	TN
RS-54	Primary	02/02/99	Thorium-228	0.012 ± 0.020	Filtered	TN
RS-54	Primary	02/02/99	Thorium-230	0.034 ± 0.040	Filtered	TN
RS-54	Primary	02/02/99	Thorium-232	-0.002 ± 0.008	Filtered	TN
RS-54	Primary	02/02/99	Uranium-233/234	11.7 ± 0.75	Filtered	TN
RS-54	Primary	02/02/99	Uranium-235	0.745 ± 0.15	Filtered	TN
RS-54	Primary	02/02/99	Uranium-238	10.7 ± 0.70	Filtered	TN
RS-54	Primary	08/18/99	Thorium-228	0.030 ± 0.12	Filtered	TN
RS-54	Primary	08/18/99	Thorium-230	0.112 ± 0.12	Filtered	TN
RS-54	Primary	08/18/99	Thorium-232	0 ± 0.041	Filtered	TN
RS-54	Primary	08/18/99	Uranium-233/234	15.7 ± 1.1	Filtered	TN
RS-54	Primary	08/18/99	Uranium-235	1.23 ± 0.25	Filtered	TN
RS-54	Primary	08/18/99	Uranium-238	14.0 ± 1.0	Filtered	TN
RS-54	Primary	03/15/00	Thorium-228	0 ± 0.091	Filtered	TR
RS-54	Primary	03/15/00	Thorium-230	1.28 ± 0.31 B	Filtered	TR
RS-54	Primary	03/15/00	Thorium-232	0.060 ± 0.091	Filtered	TR
RS-54	Primary	03/15/00	Uranium-233/234	9.08 ± 0.90	Filtered	TR
RS-54	Primary	03/15/00	Uranium-235	0.486 ± 0.20	Filtered	TR
RS-54	Primary	03/15/00	Uranium-238	8.77 ± 0.87 B	Filtered	TR
RS-54	Primary	11/01/01	Thorium-228	0.00 ± 1.00	Filtered	DL
RS-54	Primary	11/01/01	Thorium-230	0.00 ± 1.00	Filtered	DL
RS-54	Primary	11/01/01	Thorium-232	0.00 ± 1.00	Filtered	DL
RS-54	Primary	11/01/01	Uranium-233/234	20.59 ± 0.39	Filtered	DL
RS-54	Primary	11/01/01	Uranium-235	0.72 ± 0.07	Filtered	DL
RS-54	Primary	11/01/01	Uranium-238	14.80 ± 0.33	Filtered	DL
RS-54	Primary	03/01/02	Thorium-228	0.43 ± 1.00	Filtered	DL
RS-54	Primary	03/01/02	Thorium-230	0 ± 1.00	Filtered	DL
RS-54	Primary	03/01/02	Thorium-232	0 ± 1.00	Filtered	DL
RS-54	Primary	03/01/02	Uranium-233/234	16.44 ± 5.00	Filtered	DL

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	ISOTOPE	(picocuries per liter)	HANDLING	LABORATORT
RS-54	Primary	03/01/02	Uranium-235	0.66 ± 1.00	Filtered	DL
RS-54	Primary	03/01/02	Uranium-238	16.38 ± 5.00	Filtered	DL
RS-54	Primary	11/07/02	Thorium-228	0.033 ± 0.049	Filtered	ES
RS-54	Primary	11/07/02	Thorium-230	0.037 ± 0.057	Filtered	ES
RS-54	Primary	11/07/02	Thorium-232	0 ± 0.008	Filtered	ES
RS-54	Primary	11/07/02	Uranium-233/234	14.9 ± 0.71	Filtered	ES
RS-54	Primary	11/07/02	Uranium-235	0.629 ± 0.10	Filtered	ES
RS-54	Primary	11/07/02	Uranium-238	13.3 ± 0.65	Filtered	ES
HAR-14	Primary	03/16/93	Radium-226	<0.6	Filtered	CEP
HAR-14	Primary	03/16/93	Radium-228	<1	Filtered	CEP
HAR-14	Primary	06/08/93	Radium-226	2.7 ± 1.0	Filtered	CEP
HAR-14	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
HAR-14	Primary	11/04/93	Radium-226	0.16 ± 0.15	Filtered	LAS
HAR-15	Primary	03/16/93	Uranium-234	6.90 ± 3.00	Filtered	CEP
HAR-15	Primary	03/16/93	Uranium-235	0.51 ± 0.20	Filtered	CEP
HAR-15	Primary	03/16/93	Uranium-238	15.9 ± 5.8	Filtered	CEP
HAR-15	Primary	03/16/93	Radium-226	29.5 ± 4.2	Filtered	CEP
HAR-15	Primary	03/16/93	Radium-228	<1	Filtered	CEP
HAR-15	Primary	03/16/93	Radium-226 (dissolved)	<0.6	Filtered	CEP
HAR-15	Primary	03/16/93	Radium-228 (dissolved)	<1	Filtered	CEP
HAR-15	Primary	06/08/93	Radium-226	24.9 ± 4.3	Filtered	CEP
HAR-15	Primary	06/08/93	Radium-226 (dissolved)	<0.6	Filtered	CEP
HAR-15	Primary	06/08/93	Radium-228 (dissolved)	2 ± 1	Filtered	CEP
HAR-15	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
HAR-15	Primary	11/04/93	Radium-226	1.18 ± 0.28	Filtered	LAS
HAR-15	Primary	11/04/93	Uranium-233/4 (dissolved)	0.84 ± 0.39	Filtered	LAS
HAR-15	Primary	11/04/93	Uranium-235 (dissolved)	0.08 ± 0.12	Filtered	LAS
HAR-15	Primary	11/04/93	Uranium-238 (dissolved)	0.88 ± 0.39	Filtered	LAS
Chatsworth Fo	rmation Wells					
RD-05B	Primary	03/16/93	Radium-226	<0.6	Filtered	CEP
RD-05B	Primary	03/16/93	Radium-228	<1	Filtered	CEP
RD-05B	Primary	06/07/93	Radium-226	4.9 ± 2.0	Filtered	CEP
RD-05B	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
RD-05B	Primary	11/22/93	Radium-226	0.77 ± 0.27	Filtered	LAS

See last page of Table E-IV for footnotes and explanations. Haley & Aldrich, Inc.

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	13010FL	(picocuries per liter)	HANDLING	LABORATORT
RD-06	Primary	10/31/89	Uranium-234	1.20 ± 0.302	Unfiltered	UST
RD-06	Primary	10/31/89	Uranium-234	0.892 ± 0.227	Filtered	UST
RD-06	Primary	10/31/89	Uranium-235	0.154 ± 0.111	Unfiltered	UST
RD-06	Primary	10/31/89	Uranium-235	0.143 ± 0.0508	Filtered	UST
RD-06	Primary	10/31/89	Uranium-238	1.08 ± 0.274	Unfiltered	UST
RD-06	Primary	10/31/89	Uranium-238	0.710 ± 0.193	Filtered	UST
RD-06	Primary	10/31/89	Radium-226	1.23 ± 0.268	Unfiltered	UST
RD-06	Primary	10/31/89	Radium-226	0.825 ± 0.202	Filtered	UST
RD-06	Primary	10/31/89	Thorium-228	0.0714 ± 0.0323	Unfiltered	UST
RD-06	Primary	10/31/89	Thorium-228	0.0428 ± 0.0360	Filtered	UST
RD-06	Primary	10/31/89	Thorium-230	0.00185 ± 0.00642	Unfiltered	UST
RD-06	Primary	10/31/89	Thorium-230	0.00196 ± 0.00392	Filtered	UST
RD-06	Primary	10/31/89	Thorium-232	0.00185 ± 0.00371	Unfiltered	UST
RD-06	Primary	10/31/89	Thorium-232	0.00 ± 0.00588	Filtered	UST
RD-06	Primary	03/16/93	Radium-226	<0.6	Filtered	UST
RD-06	Primary	03/16/93	Radium-228	<1	Filtered	UST
RD-06	Primary	06/07/93	Radium-226	3.5 ± 2.7	Filtered	CEP
RD-06	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
RD-06	Primary	11/22/93	Radium-226	1.32 ± 0.34	Filtered	LAS
RD-07	Primary	02/05/98	Uranium-233/234	5.46 ± 0.28	Filtered	TN
RD-07	Primary	02/05/98	Uranium-235	0.226 ± 0.048	Filtered	TN
RD-07	Primary	02/05/98	Uranium-238	4.87 ± 0.26	Filtered	TN
RD-07	Primary	02/05/98	Thorium-228	0.032 ± 0.032	Filtered	TN
RD-07	Primary	02/05/98	Thorium-230	0.040 ± 0.043	Filtered	TN
RD-07	Primary	02/05/98	Thorium-232	0 ± 0.005	Filtered	TN
RD-07	Primary	02/06/99	Thorium-228	0.026 ± 0.016	Filtered	TN
RD-07	Primary	02/06/99	Thorium-230	0.028 ± 0.040	Filtered	TN
RD-07	Primary	02/06/99	Thorium-232	0 ± 0.008	Filtered	TN
RD-07	Primary	02/06/99	Uranium-233/234	7.76 ± 0.51	Filtered	TN
RD-07	Primary	02/06/99	Uranium-235	0.414 ± 0.10	Filtered	TN
RD-07	Primary	02/06/99	Uranium-238	6.68 ± 0.45	Filtered	TN
RD-07	Primary	03/16/00	Thorium-228	-0.098 ± 0.14	Filtered	TR
RD-07	Primary	03/16/00	Thorium-230	0.644 ± 0.232 B	Filtered	TR
RD-07	Primary	03/16/00	Thorium-232	0.014 ± 0.028	Filtered	TR

BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	ISOTOFE	(picocuries per liter)	HANDLING	LABUKATUKT
RD-07	Primary	03/16/00	Uranium-233/234	4.37 ± 0.40	Filtered	TR
RD-07	Primary	03/16/00	Uranium-235	0.193 ± 0.092	Filtered	TR
RD-07	Primary	03/16/00	Uranium-238	$3.62 \pm 0.362 B$	Filtered	TR
RD-07	Primary	02/23/01	Thorium-228	0.056 ± 0.79	Filtered	ES
RD-07	Primary	02/23/01	Thorium-230	-0.028 ± 0.045	Filtered	ES
RD-07	Primary	02/23/01	Thorium-232	0 ± 0.023	Filtered	ES
RD-07	Primary	02/23/01	Uranium-233/234	5.26 ± 0.39	Filtered	ES
RD-07	Primary	02/23/01	Uranium-235	0.322 ± 0.091	Filtered	ES
RD-07	Primary	02/23/01	Uranium-238	4.22 ± 0.34	Filtered	ES
RD-07	Primary	02/22/02	Thorium-228	0.21 ± 1.00	Filtered	DL
RD-07	Primary	02/22/02	Thorium-230	0 ± 1.00	Filtered	DL
RD-07	Primary	02/22/02	Thorium-232	0 ± 1.00	Filtered	DL
RD-07	Primary	02/22/02	Uranium-233/234	9.22 ± 3.00	Filtered	DL
RD-07	Primary	02/22/02	Uranium-235	0.33 ± 1.00	Filtered	DL
RD-07	Primary	02/22/02	Uranium-238	8.19 ± 3.00	Filtered	DL
RD-07	Primary	01/29/03	Thorium-228	0.058 ± 0.020	 Filtered 	ES
RD-07	Primary	01/29/03	Thorium-230	0.029 ± 0.047	Filtered	ES
RD-07	Primary	01/29/03	Thorium-232	0.004 ± 0.008	Filtered	ES
RD-07	Primary	01/29/03	Uranium-233/234	14.7 ± 0.51	Filtered	ES
RD-07	Primary	01/29/03	Uranium-235	0.551 ± 0.084	Filtered	ES
RD-07	Primary	01/29/03	Uranium-238	11.8 ± 0.44	Filtered	ES
RD-07(Z13)	Primary	08/28/03	Radium-226	$0.289J \pm 0.035$	Filtered	ES
RD-07(Z13)	Primary	08/28/03	Radium-228	11.8 ± 0.44	Filtered	ES
RD-13	Primary	10/31/89	Plutonium 239/240	0.00239 ± 0.00576	Filtered	UST
RD-13	Primary	10/31/89	Plutonium-238	-0.000770 ± 0.00589	Filtered	UST
RD-13	Primary	08/26/97	Uranium-233/234	2.22 ± 0.33	Unfiltered	LAS
RD-13	Primary	08/26/97	Uranium-235	0.124 ± 0.077	Unfiltered	LAS
RD-13	Primary	08/26/97	Uranium-238	1.38 ± 0.25	Unfiltered	LAS
RD-13	Primary	08/26/97	Uranium-233/234	2.06 ± 0.32	Filtered	LAS
RD-13	Primary	08/26/97	Uranium-235	0.089 ± 0.065	Filtered	LAS
RD-13	Primary	08/26/97	Uranium-238	1.29 ± 0.24	Filtered	LAS
RD-14	Primary	10/31/89	Uranium-234	2.99 ± 0.539	Unfiltered	UST
RD-14	Primary	10/31/89	Uranium-234	2.63 ± 0.453	Filtered	UST
RD-14	Primary	10/31/89	Uranium-235	0.0662 ± 0.0881	Unfiltered	UST

TABLE E-IVRESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	100101 E	(picocuries per liter)	HANDLING	LABORATORT
RD-14	Primary	10/31/89	Uranium-235	0.131 ± 0.0889	Filtered	UST
RD-14	Primary	10/31/89	Uranium-238	2.68 ± 0.495	Unfiltered	UST
RD-14	Primary	10/31/89	Uranium-238	2.57 ± 0.441	Filtered	UST
RD-14	Primary	10/31/89	Radium-226	0.469 ± 0.137	Unfiltered	UST
RD-14	Primary	10/31/89	Radium-228	0.585 ± 0.160	Filtered	UST
RD-14	Primary	10/31/89	Radium-228	0.747 ± 0.391	Unfiltered	UST
RD-14	Primary	10/31/89	Radium-228	0.901 ± 0.492	Filtered	UST
RD-14	Primary	10/31/89	Thorium-228	0.0404 ± 0.0288	Unfiltered	UST
RD-14	Primary	10/31/89	Thorium-228	0.0406 ± 0.0347	Filtered	UST
RD-14	Primary	10/31/89	Thorium-230	0.00388 ± 0.00550	Unfiltered	UST
RD-14	Primary	10/31/89	Thorium-232	0.00 ± 0.0142	Filtered	UST
RD-14	Primary	10/31/89	Thorium-232	0.0136 ± 0.0104	Unfiltered	UST
RD-14	Primary	10/31/89	Thorium-232	0.00410 ± 0.0153	Filtered	UST
RD-15	Primary	05/10/01	Uranium-233/234	4.81 ± 0.88	Filtered	ES
RD-15	Primary	05/10/01	Uranium-235	0.296 ± 0.22	Filtered	ES
RD-15	Primary	05/10/01	Uranium-238	4.59 ± 0.82	Filtered	ES
RD-15	Primary	03/06/02	Uranium-233/234	3.07 ± 1.00	Filtered	DL
RD-15	Primary	03/06/02	Uranium-235	0.30 ± 1.00	Filtered	DL
RD-15	Primary	03/06/02	Uranium-238	2.84 ± 1.00	Filtered	DL
RD-15	Primary	02/26/03	Uranium-233/234	2.86 ± 0.20	Filtered	ES
RD-15	Primary	02/26/03	Uranium-235	0.122 ± 0.043	Filtered	ES
RD-15	Primary	02/26/03	Uranium-238	2.71 ± 0.19	Filtered	ES
RD-17	Primary	02/08/99	Thorium-228	0.018 ± 0.048	Filtered	TN
RD-17	Primary	02/08/99	Thorium-230	0.072 ± 0.060	Filtered	TN
RD-17	Primary	02/08/99	Thorium-232	0.012 ± 0.024	Filtered	TN
RD-17	Primary	02/08/99	Uranium-233/234	1.56 ± 0.16	Filtered	TN
RD-17	Primary	02/08/99	Uranium-235	0.103 ± 0.043	Filtered	TN
RD-17	Primary	02/08/99	Uranium-238	1.19 ± 0.14	Filtered	TN
RD-18	Primary	03/17/93	Radium-226	4.0 ± 2.4	Filtered	CEP
RD-18	Primary	03/17/93	Radium-228	<1	Filtered	CEP
RD-18	Primary	06/08/93	Radium-226	10.8 ± 3.8	Filtered	CEP
RD-18	Primary	06/08/93	Radium-228	<1	Filtered	CEP
RD-18	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP
RD-18	Primary	11/04/93	Radium-226	0.84 ± 0.27	Filtered	LAS

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	ISOTOPE	(picocuries per liter)	HANDLING	LABORATORY
RD-19	Primary	03/08/93	Uranium-234	12.8 ± 2.8	Filtered	CEP
RD-19	Primary	03/08/93	Uranium-235	0.51 ± 0.20	Filtered	CEP
RD-19	Primary	03/08/93	Uranium-238	16.3 ± 3.2	Filtered	CEP
RD-19	Primary	02/06/96	Uranium-233/234	3.71 ± 0.55	Filtered	LAS
RD-19	Primary	02/06/96	Uranium-235	0.32 ± 0.16	Filtered	LAS
RD-19	Primary	02/06/96	Uranium-238	3.22 ± 0.50	Filtered	LAS
RD-19	Primary	02/06/98	Uranium-233/234	13.0 ± 0.54	Filtered	TN
RD-19	Primary	02/06/98	Uranium-235	0.723 ± 0.092	Filtered	TN
RD-19	Primary	02/06/98	Uranium-238	12.4 ± 0.52	Filtered	TN
RD-19	Primary	02/06/98	Thorium-228	0.008 ± 0.031	Filtered	TN
RD-19	Primary	02/06/98	Thorium-230	<0.069	Filtered	TN
RD-19	Primary	02/06/98	Thorium-232	0.018 ± 0.015	Filtered	TN
RD-21	Primary	10/24/01	Uranium-233/234	6.91 ± 0.21	Filtered	DL
RD-21	Primary	10/24/01	Uranium-235	0.21 ± 0.08	Filtered ·	DL
RD-21	Primary	10/24/01	Uranium-238	6.40 ± 0.20	Filtered	DL
RD-23	Primary	02/08/99	Thorium-228	0.073 ± 0.040	Filtered	TN
RD-23	Primary	02/08/99	Thorium-230	0.016 ± 0.046	Filtered	TN
RD-23	Primary	02/08/99	Thorium-232	0.003 ± 0.013	Filtered	TN
RD-23	Primary	02/08/99	Uranium-233/234	1.16 ± 0.15	Filtered	TN
RD-23	Primary	02/08/99	Uranium-235	0.097 ± 0.041	Filtered	TN
RD-23	Primary	02/08/99	Uranium-238	1.08 ± 0.14	Filtered	TN
RD-24	Primary	11/14/03	Uranium-235	(U)	Filtered	ES
RD-24	Primary	11/14/03	Thorium-234	(U)	Filtered	ES
RD-24	Primary	11/14/03	Radium-226	$0.654 \pm 0.075 (J)$	Filtered	ES
RD-24	Primary	11/14/03	Radium-228	1.61 ± 0.27	Filtered	ES
RD-24	Split	11/14/03	Uranium-235	11.3 ± 7.28 (U)	Filtered	STL
RD-24	Split	11/14/03	Thorium-234	124 ± 236 (U)	Filtered	STL
RD-24	Split	11/14/03	Radium-226	1.15 ± 0.338	Filtered	STL
RD-24	Split	11/14/03	Radium-228	2.93 ± 0.884 (J)	Filtered	STL
RD-25	Primary	02/09/95	Uranium-233/234	7.00 ± 0.69	Unfiltered	LAS
RD-25	Primary	02/09/95	Uranium-235	0.43 ± 0.15	Unfiltered	LAS
RD-25	Primary	02/09/95	Uranium-238	6.35 ± 0.65	Unfiltered	LAS
RD-25	Primary	11/13/03	Uranium-235	(U)	Filtered	ES
RD-25	Primary	11/13/03	Thorium-234	(U)	Filtered	ES

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION	SAMPLE HANDLING	LABORATORY
RD-25	Primary	11/13/03	Radium-226	(picocuries per liter) 0.630 ± 0.073 (J)	Filtered	ES
RD-25	Primary	11/13/03	Radium-228	0.030 ± 0.073 (3) 0.971 ± 0.21 (J)	Filtered	ES ES
RD-27	Primary	11/14/03	Uranium-235	(U)	Filtered	ES ES
RD-27	Primary	11/14/03	Thorium-234	(U)	Filtered	ES ES
RD-27	Split	11/14/03	Uranium-235	5.76 ± 7 (U)	Filtered	STL
RD-27	Split	11/14/03	Thorium-234	198 ± 268 (U)	Filtered	STL
RD-28	Primary	02/09/95	Uranium-233/234	8.08 ± 0.73	Unfiltered	LAS
RD-28	Primary	02/09/95	Uranium-235	0.57 ± 0.16	Unfiltered	LAS
RD-28	Primary	02/09/95	Uranium-238	7.29 ± 0.68	Unfiltered	LAS
RD-28	•	08/28/97	Uranium-233/234	7.29 ± 0.00 15.5 ± 1.1	Filtered	
	Primary	08/28/97	Uranium-235			LAS
RD-28	Primary	08/28/97	Uranium-238	0.86 ± 0.20	Filtered	LAS
RD-28	Primary			14.7 ± 1.1	Filtered	LAS
RD-28	Primary	02/05/98	Uranium-233/234	12.9 ± 0.76	Filtered	TN
RD-28	Primary	02/05/98	Uranium-235	0.848 ± 0.15	Filtered	TN
RD-28	Primary	02/05/98	Uranium-238	12.0 ± 0.71	Filtered	TN
RD-28	Primary	02/05/98	Thorium-228	0.009 ± 0.036	Filtered	TN
RD-28	Primary	02/05/98	Thorium-230	<0.158	Filtered	TN
RD-28	Primary	02/05/98	Thorium-232	0.009 ± 0.018	Filtered	TN
RD-28	Primary	02/16/99	Thorium-228	0.014 ± 0.017	Filtered	TN
RD-28	Primary	02/16/99	Thorium-230	0.061 ± 0.041	Filtered	TN
RD-28	Primary	02/16/99	Thorium-232	<0.013	Filtered	TN
RD-28	Primary	02/16/99	Uranium-233/234	12.1 ± 0.83	Filtered	TN
RD-28	Primary	02/16/99	Uranium-235	0.741 ± 0.16	Filtered	TN
RD-28	Primary	02/16/99	Uranium-238	11.6 ± 0.80	Filtered	TN
RD-28	Primary	02/16/00	Thorium-228	0.039 ± 0.11	Filtered	TR
RD-28	Primary	02/16/00	Thorium-230	0.421 ± 0.212 B	Filtered	TR
RD-28	Primary	02/16/00	Thorium-232	0.066 ± 0.079	Filtered	TR
RD-28	Primary	02/16/00	Uranium-233/234	8.90 ± 0.81	Filtered	TR
RD-28	Primary	02/16/00	Uranium-235	0.562 ± 0.19	Filtered	TR
RD-28	Primary	02/16/00	Uranium-238	8.70 ± 0.80	Filtered	TR
RD-28	Primary	02/07/01	Thorium-228	0.027 ± 0.080	Filtered	ES
RD-28	Primary	02/07/01	Thorium-230	0.053 ± 0.066	Filtered	ES
RD-28	Primary	02/07/01	Thorium-232	0.007 ± 0.013	Filtered	ES
RD-28	Primary	02/07/01	Uranium-233/234	9.00 ± 0.40	Filtered	ES

VENTURA COUNTY, CALIFORNIA

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
RD-28	Primary	02/07/01	Uranium-235	0.485 ± 0.073	Filtered	ES
RD-28	Primary	02/07/01	Uranium-238	8.20 ± 0.37	Filtered	ES
RD-28	Primary	02/07/01	Thorium-228	0.20 ± 0.37	Filtered	DL
RD-28	Primary	02/25/02	Thorium-230	0 ± 1.00	Filtered	DL
RD-28	Primary	02/25/02	Thorium-232	0 ± 1.00	Filtered	DL
RD-28	Primary	02/25/02	Uranium-233/234	4.50 ± 0.50	Filtered	DL
RD-28	•	02/25/02	Uranium-235	4.50 ± 0.50	Filtered	DL
RD-28	Primary	02/25/02	Uranium-238	4.50 ± 0.50	Filtered	DL DL
RD-28	Primary	02/24/03				
	Primary		Thorium-228	0.044 ± 0.031	Filtered	ES
RD-28	Primary	02/24/03	Thorium-230	0.037 ± 0.050	Filtered	ES
RD-28	Primary	02/24/03	Thorium-232	0.016 ± 0.012	Filtered	ES
RD-28	Primary	02/24/03	Uranium-233/234	9.37 ± 0.40	Filtered	ES
RD-28	Primary	02/24/03	Uranium-235	0.409 ± 0.078	Filtered	ES
RD-28	Primary	02/24/03	Uranium-238	9.31 ± 0.40	Filtered	ES .
RD-28	Primary	11/14/03	Uranium-235	(U)	Filtered	ES
RD-28	Primary	11/14/03	Thorium-234	(U)	Filtered	ES
RD-28	Primary	11/14/03	Radium-226	0.659 ± 0.076 (J)	Filtered	ES
RD-28	Primary	11/14/03	Radium-228	1.32 ± 0.27	Filtered	ES
RD-29	Primary	12/08/89	Radium-226	0.844 ± 0.205	Unfiltered	UST
RD-29	Primary	12/08/89	Radium-226	0.832 ± 0.188	Filtered	UST
RD-29	Primary	12/08/89	Radium-228	1.61 ± 0.592	Unfiltered	UST
RD-29	Primary	12/08/89	Radium-228	1.17 ± 0.474	Filtered	UST
RD-29	Primary	12/08/89	Uranium-234	15.6 ± 1.61	Unfiltered	UST
RD-29	Primary	12/08/89	Uranium-235	0.626 ± 0.142	Unfiltered,	UST
RD-29	Primary	12/08/89	Uranium-238	14.1 ± 1.46	Unfiltered	UST
RD-29	Primary	12/08/89	Total Uranium	22.2 ± 6.20	Unfiltered	UST
RD-29	Primary	03/27/90	Radium-226	0.636 ± 0.171	Unfiltered	UST
RD-29	Primary	03/27/90	Radium-228	0.816 ± 0.414	Unfiltered	UST
RD-29	Primary	03/27/90	Uranium-234	15.7 ± 2.49	Unfiltered	UST
RD-29	Primary	03/27/90	Uranium-235	1.39 ± 0.360	Unfiltered	UST
RD-29	Primary	03/27/90	Uranium-238	16.8 ± 2.67	Unfiltered	UST
RD-29	Primary	03/05/91	Uranium-234	9.54 ± 0.971	Filtered	IT
RD-29	Primary	03/05/91	Uranium-235	0.324 ± 0.0748	Filtered	IT
RD-29	Primary	03/05/91	Uranium-238	9.21 ± 0.940	Filtered	IT

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
RD-29	Primary	03/03/92	Uranium-234	1.32 ± 0.57	Unfiltered	CEP
RD-29	Primary	03/03/92	Uranium-235	<0.6	Unfiltered	CEP
RD-29	Primary	03/03/92	Uranium-238	1.44 ± 0.58	Unfiltered	CEP
RD-29	Primary	05/09/01	Uranium-233/234	3.19 ± 0.28	Filtered	ES
RD-29	Primary	05/09/01	Uranium-235	0.180 ± 0.072	Filtered	ES
RD-29		05/09/01	Uranium-238	3.14 ± 0.27		E\$
	Primary	05/03/02	Uranium-233/234		Filtered	DL
RD-29	Primary			9.74 ± 0.30	Filtered	
RD-29	Primary	05/03/02	Uranium-235	0.51 ± 0.11	Filtered	DL
RD-29	Primary	05/03/02	Uranium-238	9.23 ± 0.31	Filtered	DL
RD-29	Primary	05/13/03	Uranium-233/234	8.74 ± 0.55	Filtered	ES
RD-29	Primary	05/13/03	Uranium-235	0.366 ± 0.069	Filtered	ES
RD-29	Primary	05/13/03	Uranium-238	8.21 ± 0.52	Filtered	ES
RD-30	Primary	08/20/96	Uranium-234	5.63 ± 0.61	Filtered	LAS
RD-30	Primary	08/20/96	Uranium-235	0.49 ± 0.16	Filtered	LAS
RD-30	Primary	08/20/96	Uranium-238	5.54 ± 0.60	Filtered	LAS
RD-30	Primary	11/14/03	Uranium-235	(U)	Filtered	ES
RD-30	Primary	11/14/03	Thorium-234	(U)	Filtered .	ES
RD-30	Primary	11/14/03	Radium-226	0.235 ± 0.045 (J)	Filtered	ES
RD-30	Primary	11/14/03	Radium-228	0.261 ± 0.2 (U)	Filtered	ES
RD-33A	Primary	05/10/94	Strontium-90	-0.07 ± 0.64	Filtered	LAS
RD-33B	Primary	05/10/94	Strontium-90	0.06 ± 0.69	Filtered	LAS
RD-33C	Primary	05/09/94	Strontium-90	-0.04 ± 0.8	Filtered	LAS
RD-34A	Primary	09/13/92	Radium-226	1.6 ± 0.3	Filtered	CEP
RD-34A	Primary	09/13/92	Radium-228	<1	Filtered	CEP
RD-34A	Primary	09/13/92	Uranium-234	15.4 ± 4.4	Unfiltered	CEP
RD-34A	Primary	09/13/92	Uranium-235	0.90 ± 0.50	Unfiltered	CEP
RD-34A	Primary	09/13/92	Uranium-238	19.3 ± 4.9	Unfiltered	CEP
RD-34A	Primary	12/05/92	Thorium-228	<0.6	Filtered	CEP
RD-34A	Primary	12/05/92	Thorium-230	<0.6	Filtered	CEP
RD-34A	Primary	12/05/92	Thorium-232	<0.6	Filtered	CEP
RD-34A	Primary	12/05/92	Uranium-234	1.22 ± 0.92	Unfiltered	CEP
RD-34A	Primary	12/05/92	Uranium-235	<0.6	Unfiltered	CEP
RD-34A	Primary	12/05/92	Uranium-238	1.42 ± 0.44	Unfiltered	CEP
RD-34A	Primary	03/09/93	Thorium-228	<0.6	Filtered	CEP

RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
RD-34A	Primary	03/09/93	Thorium-230	<0.6	Filtered	CEP
RD-34A	Primary	03/09/93	Thorium-232	<0.6	Filtered	CEP
RD-34A	Primary	03/09/93	Uranium-234	12.1 ± 4.9	Filtered	CEP
RD-34A	Primary	03/09/93	Uranium-235	<0.6	Filtered	CEP
RD-34A	Primary	03/09/93	Uranium-238	10.8 ± 5.4	Filtered	CEP
RD-34A	Primary	06/22/93	Uranium-234	0.9 ± 0.2	Filtered	CEP
RD-34A	Primary	06/22/93	Uranium-235	0.3 ± 0.3	Filtered	CEP
RD-34A	Primary	06/22/93	Uranium-238	1.3 ± 0.2	Filtered	CEP
RD-34A	Primary	06/22/93	Thorium-228	0.00 ± 0.05	Filtered	CEP
RD-34A	Primary	06/22/93	Thorium-230	0.00 ± 0.05	Filtered	CEP
RD-34A	Primary	06/22/93	Thorium-232	0.00 ± 0.05	Filtered	CEP
RD-34A	Primary	08/24/93	Uranium-234	4.6 ± 0.6	Filtered	CEP
RD-34A	Primary	08/24/93	Uranium-235	0.2 ± 0.1	Filtered	CEP
RD-34A	Primary	08/24/93	Uranium-238	4.9 ± 0.7	Filtered	CEP
RD-34A	Primary	08/24/93	Thorium-228	0.00 ± 0.05	Filtered	CEP
RD-34A	Primary	08/24/93	Thorium-230	0.00 ± 0.05	Filtered	CEP
RD-34A	Primary	08/24/93	Thorium-232	0.00 ± 0.05	Filtered	· CEP
RD-34A	Primary	08/24/93	Uranium-233/234	10.3 ± 1.6	Filtered	LAS
RD-34A	Primary	08/24/93	Uranium-235	0.78 ± 0.39	Filtered	LAS
RD-34A	Primary	08/24/93	Uranium-238	11.7 ± 1.8	Filtered	LAS
RD-34A	Primary	08/24/93	Thorium-228	-0.12 ± 0.22	Filtered	LAS
RD-34A	Primary	11/18/93	Thorium-230	0.76 ± 0.37	Filtered	LAS
RD-34A	Primary	11/18/93	Thorium-232	0.33 ± 0.25	Filtered	LAS
RD-34A	Primary	05/09/94	Strontium-90	-0.28 ± 0.63	Filtered	LAS
RD-34A	Primary	11/09/94	Technetium-99	1.3 ± 1.1	Unfiltered	LAS
RD-34A	Primary	05/27/98	Uranium-233/234	9.60 ± 0.89	Filtered	TN
RD-34A	Primary	05/27/98	Uranium-235	0.57 ± 0.18	Filtered	TN
RD-34A	Primary	05/27/98	Uranium-238	10.5 ± 0.95	Filtered	TN
RD-34A	Primary	05/27/98	Thorium-228	<0.04	Filtered	TN
RD-34A	Primary	05/27/98	Thorium-230	<0.08	Filtered	TN
RD-34A	Primary	05/27/98	Thorium-232	0.01 ± 0.02	Filtered	TN
RD-34A	Primary	05/09/01	Thorium-228	0.050 ± 0.17	Filtered	ES
RD-34A	Primary	05/09/01	Thorium-230	0.050 ± 0.13	Filtered	ES
RD-34A	Primary	05/09/01	Thorium-232	0.034 ± 0.034	Filtered	ES

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
RD-34A	Primary	05/09/01	Uranium-233/234	10.0 ± 0.54	Filtered	ES
RD-34A		05/09/01		0.523 ± 0.096		
	Primary		Uranium-235		Filtered	ES
RD-34A	Primary	05/09/01	Uranium-238	10.6 ± 0.56	Filtered	ES
RD-34A	Primary	05/16/03	Thorium-228	0.017U ± 0.058	Filtered	ES
RD-34A	Primary	05/16/03	Thorium-230	$0.058U \pm 0.058$	Filtered	ES
RD-34A	Primary	05/16/03	Thorium-232	$0.006U \pm 0.023$	Filtered	ES
RD-34A	Primary	05/16/03	Uranium-233/234	8.23 ± 0.62	Filtered	ES
RD-34A	Primary	05/16/03	Uranium-235	0.362 ± 0.098	Filtered	ES
RD-34A	Primary	05/16/03	Uranium-238	8.52 ± 0.64	Filtered	ES
RD-34B	Primary	05/10/94	Strontium-90	-0.09 ± 0.66	Filtered	LAS
RD-34C	Primary	05/09/94	Strontium-90	-0.47 ± 0.6	Filtered	LAS
RD-35B	Primary	08/18/99	Thorium-228	0 ± 0.18	Filtered	TN
RD-35B	Primary	08/18/99	Thorium-230	-0.044 ± 0.13	Filtered	TN
RD-35B	Primary	08/18/99	Thorium-232	0.022 ± 0.044	Filtered	TN
RD-35B	Primary	08/18/99	Uranium-233/234	0.713 ± 0.19	Filtered	TN
RD-35B	Primary	08/18/99	Uranium-235	0.050 ± 0.050	Filtered	TN
RD-35B	Primary	08/18/99	Uranium-238	0.362 ± 0.13	Filtered	TN
RD-44	Primary	08/24/97	Radon-222	358 ± 31	Unfiltered	LAS
RD-47	Primary	08/24/97	Radon-222	698 ± 47	Unfiltered	LAS
RD-50	Primary	05/05/94	Uranium-233/234	5.85 ± 0.89	Filtered	LAS
RD-50	Primary	05/05/94	Uranium-235	1.22 ± 0.39	Filtered	LAS
RD-50	Primary	05/05/94	Uranium-238	3.24 ± 0.65	Filtered	LAS
RD-54A	Primary	02/08/98	Uranium-233/234	0.650 ± 0.079	Filtered	TN
RD-54A	Primary	02/08/98	Uranium-235	0.015 ± 0.015	Filtered	TN
RD-54A	Primary	02/08/98	Uranium-238	0.496 ± 0.065	Filtered	TN
RD-54A	Primary	02/08/98	Thorium-228	0.011 ± 0.034	Filtered	TN
RD-54A	Primary	02/08/98	Thorium-230	<0.077	Filtered	TN
RD-54A	Primary	02/08/98	Thorium-232	0.025 ± 0.017	Filtered	TN
RD-54A	Primary	02/08/99	Thorium-228	0.007 ± 0.070	Filtered	TN
RD-54A	Primary	02/08/99	Thorium-230	0.028 ± 0.070	Filtered	TN
RD-54A	Primary	02/08/99	Thorium-232	0 ± 0.014	Filtered	TN
RD-54A	Primary	02/08/99	Uranium-233/234	6.58 ± 0.42	Filtered	TN
RD-54A	Primary	02/08/99	Uranium-235	0.307 ± 0.079	Filtered	TN
RD-54A	Primary	02/08/99	Uranium-238	5.79 ± 0.39	Filtered	TN

RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED	ISOTOPE	(picocuries per liter)	HANDLING	LABORATORY
RD-54A	Primary	03/15/00	Thorium-228	0.090 ± 0.13	Filtered	TR
RD-54A	Primary	03/15/00	Thorium-230	0.822 ± 0.262 B	Filtered	TR
RD-54A	Primary	03/15/00	Thorium-232	0.026 ± 0.051	Filtered	TR
RD-54A	Primary	03/15/00	Uranium-233/234	1.55 ± 0.34	Filtered	TR
RD-54A	Primary	03/15/00	Uranium-235	0.080 ± 0.080	Filtered	TR
RD-54A	Primary	03/15/00	Uranium-238	1.53 ± 0.342 B	Filtered	TR
RD-54A	Primary	10/26/01	Thorium-228	0.36 ± 0.20	Filtered	DL
RD-54A	Primary	10/26/01	Thorium-230	0.44 ± 0.61	Filtered	DL
RD-54A	Primary	10/26/01	Thorium-232	0.55 ± 0.05	Filtered	DL
RD-54A	Primary	10/26/01	Uranium-233/234	8.82 ± 0.23	Filtered	DL
RD-54A	Primary	10/26/01	Uranium-235	0.22 ± 0.04	Filtered	DL
RD-54A	Primary	10/26/01	Uranium-238	7.34 ± 0.21	Filtered	TR
RD-54A	Primary	02/27/02	Thorium-228	0 ± 1.00	Filtered	DL
RD-54A	Primary	02/27/02	Thorium-230	0 ± 1.00	Filtered	DL
RD-54A	Primary	02/27/02	Thorium-232	0 ± 1.00	Filtered	DL
RD-54A	Primary	02/27/02	Uranium-233/234	4.10 ± 0.19	Filtered	DL
RD-54A	Primary	02/27/02	Uranium-235	0.10 ± 0.10	Filtered	DL
RD-54A	Primary	02/27/02	Uranium-238	4.00 ± 0.17	Filtered	DL
RD-54A	Primary	02/18/03	Thorium-228	0.052 ± 0.048	Filtered	ES
RD-54A	Primary	02/18/03	Thorium-230	0.091 ± 0.10	Filtered	ES
RD-54A	Primary	02/18/03	Thorium-232	-0.004 ± 0.016	Filtered	ES
RD-54A	Primary	02/18/03	Uranium-233/234	7.13 ± 0.50	Filtered	ES
RD-54A	Primary	02/18/03	Uranium-235	0.389 ± 0.12	Filtered	ES
RD-54A	Primary	02/18/03	Uranium-238	6.18 ± 0.45	Filtered	ES
RD-54B	Primary	02/08/99	Thorium-228	<0.084	Filtered	TN
RD-54B	Primary	02/08/99	Thorium-230	-0.013 ± 0.050	Filtered	TN
RD-54B	Primary	02/08/99	Thorium-232	-0.006 ± 0.013	Filtered	TN
RD-54B	Primary	02/08/99	Uranium-233/234	0.062 ± 0.048	Filtered	TN
RD-54B	Primary	02/08/99	Uranium-235	0.012 ± 0.012	Filtered	TN
RD-54B	Primary	02/08/99	Uranium-238	0.048 ± 0.029	Filtered	TN
RD-54C	Primary	02/09/99	Thorium-228	0.013 ± 0.038	Filtered	TN
RD-54C	Primary	02/09/99	Thorium-230	0.064 ± 0.064	Filtered	TN
RD-54C	Primary	02/09/99	Thorium-232	0.006 ± 0.013	Filtered	TN
RD-54C	Primary	02/09/99	Uranium-233/234	0 ± 0.036	Filtered	TN

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY
IDENTIFIER	TYPE	SAMPLED		(picocuries per liter)	HANDLING	TN
RD-54C	Primary	02/09/99	Uranium-235	0.011 ± 0.022	0.011 ± 0.022 Filtered	
RD-54C	Primary	02/09/99	Uranium-238	0.018 ± 0.018	Filtered	TN
RD-56A	Primary	05/10/94	Uranium-233/234	2.61 ± 0.59	Filtered	LAS
RD-56A	Primary	05/10/94	Uranium-235	0.34 ± 0.21	Filtered	LAS
RD-56A	Primary	05/10/94	Uranium-238	2.08 ± 0.53	Filtered	LAS
RD-56A	Primary	05/10/94	Thorium-228	0.035 ± 0.059	Filtered	LAS
RD-56A	Primary	05/10/94	Thorium-230	0.005 ± 0.037	Filtered	LAS
RD-56A	Primary	05/10/94	Thorium-232	0.024 ± 0.022	Filtered	LAS
RD-56A	Primary	05/10/94	Strontium-90	-0.08 ± 0.62	Filtered	LAS
RD-57	Primary	05/10/94	Uranium-233/234	1.2 ± 0.33	Filtered	LAS
RD-57	Primary	05/10/94	Uranium-235	0.3 ± 0.16	Filtered	LAS
RD-57	Primary	05/10/94	Uranium-238	0.93 ± 0.29	Filtered	LAS
RD-57	Primary	05/10/94	Thorium-228	0.014 ± 0.062	Filtered	LAS
RD-57	Primary	05/10/94	Thorium-230	0.019 ± 0.04	Filtered	LAS
RD-57	Primary	05/10/94	Thorium-232	0.008 ± 0.016	Filtered	LAS
RD-57	Primary	05/10/94	Strontium-90	-0.03 ± 0.7	Filtered	LAS
RD-59A	Primary	08/16/94	Strontium-90	0.56 ± 0.68	Filtered	LAS
RD-59B	Primary	08/16/94	Strontium-90	0.07 ± 0.70	Filtered	LAS
RD-59C	Primary	08/16/94	Strontium-90	-0.33 ± 0.74	Filtered	LAS
RD-63	Primary	11/06/96	Uranium-233/234	3.66 ± 0.40	Filtered	LAS
RD-63	Primary	11/06/96	Uranium-235	0.207 ± 0.085	Filtered	LAS
RD-63	Primary	11/06/96	Uranium-238	2.92 ± 0.35	Filtered	LAS
RD-64	Primary	05/10/01	Uranium-233/234	2.21 ± 0.20	Filtered	ES
RD-64	Primary	05/10/01	Uranium-235	0.116 ± 0.054	Filtered	ES
RD-64	Primary	05/10/01	Uranium-238	1.67 ± 0.17	Filtered	ES
RD-64	Primary	02/28/02	Uranium-233/234	2.87 ± 0.15	Filtered	DL
RD-64	Primary	02/28/02	Uranium-235	0 ± 1.00	Filtered	DL
RD-64	Primary	02/28/02	Uranium-238	1.70 ± 0.14	Filtered	DL
RD-64	Primary	01/29/03	Uranium-233/234	2.43 ± 0.20	Filtered	ES
RD-64	Primary	01/29/03	Uranium-235	0.096 ± 0.044	Filtered	ES
RD-64	Primary	01/29/03	Uranium-238	2.04 ± 0.18	Filtered	ES
WS-04A	Primary	03/18/93	Radium-226	<0.6	Filtered	CEP
WS-04A	Primary	03/18/93	Radium-228	<1	Filtered	CEP
WS-04A	Primary	06/10/93	Radium-226	2.3 ± 1.0	Filtered	CEP

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Page 19 of 22

WELL IDENTIFIER	SAMPLE TYPE	ISOTODE		ISOTODE		ISUIUDE		LABORATORY
WS-04A	Primary	08/23/93	Radium-226	<0.6	HANDLING Filtered	CEP		
WS-04A	Primary	11/04/93	Radium-226	0.79 ± 0.25	Filtered	LAS		
WS-13	Dup	11/01/89	Uranium-234	2.01 ± 0.226	Filtered	UST		
WS-13	Dup	11/01/89	Uranium-235	0.0697 ± 0.0243	Filtered	UST		
WS-13	Dup	11/01/89	Uranium-238	1.31 ± 0.159	Filtered	UST		
WS-13	Dup	11/01/89	Radium-226	0.487 ± 0.143	Unfiltered	UST		
WS-13	Dup	11/01/89	Radium-226	0.484 ± 0.152	Filtered	UST		
WS-13	Dup	11/01/89	Radium-228	0.879 ± 0.479	Unfiltered	UST		
WS-13	Dup	11/01/89	Radium-228	0.859 ± 0.531	Filtered	UST		
WS-13	Dup	11/01/89	Polonium-210	0.0533 ± 0.0250	Unfiltered	UST		
WS-13	Dup	11/01/89	Polonium-210	0.0103 ± 0.0135	Filtered	UST		
WS-13	Dup	11/01/89	Thorium-228	0.0390 ± 0.0319	Unfiltered	UST		
WS-13	Dup	11/01/89	Thorium-228	0.0906 ± 0.0387	Filtered	UST		
WS-13	Dup	11/01/89	Thorium-230	0.00562 ± 0.00840	Unfiltered	UST		
WS-13	Dup	11/01/89	Thorium-230	0.0163 ± 0.0110	Filtered	UST		
WS-13	Dup	11/01/89	Thorium-232	0.0262 ± 0.0152	Unfiltered	UST		
WS-13	Dup	11/01/89	Thorium-232	0.0507 ± 0.0204	Filtered	UST		
HAR-07	Primary	03/15/93	Radium-226	<0.6	Filtered	CEP		
HAR-07	Primary	03/15/93	Radium-228	<1	Filtered	CEP		
HAR-07	Primary	06/09/93	Radium-226	9.0 ± 3.5	Filtered	CEP		
HAR-07	Reanalysis	06/09/93	Radium-226	<0.6	Filtered	CEP		
HAR-07	Reanalysis	06/09/93	Radium-228	2 ± 1	Filtered	CEP		
HAR-07	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP		
HAR-07	Primary	11/04/93	Radium-226	0.33 ± 0.15	Filtered	LAS		
HAR-16	Primary	03/15/93	Radium-226	<0.6	Filtered	CEP		
HAR-16	Primary	03/15/93	Radium-228	<1	Filtered	CEP		
HAR-16	Primary	06/09/93	Radium-226	<0.6	Filtered	CEP		
HAR-16	Primary	08/09/93	Radium-226	461 ± 500	Filtered	CEP		
HAR-16	Primary	08/09/93	Radium-228	<1	Filtered	CEP		
HAR-16	Reanalysis	08/09/93	Radium-226	<0.6	Filtered	CEP		
HAR-16	Primary	11/22/93	Radium-226	0.25 ± 0.16	Filtered	LAS		
HAR-16	Primary	02/04/94	Radium-226	0.15 ± 0.17	Filtered	LAS		

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

WELL	SAMPLE	DATE	ISOTOPE	CONCENTRATION	SAMPLE	LABORATORY	
IDENTIFIER	TYPE	SAMPLED	ISOTOPE.	(picocuries per liter)	HANDLING	LABORATORT	
HAR-17	Primary	03/17/93	Radium-226	<0.6	Filtered	CEP	
HAR-17	Primary	03/17/93	Radium-228	<1	Filtered	CEP	
HAR-17	Primary	06/09/93	Radium-226	3.3 ± 1.4	Filtered	CEP	
HAR-17	Primary	08/09/93	Radium-226	<0.6	Filtered	CEP	
HAR-17	Primary	11/08/93	Radium-226	0.00 ± 0.10	Filtered	LAS	
HAR-18	Primary	05/08/94	Uranium-233/234	12.1 ± 1.4	Filtered	LAS	
HAR-18	Primary	05/08/94	Uranium-235	0.55 ± 0.27	Filtered	LAS	
HAR-18	Primary	05/08/94	Uranium-238	11.6 ± 1.3	Filtered	LAS	
OS-01	Primary	08/15/94	Strontium-90	-0.33 ± 0.75	Filtered	LAS	
OS-02	Primary	08/15/94	Strontium-90	-0.13 ± 0.59	Filtered	LAS	
OS-03	Primary	08/15/94	Strontium-90	-0.17 ± 0.63	Filtered	LAS	
OS-04	Primary	08/15/94	Strontium-90	0.18 ± 0.74	Filtered	LAS	
OS-08	Primary	08/15/94	Strontium-90	0.39 ± 0.67	Filtered	LAS	
OS-10	Primary	08/05/94	Strontium-90	-0:48 ± 0.65	Filtered	LAS	
OS-16	Primary	11/01/89	Uranium-234	2.42 ± 0.275	Filtered	UST	
OS-16	Primary	11/01/89	Uranium-235	0.0840 ± 0.0292	Filtered	UST	
OS-16	Primary	11/01/89	Uranium-238	2.03 ± 0.237	Filtered	UST	
OS-16	Primary	11/01/89	Uranium-238	1.07 ± 0.239	Unfiltered	UST	
OS-16	Primary	11/01/89	Radium-226	0.968 ± 0.227	Filtered	UST	
OS-16	Primary	11/01/89	Radium-226	1.94 ± 0.767	Unfiltered	UST	
OS-16	Primary	11/01/89	Radium-228	1.50 ± 0.723	Filtered	UST	
OS-16	Primary	11/01/89	Radium-228	0.0357 ± 0.0209	Unfiltered	UST	
OS-16	Primary	11/01/89	Polonium-210	0.0265 ± 0.0216	Filtered	UST	
OS-16	Primary	11/01/89	Polonium-210	0.109 ± 0.0410	Unfiltered	UST	
OS-16	Primary	11/01/89	Thorium-228	0.0319 ± 0.0352	Filtered	UST	
OS-16	Primary	11/01/89	Thorium-228	0.00534 ± 0.00618	Unfiltered	UST	
OS-16	Primary	11/01/89	Thorium-230	0.00942 ± 0.00947	Filtered	UST	
OS-16	Primary	11/01/89	Thorium-230	0.0889 ± 0.0265	Unfiltered	UST	
OS-16	Primary	11/01/89	Thorium-232	0.00 ± 0.00707	Filtered	UST	
OS-16	Primary	11/01/89	Uranium-234	2.48 ± 0.277	Filtered	UST	
OS-16	Primary	11/01/89	Uranium-235	0.0541 ± 0.0227	Filtered	UST	
OS-16	Primary	11/01/89	Uranium-238	1.99 ± 0.250	Filtered	UST	
OS-16	Dup	11/01/89	Radium-226	0.993 ± 0.223	Unfiltered	UST	
OS-16	Dup	11/01/89	Radium-226	1.09 ± 0.230	Filtered	UST	

TABLE E-IV
RESULTS OF ANALYSES FOR SPECIFIC ISOTOPES IN GROUNDWATER SAMPLES
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Page 21 of 22

WELL IDENTIFIER	SAMPLE TYPE	DATE SAMPLED	ISOTOPE	CONCENTRATION (picocuries per liter)	SAMPLE HANDLING	LABORATORY
OS-16	Dup	11/01/89	Radium-228	1.84 ± 0.644	Unfiltered	UST
OS-16	Dup	11/01/89	Radium-228	1.62 ± 0.587	Filtered	UST
OS-16	Dup	11/01/89	Thorium-228	0.0456 ± 0.0274	Unfiltered	UST
O\$-16	Dup	11/01/89	Thorium-228	0.0250 ± 0.0297	Filtered	UST
OS-16	Dup	11/01/89	Thorium-230	0.00175 ± 0.00350	Unfiltered	UST
OS-16	Dup	11/01/89	Thorium-230	0.00369 ± 0.00739	Filtered	UST
OS-16	Dup	11/01/89	Thorium-232	0.00 ± 0.00525	Unfiltered	UST
OS-16	Dup	11/01/89	Thorium-232	0.00 ± 0.00554	Filtered	UST
O\$-21	Primary	11/01/89	Uranium-234	1.54 ± 0.185	Filtered	UST
OS-21	Primary	11/01/89	Uranium-235	0.0306 ± 0.0163	Filtered	UST
OS-21	Primary	11/01/89	Uranium-238	1.06 ± 0.137	Filtered	UST
OS-21	Primary	11/01/89	Radium-226	0.778 ± 0.196	Unfiltered	UST
OS-21	Primary	11/01/89	Radium-226	0.756 ± 0.189	Filtered	UST
OS-21	Primary	11/01/89	Radium-228	1.46 ± 0.597	Unfiltered	UST
OS-21	Primary	11/01/89	Radium-228	1.95 ± 0.704	Filtered	UST
OS-21	Primary	11/01/89	Thorium-228	0.00 ± 0.0355	Unfiltered	UST
OS-21	Primary	11/01/89	Thorium-228	0.149 ± 0.0468	Filtered	UST
OS-21	Primary	11/01/89	Thorium-230	0.00359 ± 0.00509	Unfiltered	UST
OS-21	Primary	11/01/89	Thorium-230	0.0795 ± 0.0265	Filtered	UST
OS-21	Primary	11/01/89	Thorium-232	0.00 ± 0.00539	Unfiltered	UST
OS-21	Primary	11/01/89	Thorium-232	0.0659 ± 0.0247	Filtered	UST

FOOTNOTES AND EXPLANATIONS

B =	Radionuclide detected in associated method blank.
-----	---

J = The result is less than the RDL (Required Detection Limit). No U qualifier is assigned.

U = The result is less than the MDA (Minimum Detectable Activity).

Z = FLUTe port sample number.

(<) = Less than; numerical value represents detection limit for that analysis.

pCi/l = picocuries per liter.

CEP = Controls for Environmental Pollution, Inc., Santa Fe, New Mexico.

DL = Davi Laboratories, Pinole, California.

ES = Eberline Services (formerly Thermo Retec), Richmond, California.

IT = International Technologies, Inc. (formerly UST), Richland, Washington.

LAS = LAS Laboratories, Inc. (formerly Lockheed Martin), Las Vegas, Nevada.

STL = Severn Trent Laboratories, Richland, Washington.

TN = Thermo NUtech, Richmond, California.

TR = Thermo Retec (formerly Thermo NUtech), Richmond, California.

UST = United States Testing Laboratory, Richland, Washington.

ANALYTICAL METHODS

Radon-222 = EPA Method 903.1.

Radium-226 = EPA method 903.1, Alpha Emitting Radium Isotopes.

Radium-228 = EPA method 904.0, Radium-228.

Isotopic thorium analyzed according to EPA method 907.0 or LAL-0108, LAS in-house procedure.

Isotopic uranium analyzed according to EPA method 908.0, ASTM method D3972-82, EPA method 907.0 or LAL-0108, LAS in-house procedure.

Isotopic radium analyzed according to EPA method 903.

NOTE: Results are presented as the activity plus or minus error. Any activity detected is reported by the laboratory, though the reported activity may be less than the overall laboratory error. Analytical results that are less than the instrument background count are shown as negative values.

APPENDIX F

Constituents of Concern and Perchlorate Concentration versus Time Plots

APPENDIX F

CONSTITUENTS OF CONCERN AND PERCHLORATE CONCENTRATION VERSUS TIME PLOTS

TABLE OF CONTENTS

FIGURES

Constituent of Concern		Figures	
1,1,1-Trichloroethane (1,1,1-TCA)	F-1	through	F-17
1,1,2-Trichloroethane (1,1,2-TCA)	F-18	through	F-34
1,1-Dichloroethene (1,1-DCE)	F-35	through	F-51
1,1-Dichloroethane (1,1-DCA)	F-52	through	F-68
1,2-Dichloroethane (1,2-DCA)	F-69	through	F-85
1,4-Dioxane	F-86	through	F-102
Benzene	F-103	through	F-119
Carbon Tetrachloride	F-120	through	F-136
Chloroform	F-137	through	F-153
cis-1,2-Dichloroethene (cis-1,2-DCE)	F-154	through	F-170
Ethylbenzene	F-171	through	F-187
Fluoride	F-188	through	F-202
Methylene chloride	F-203	through	F-219
Nitrate as NO ₃	F-220	through	F-233
Nitrobenzene	F-234	through	F-248
N-Nitrosodimethylamine (NDMA)	F-249	through	F-263
Perchlorate	F-264	through	F-280
Tetrachloroethene (PCE)	F-281	through	F-297
Toluene	F-298	through	F-314
trans-1,2-Dichloroethene (trans-1,2-DCE)	F-315	through	F-331
Trichloroethene (TCE)	F-332	through	F-348
Vinyl Chloride	F-349	through	F-365

APPENDIX F

CONSTITUENTS OF CONCERN AND PERCHLORATE CONCENTRATION VERSUS TIME PLOTS

Concentration versus time plots presented in this Appendix include historic results from 1994 to present for the principal constituents of concern and perchlorate at permitted wells. Plots for select constituents (1,3-dinitrobenzene, 2-butanone, acetone, ammonia, formaldehyde, trichlorofluoromethane, trichlorotrifluoroethane, m- and p-xylenes, and o-xylene) are not available because of limitations within the water quality database. Tabulated summaries of constituent of concern analytical results are presented for 2003 in this report, for 2000, 2001, and 2002 in Haley & Aldrich (2001, 2002a, 2003a, 2003b), and for all historical samples collected through 1999 in Groundwater Resources Consultants (2000). Results that have been identified as laboratory, field, or equipment contaminants were not included in the plots.

UNSCANNABLE MEDIA

See Document # 2000771 for scanned image(s) of the media document(s) label(s).

To use the unscannable media document(s), contact the Superfund Records Center.

APPENDIX G

Permitted Groundwater Remediation Systems

APPENDIX G

PERMITTED GROUNDWATER REMEDIATION SYSTEMS

Contents

<u>Table</u>	
G-I	NPDES Permit CA0001309, Outfall-001, 2003 Results
G-II	NPDES Permit CA0001309, Outfall-002, 2003 Results
Figure:	<u>s</u>
G-1	Monthly Pumpage & VOC Mass Removed - Delta ASU - 2003
G-2	Cumulative Pumpage & VOC Mass Removed to Date - Delta ASU - 2003
G-3	Cumulative Pumpage & VOC Mass Removed to Date - Alfa ASU - 2003
G-4	Cumulative Pumpage & VOC Mass Removed to Date - Bravo ASU - 2003
G-5	Cumulative Pumpage & VOC Mass Removed to Date - Area I Rd ASU - 2003
G-6	Cumulative Pumpage & VOC Mass Removed to Date - WS-5 UV/H2O2 - 2003
G-7	Monthly Pumpage & VOC Mass Removed - STL-IV ASU - 2003
G-8	Cumulative Pumpage & VOC Mass Removed to Date – STL-IV ASU – 2003

VENTURA COUNTY, CALIFORNIA

			T		
PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	03/16/03	05/03/03
BOD5 20C	mg/L	30 / 20	3.5	2.3	3.7
CHLORIDE	mg/L	150 / -	4.8	7.1	12
CONDUCTIVITY	umhos/cm		95	140	22
DETERGENTS (as MBAS)	mg/L	0.5 / -	<0.1	<0.1	2.0
FLUORIDE	mg/L	1.6 / -	<0.5	<0.5	<0.5
NITRITE AND NITRATE (AS NITROGEN)	mg/L	8/-	2.1	0.99	0.58
OIL AND GREASE	mg/L	15 / 10	<5	<5	<5
PERCHLORATE	ug/L		<4	<4	<4
pH	pH UNITS	6 TO 9	7.1	7.4	7.0
RAINFALL	INCHES		5.34	0	2.43
SETTLEABLE SOLIDS	ml/L	0.3 / 0.1	0.30	<0.1	<0.1
SULFATE		300 / -	10	13	39
TEMPERATURE	mg/L DEG. F	NTE > 100	53.2	57.7	54.5
TOTAL CYANIDE		22 / 5.2	<4.2	<4.2	<4.2
TOTAL DISSOLVED SOLIDS	ug/L		120	130	220
The state of the s	mg/L	950 / -	34	43	· 66
TOTAL HARDNESS (CaCO3)	mg/L				
TOTAL ORGANIC CARBON	ug/L	0.4.4	1700	15000	12000
TOTAL RESIDUAL CHLORINE	mg/L	0.1/-	<0.1	<0.1	<0.1
TUDDITY	mg/L	45 / 15	63	<10	240
TURBIDITY	NTU	470.1400	88	25	420
VOLUME DISCHARGED	MGD	178 MGD	5.73	1.1	0.03
DADIOAOTIVITY					
RADIOACTIVITY	- 0:11	45.1	2.54 . / 4.40	0.05 1/4.04	74.104
GROSS ALPHA	pCi/L	15 / -		2.25 +/-1.24	
GROSS BETA	pCi/L	50 / -		0.97 +/-0.42	
STRONTIUM-90	pCi/L	8 / -	1.29 +/-0.81	0.55 +/-0.44	
TOTAL COMBINED RADIUM-226 & RADIUM	pCi/L	5/-	[1]NA	^[1] NA	^[1] NA
TRITIUM	pCi/L	20,000 / -	000 +/-200	358 +/-218	324 +/-265
METALO					
METALS ANTIMONY		6.1			
	ug/L	6/-	<2	<2	<2
ARSENIC	ug/L	50 / -	1.7 0.016	<1	<1
BARIUM	mg/L	1/-		0.013	0.020
BERYLLIUM	ug/L	4/-	<0.5	<0.5	<0.5
BORON	mg/L	1/-	0.064	0.076	<0.05
CHROMUM	ug/L	3.7 / 1	<1	<1	<1
CORDER	ug/L	15 / 10	1.3	1.2	<1
COPPER	ug/L	17 / 11	2.5	4.0	3.9
IRON LEAD	mg/L	0.3 / -	0.67	0.21	0.18
	ug/L	65 / 2.5	<1	<1	<1
MANGANESE	ug/L	50 / -	13	2.6	31
MERCURY (EXPRESSED AS DISSOLVED)	ug/L	2.1 / -	<0.2	<0.2	<0.2
MERCURY (EXPRESSED AS TOTAL RECOV		- /2	<0.2	<0.2	<0.2
NICKEL	ug/L	100 / -	4.5	2.2	1.5

TABLE G-I
NPDES PERMIT CA0001309 OUTFALL - 001, 2003 RESULTS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	03/16/03	05/03/03	
SELENIUM (EXPRESSED AS TOTAL RECOV	ug/L	20 / 5	<2	<2	<2	
SILVER	ug/L	3.4 / -	<1	<1	<1	
THALLIUM	ug/L	2/-	<1	<1	<1	
ZINC	ug/L	110 / 100	<20	<20	<20	
ORGANICS						
Benzene	ug/l	1/-	<1	<1	<1	
Carbon Tetrachloride	ug/l	0.5 / -	<0.5	<0.5	<0.5	
Chloroform	ug/l	100 / -	<2	<2	<2	
1,1-Dichloroethane	ug/l	5/-	<2	<2	<2	
1,2-Dichloroethane	ug/l	0.5 / -	<0.5	<0.5	<0.5	
1,1-Dichloroethene	ug/l	6/-	<5	<5	<5	
Ethylbenzene	ug/l	680 / -	<2	<2	<2	
Tetrachloroethene	ug/l	5/-	<2	<2	<2	
Toluene	ug/l	150 / -	<2	<2	<2	
Xylenes (Total)	ug/l	1750 / -	<4	<4	<4	
1,1,1-Trichloroethane	ug/l	200 / -	<2	<2	<2	
1,1,2-Trichloroethane	ug/l	5/-	<2	<2	<2	
Trichloroethene	ug/l	5/-	<2	<2 <5	<2 <5	
Trichlorofluoromethane	ug/l	150 / -	<5			
Vinyl chloride	ug/l	0.5 / -	<0.5	<0.5	<0.5	
ADDITIONAL QUARTERLY MONITORING 2,3,7,8-TCDD	pg/l		<0.8	NA NA	<10	
1,1,2,2-Tetrachloroethane	ug/l		<2	NA NA	<2	
1,2,4-Trichlorobenzene	ug/i		<10	NA NA	<10	
1,2-Dichlorobenzene	ug/l		<2	NA NA	<2	
1,2-Dichloropropane	ug/l		<2	NA	<2	
1,2-Diphenylhydrazine/Azobenzene	ug/l		<20	NA NA	<20	
1,3-Dichlorobenzene	ug/l		<2	NA NA	<2	
1,4-Dichlorobenzene	ug/l		<2	NA	<2	
2,4,6-Trichlorophenol	ug/l		<u>-</u> <20	NA	<20	
2,4-Dichlorophenol	ug/l		<10	NA	<10	
2,4-Dimethylphenol	ug/l		<20	NA NA	<20	
2,4-Dinitrophenol	ug/l		<20	NA	<20	
2,4-Dinitrotoluene	ug/l		<10	NA NA	<10	
2,6-Dinitrotoluene	ug/l		<10	NA	<10	
2-Chloroethylvinylether	ug/l		<5	NA	<5	
2-Chloronaphthalene	ug/l		<10	NA	<10	
2-Chlorophenol	ug/l		<10	NA	<10	
2-Methyl-4,6-dinitrophenol	ug/l		<20	NA	<20	
2-Nitrophenol	ug/l		<10	NA	<10	
3,3-Dichlorobenzidine	ug/l		<20	NA	<20	
4,4'-DDD	ug/l		<0.1	NA	<0.1	

NPDES PERMIT CA0001309 OUTFALL - 001, 2003 RESULTS BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A/B)	02/12/03	03/16/03	05/03/03	
4.4'-DDE	ug/l		<0.1	NA	<0.1	
4,4'-DDT	ug/l		<0.1	NA	<0.1	
4-Bromophenylphenylether	ug/l		<10	NA	<10	
4-Chlorophenylphenylether	ug/l		<10	NA	<10	
4-Chloro-3-methylphenol	ug/l		<20	NA	<20	
4-Nitrophenol	ug/l		<20	NA NA	<20	
Acenaphthene	ug/l		<10	NA NA	<10	
Acenaphthylene	ug/l		<10	NA	<10	
Acrolein	ug/l		<50	NA	<50	
Acrylonitrile	ug/l		<50	NA	<50	
ACUTE TOXICITY (Fathead Minnow 96hr % 9		70% MINIMUM	100	NA NA	100	
Aldrin	ug/l	7070 1411 11110111	<0.1	NA NA	<0.1	
alpha-BHC	ug/l		<0.1	NA NA	<0.1	
Anthracene	ug/l		<10	NA	<10	
Aroclor-1016	ug/l		<1	NA NA	<1	
Aroclor-1221	ug/l		<1	NA	<1	
Aroclor-1232	ug/l		<1	NA NA	<1	
Aroclor-1242	ug/l		<1	NA NA	<1	
Aroclor-1248	ug/l		<1	NA NA	<1	
Aroclor-1254	ug/l		<1	NA	<1	
Aroclor-1260	ug/l		<1	NA NA	<1 <20	
Benzidine	ug/l		<20	NA		
Benzo(a)anthracene	ug/l		<10	NA	<10	
Benzo(a)pyrene	ug/l		<10	NA	<10	
Benzo(b)fluoranthene	ug/l		<10	NA	<10	
Benzo(g,h,l)perylene	ug/i		<10	NA	<10	
Benzo(k)fluoranthene	ug/l		<10	NA	<10	
beta-BHC	ug/l		<0.1	NA	<0.1	
bis (2-Chloroethyl) ether	ug/l		<10	NA	<10	
bis (2-Ethylhexyl) Phthalate	ug/l		<50	NA	<50	
bis(2-Chloroethoxy) methane	ug/l		<10	NA	<10	
bis(2-Chloroisopropyl) ether	ug/I		<10	NA	<10	
Bromodichloromethane	ug/l		<2	NA	<2	
Bromoform	ug/l		<5	NA	<5	
Bromomethane	ug/l		<5	NA	<5	
Butylbenzylphthalate	ug/l		<20	NA	<20	
Chlordane	ug/l		<1	NA	<1	
Chlorobenzene	ug/i		<2	NA	<2	
Chloroethane	ug/l		<5	NA	<5	
Chloromethane	ug/l		<5	NA	<5	
CHRONIC TOXICITY (Ceriodaphnia Survival	TUc	1	1	NA	1	
Chrysene	ug/l		<10	NA	<10	
cis-1,3-Dichloropropene	ug/l		<2	NA	<2	
delta-BHC	ug/l		<0.2	NA	<0.2	

NPDES PERMIT CA0001309 OUTFALL - 001, 2003 RESULTS BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	03/16/03	05/03/03	
Dibenzo(a,h)anthracene	ug/l		<20	NA NA	<20	
Dibromochloromethane	ug/l		<2	NA	<2	
Dieldrin	ug/l		<0.1	NA	<0.1	
Diethylphthalate	ug/l		<10	NA	<10	
Dimethylphthalate	ug/l		<10	NA	<10 <20 <20 <0.1 <0.1	
Di-n-butylphthalate	ug/l		<20	NA		
Di-n-octylphthalate	ug/l		<20	NA		
Endosulfan I	ug/l		<0.1	NA NA		
Endosulfan II	ug/l		<0.1			
Endosulfan sulfate	ug/l		<0.2	NA	<0.2	
Endrin	ug/l		<0.1	NA	<0.1	
Endrin aldehyde	ug/l		<0.1	NA	<0.1	
Fluoranthene	ug/l		<10	NA	<10	
Fluorene	ug/l	·	<10	NA	<10	
Heptachlor	ug/l		<0.1	NA	<0.1	
Heptachlor epoxide	ug/l		<0.1	NA	<0.1	
Hexachlorobenzene	ug/l		<10	NA NA	<10	
Hexachlorobutadiene	ug/l		<10 <20		<10	
Hexachlorocyclopentadiene	ug/l			NA	<20	
Hexachloroethane	ug/l		<10	NA	<10	
Indeno(1,2,3-cd)pyrene	ug/l		<20	NA	<20	
Isophorone	ug/l		<10	NA	<10	
Lindane (gamma-BHC)	ug/l		<0.1	NA	<0.1	
Methylene Chloride	ug/l		<5	NA	<5	
Naphthalene	ug/l		<10	NA	<10	
Nitrobenzene	ug/l		<20	NA	<20	
n-Nitrosodimethylamine	ug/l		<20	NA	<20	
n-Nitroso-di-n-propylamine	ug/l		<10	NA	<10	
n-Nitrosodiphenylamine	ug/l	·	<10	NA	<10	
Pentachlorophenol	ug/l		<20	NA	<20	
Phenanthrene	ug/l		<10	NA	<10	
Phenol	ug/l		<10	NA	<10	
Pyrene	ug/l		<10	NA	<10	
Toxaphene	ug/l		<5	NA	<5	
trans-1,2-Dichloroethene	ug/l		<2	NA	<2	
trans-1,3-Dichloropropene	ug/l		<2	NA	<2	

TABLE G-IFOOTNOTES AND EXPLANATIONS

(1)	=	Not required unless gross alpha > 5 pCi/l.
()	=	Not applicable for these parameters.
NA	=	Not analyzed per permit.
<	=	Not detected; numerical value represents the Reporting Limit for the parameter.
mg/l	=	milligrams per liter.
umhos/cm	=	micromhos per centimeter.
ug/l	=	micrograms per liter.
ml/l	=	milliliters per liter.
NTU	=	Nephelometric turbidity unit.
MGD	=	millions gallons per day.
pCi/l	=	picoCuries per liter.
pg/l	=	picograms per liter.
TUc	=	Chronic toxicity unit.

TABLE G-II
NPDES PERMIT CA0001309 OUTFALL - 002, 2003 RESULTS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	2/13/03 ²	02/27/03	03/05/03 ²	03/15/03	04/14/03	05/03/03
BOD5 20C	mg/L	30 / 20	3.3	2.5	<2	NA	2.8	3.1	3.8
CHLORIDE	mg/L	150 / -	11	25	36	NA	28	29	29
CONDUCTIVITY	umhos/cm		180	370	750	NA	490	600	450
DETERGENTS (as MBAS)	mg/L	0.5 / -	<0.2	<0.1	<0.1	NA	<0.1	<0.1	0.13
FLUORIDE	mg/L	1.6 / -	<0.5	<0.5	<0.5	NA	<0.5	<0.5	<0.5
NITRITE AND NITRATE (AS NITROGEN)	mg/L	8/-	0.75	1.6	0.21	NA	0.43	<0.15	0.20
OIL AND GREASE	mg/L	15 / 10	< 5	<5	<5	NA	<5	<5	<5
PERCHLORATE	ug/L		<4	<4	<4	NA	<4	<4	<4
pH	pH UNITS	6 TO 9	7.6	7.9	8.2	NA	7.8	7.9	7.6
RAINFALL	INCHES	***	5.34	0	0.11	NA	2.55	1.72	2,43
SETTLEABLE SOLIDS	ml/L	0.3 / 0.1	0.40	<0.1	<0.1	NA	<0.1	<0.1	0.10
SULFATE	mg/L	300 / -	21	75	150	NA	92	130	83
TEMPERATURE	DEG. F	NTE > 100	53.1	NA	50	NA	54	57	57.0
TOTAL CYANIDE	ug/L	22 / 5.2	<4.2	<4.2	<4.2	NA	<4.2	<4.2	<4.2
TOTAL DISSOLVED SOLIDS	mg/L	950 / -	170	220	480	NA	360	390	440
TOTAL HARDNESS (CaCO3)	mg/L		63	NA	240	NA	150	200	140
TOTAL ORGANIC CARBON	ug/L		9000	NA	6100	NA	NA	13000	12000
TOTAL RESIDUAL CHLORINE	mg/L	0.1 / -	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1
TOTAL SUSPENDED SOLIDS	mg/L	45 / 15	330	13	<10	NA	<10	12	59
TURBIDITY	NTU		270	30	2.9	NA	6.5	15	59
VOLUME DISCHARGED	MGD	178 MGD	20.41	2.41	0.09	NA	7.56	0.46	0.11
RADIOACTIVITY									
GROSS ALPHA	pCi/L	15 / -	2.11+/-1.21	NA	4.91+/-1.76	NA	1.76 +/-1.3	3.21 +/-0.99	3.72 +/-1.85
GROSS BETA	pCi/L	50 / -	0.77+/-0.39	NA	1.86+/-1.83	NA	1.33 +/-0.54	2.56 +/-0.88	3.11 +/-0.81
STRONTIUM-90	pCi/L	8/-	1.46+/-1.18	NA	0.00+/-1.96	NA	0 +/-2	0.32 +/-0.46	
TOTAL COMBINED RADIUM-226 & RADIUM 228(1)	pCi/L	5/-	^[1] NA	^[1] NA	^[†] NA	^[1] NA	^[1] NA	^[1] NA	^[1] NA
TRITIUM	pCi/L	20,000 / -	170+/-224	NA	645+/-347	NA	465 +/-222	0 +/-200	749 +/-277
METALS									
ANTIMONY	ug/L	6/-	<2	<2	<2	NA	<2	<2	<2
ARSENIC	ug/L	50 / -	2.3	<1	<1	NA	<1	<1	<1
BARIUM	mg/L	1/-	0.020	0.023	0.050	NA	0.030	0.036	0.023
BERYLLIUM	ug/L	4/-	<0.5	<0.5	<0.5	NA	<0.5	<0.5	<0.5
BORON	mg/L	1/-	<0.05	0.087	0.10	NA	0.066	0.11	0.076

TABLE G-II
NPDES PERMIT CA0001309 OUTFALL - 002, 2003 RESULTS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	2/13/03 ²	02/27/03	03/05/03 ²	03/15/03	04/14/03	05/03/03
CADMIUM	ug/L	3.7 / 1	<1	<1	<1	NA	<1	<1	<1
CHROMIUM	ug/L	15 / 10	1.2	<1	<1	NA	<1	<1	<1
COPPER	ug/L	17/11	2.4	3.3	<2	NA	<2	2.1	2.4
IRON	mg/L	0.3 / -	0.70	0.068	0.027	<0.010	0.027	<0.01	0.080
LEAD	ug/L	65 / 2.5	<1	<1	<1	NA	<1	<1	<1
MANGANESE	ug/L	50 / -	17	7.8	1.8	NA	19	4.2	8.4
MERCURY (EXPRESSED AS DISSOLVED)	ug/L	2.1 / -	<0.2	<0.2	<0.2	NA	<0.2	<0.2	<0.2
MERCURY (EXPRESSED AS TOTAL RECOVERABLE)	ug/L_	- /2	0.23	NA	<0.2	NA	<0.2	<0.2	<0.2
NICKEL	ug/L	100 / -	2.0	1.8	1.3	NA	1.1	3.9	<1
SELENIUM (EXPRESSED AS TOTAL RECOVERABLE)	ug/L	20 / 5	<2	NA	<2	NA	<2	<2	<2
SILVER	ug/L	3.4 / -	<1	<1	<1	NA	<1	<1	<1
THALLIUM	ug/L	2/-	<1	<1	<1	NA	<1	<1	<1
ZINC	ug/L	110 / 100	30	<20	<20	NA	20	<20	<20
ORGANICS ·									
Benzene	ug/l	1/-	<1	<1	<1	NA	<1	<1	<1
Carbon Tetrachloride	ug/l	0.5 / -	<0.5	<0.5	<0.5	NA NA	<0.5	<0.5	<0.5
Chloroform	ug/l	100 / -	<2	<2	<2	NA NA	<2	<2	<2
1,1-Dichloroethane	ug/l	5/-	<2	<2	<2	NA	<2	<2	<2
1,2-Dichloroethane	ug/l	0.5 / -	<0.5	<0.5	<0.5	NA	<0.5	<0.5	<0.5
1,1-Dichloroethene	ug/l	6/-	<5	<5	<5	NA	<5	<5	<5
Ethylbenzene	ug/l	680 / -	<2	<2	<2	NA	<2	<2	<2
Tetrachloroethene	ug/l	5/-	<2	<2	<2	NA	<2	<2	<2
Toluene	ug/l	150 / -	<2	<2	<2	NA	- <2	<2	<2
Xylenes (Total)	ug/l	1750 / -	<4	<4	<4	. NA	<4	<4	<4
1,1,1-Trichloroethane	ug/l	200 / -	<2	<2	<2	NA	<2	<2	<2
1,1,2-Trichloroethane	ug/l	5/-	<2	<2	<2	NA	<2	<2	<2
Trichloroethene	ug/l	5/-	<2	<2	<2	NA	<2	<2	<2
Trichlorofluoromethane	ug/l	150 / -	<5	<5	<5	NA	<5	<5	<5
Vinyl chloride	ug/l	0.5 / -	<0.5	<0.5	<0.5	NA	<0.5	<0.5	<0.5
ADDITIONAL QUARTERLY MONITORING	14		-0.0	N/A			112		314
2,3,7,8-TCDD	pg/l	***	<u> </u>	NA	NA NA	NA NA	NA NA	<10	NA
1,1,2,2-Tetrachloroethane	ug/l	•••	<2	<2	<2	NA NA	NA NA	<2	NA
1,2,4-Trichlorobenzene	ug/l		<10	NA .	NA NA	NA	NA	<10	NA
1,2-Dichlorobenzene	ug/l	•••	<2	<2	<2	NA	NA NA	<2	NA

IADEL OIL
NPDES PERMIT CA0001309 OUTFALL - 002, 2003 RESULTS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	2/13/03 ²	02/27/03	03/05/03 ²	03/15/03	04/14/03	05/03/03
1,2-Dichloropropane	ug/l		<2	<2	<2	NA	NA	<2	NA
1,2-Diphenylhydrazine/Azobenzene	ug/l		<20	NA.	NA	NA	NA	<20	NA
1,3-Dichlorobenzene	ug/l		<2	<2	<2	NA	NA	<2	NA
1,4-Dichlorobenzene	ug/l		<2	<2	<2	NA	NA	<2	NA
2,4,6-Trichlorophenol	ug/l		<20	NA	NA	NA	NA	<20	NA
2,4-Dichlorophenol	ug/l		<10	NA	NA	NA	NA	<10	NA
2,4-Dimethylphenol	ug/l	•••	<20	NA	NA	NA	NA	<20	NA
2,4-Dinitrophenol	ug/l		<20	NA	NA	NA	NA	<20	NA
2,4-Dinitrotoluene	ug/l		<10	NA	NA	NA	NA	<10	NA
2,6-Dinitrotoluene	ug/l		<10	NA	NA	NA	NA	<10	NA
2-Chloroethylvinylether	ug/l		< 5	<5	NA	NA	NA	<5	NA
2-Chioronaphthalene	ug/l		<10	NA	NA	NA	NA	<10	NA
2-Chlorophenol	ug/l		<10	NA	NA	NA	NA	<10	NA
2-Methyl-4,6-dinitrophenol	ug/l		<20	NA	NA	NA	NA	<20	NA
2-Nitrophenol	ug/l	~ * *	<10	NA	NA	NA	NA	<10	NA
3,3-Dichlorobenzidine	ug/l		<20	NA	NA	NA	NA	<20	NA
4,4'-DDD	ug/l		<0.1	NA	NA	NA ·	NA	<0.1	NA
4,4'-DDE	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA
4,4'-DDT	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA
4-Bromophenylphenylether	ug/l		<10	NA	NA	NA	NA	<10	NA
4-Chlorophenylphenylether	ug/l		<10	NA	NA	NA	NA	<10	NA
4-Chloro-3-methylphenol	ug/l		<20	NA	NA	NA	NA	<20	NA
4-Nitrophenol	ug/l		<20	NA	NA	NA	NA	<20	NA
Acenaphthene	ug/l		<10	NA	NA	NA	NA	<10	NA
Acenaphthylene	ug/i	***	<10	NA	NA	NA	NA	<10	NA
Acrolein	ug/l		<50	<50	NA	NA	NA	<50	NA
Acrylonitrile	ug/l		<50	<50	NA	NA	NA	<50	NA
ACUTE TOXICITY (Fathead Minnow 96hr % Survival	% SURVIVAL	70% MINIMUM	100	NA	NA	NA	NA	100	NA
Bioassay)	40/		<0.1	NIA	NA.	NIA	NIA.	-01	NIA.
Aldrin	ug/l	•••	<0.1 <0.1	NA NA	NA NA	NA NA	NA NA	<0.1	NA NA
alpha-BHC	ug/l							<0.1	NA NA
Anthracene Anthracene	ug/l		<10	NA NA	NA NA	NA NA	NA NA	<10	NA NA
Aroclor-1016	ug/l		<1	NA NA	NA NA	NA NA	NA NA	<1	NA NA
Aroclor-1221	ug/l		<1	NA	NA NA	NA NA	NA NA	<1	
Aroclor-1232	ug/l		<1	NA	NA NA	NA NA	NA NA	<1	NA NA
Aroclor-1242	ug/l		<1	NA	NA	NA	NA	<1	NA

TABLE G-II
NPDES PERMIT CA0001309 OUTFALL - 002, 2003 RESULTS
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	2/13/03 ²	02/27/03	03/05/03 ²	03/15/03	04/14/03	05/03/03
Aroclor-1248	ug/l		<1	NA	NA	NA	NA	<1	NA
Aroclor-1254	ug/l	***	<1	NA	NA	NA	NA	<1	NA
Aroclor-1260	ug/i		<1	NA	NA	NA	NA NA	<1	NA
Benzidine	ug/l		<20	NA	NA	NA	NANA	<20	NA
Benzo(a)anthracene	ug/l		<10	NA	NA	NA	NA	<10	NA
Benzo(a)pyrene	ug/l		<10	NA	NA	NA	NA	<10	NA
Benzo(b)fluoranthene	ug/l		<10	NA	NA	NA	NA	<10	NA
Benzo(g,h,i)perylene	ug/l		<10	NA	NA	NA	NA	<10	NA
Benzo(k)fluoranthene	ug/l		<10	NA	NA	NA	NA	<10	NA
beta-BHC	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA
bis (2-Chloroethyl) ether	ug/l		<10	NA	NA	NA NA	NA	<10	NA
bis (2-Ethylhexyl) Phthalate	ug/l		<50	NA	NA	NA NA	NA	<50	NA
bis(2-Chloroethoxy) methane	ug/l		<10	NA	NA	NA NA	NA	<10	NA
bis(2-Chloroisopropyl) ether	ug/i	***	<10	NA	NA	NA NA	NA	<10	NA
Bromodichloromethane	ug/l		<2	<2	<2	NA	NA	<2	NA
Bromoform	ug/l		<5	<5	<5	NA	NA	<5	NA
Bromomethane	ug/l		<5	<5	<5	NA	NA	<5	NA
Butylbenzylphthalate	ug/l		<20	NA	NA	NA	NA	<20	NA
Chlordane	ug/l	• • •	<1	NA	NA	NA	NA	<1	NA
Chlorobenzene	ug/l		<2	<2	<2	NA	NA	<2	NA
Chloroethane	ug/l		<5	<5	<5	NA	NA	<5	NA
Chloromethane	ug/l		<5	<5	<5	NA	NA	<5	NA
CHRONIC TOXICITY (Ceriodaphnia Survival & Reproduction)	TUc	1	1	NA	NA	NA	NA	1	NA
Chrysene	ug/i		<10	NA	NA	NA	NA	<10	NA
cis-1,3-Dichloropropene	ug/l		<2	<2	<2	NA	NA	<2	NA
delta-BHC	ug/l		<0.2	NA	NA	NA	NA	<0.2	NA
Dibenzo(a,h)anthracene	ug/l		<20	NA	NA	NA	NA	<20	NA
Dibromochloromethane	ug/l		<2	<2	<2	NA	NA	<2	NA
Dieldrin	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA
Diethylphthalate	ug/l		<10	NA	NA	NA	NA	. <10	NA
Dimethylphthalate	ug/l		<10	NA	NA	NA	NA	<10	NA
Di-n-butylphthalate	ug/l		<20	NA	NA	NA	NA	<20	NA
Di-n-octylphthalate	ug/l		<20	NA	NA	NA	NA	<20	NA
Endosulfan I	ug/i		<0.1	NA	NA	NA	NA	<0.1	NA
Endosulfan II	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA

PARAMETER	UNITS	EFFLUENT LIMITS A=DAILY MAX. B=MONTHLY AVG. (A / B)	02/12/03	2/13/03 ²	02/27/03	03/05/03 ²	03/15/03	04/14/03	05/03/03
Endosulfan sulfate	ug/l		<0.2	NA	NA	NA	NA	<0.2	NA
Endrin	ug/l	•••	<0.1	NA	NA	NA	NA	<01	NA
Endrin aldehyde	ug/l	• • •	<0.1	NA	NA	NA	NA	<0.1	NA
Fluoranthene	ug/l		<10	NA	NA	NA	NA	<10	NA
Fluorene	ug/l		<10	NA	NA	NA	NA	<10	NA
Heptachlor	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA
Heptachlor epoxide	ug/l		<0.1	NA	NA	NA	NA	<0.1	NA
Hexachlorobenzene	ug/l		<10	NA	NA	NA	NA	<10	NA
Hexachlorobutadiene	ug/l		<10	NA	NA	NA	NA	<10	NA
Hexachlorocyclopentadiene	ug/l		<20	NA	NA	NA	NA	<20	NA
Hexachloroethane	ug/l		<10	NA	NA	NA	NA	<10	NA
Indeno(1,2,3-cd)pyrene	ug/l		<20	NA	NA	NA	NA	<20	NA
Isophorone	ug/l		<10	NA _	NA	NA	NA	<10	NA
Lindane (gamma-BHC)	ug/l		<0.1	NA	NA	NA	NA _	<0.1	NA
Methylene Chloride	ug/l		<5	< 5	<5	NA	NA	<5	NA
Naphthalene	ug/l		<10	NA	NA	NA	NA	<10	NA
Nitrobenzene	ug/l		<20	NA	NA	NA	NA	<20	NA
n-Nitrosodimethylamine	ug/i		<20	NA	NA	NA	NA	<20	NA
n-Nitroso-di-n-propylamine	ug/l		<10	NA	NA	NA	NA	<10	NA
n-Nitrosodiphenylamine	ug/l		<10	NA	NA	NA	NA	<10	NA
Pentachlorophenol	ug/l	•••	<20	NA	NA	NA	NA	<20	NA
Phenanthrene	ug/l		<10	NA	NA	NA	NA	<10	NA
Phenol	ug/l	•••	<10	NA	NA	NA	NA	<10	NA
Pyrene	ug/l		<10	NA	NA	NA	NA	<10	NA
Toxaphene	ug/l		<5	NA	NA	NA	NA	<5	NA
trans-1,2-Dichloroethene	ug/l		<2	<2	<2	NA	NA	<2	NA
trans-1.3-Dichloropropene	ug/l		<2	<2	<2	NA	NA	<2	NA

TABLE G-II FOOTNOTES AND EXPLANATIONS

(1)	=	Not required unless gross alpha > 5 pCi/l.
(2)	=	Sample collected in response to exceedance on 2/12/03.
()	=	Not applicable for these parameters.
NA	=	Not analyzed per permit.
<	*	Not detected; numerical value represents the Reporting Limit for the parameter.
mg/l	=	milligrams per liter.
umhos/cm	=	micromhos per centimeter.
ug/l	=	micrograms per liter.
ml/i	=	milliliters per liter.
NTU	=	Nephelometric turbidity unit.
MGD	=	millions gallons per day.
pCi/l	=	picoCuries per liter.
pg/l	=	picograms per liter.
TUc	=	Chronic toxicity unit.

Figure G-1. Monthly Pumpage & VOC Mass Removed-Delta ASU-2003

Figure G-2. Cumulative Pumpage & VOC Mass Removed to Date-Delta ASU-2003

Figure G-3. Cumulative Pumpage & VOC Mass Removed to Date-Alfa ASU-2003

Figure G-4. Cumulative Pumpage & VOC Mass Removed to Date-Bravo ASU-2003

Figure G-5. Cumulative Pumpage & VOC Mass Removed to Date-Area I Rd ASU-2003

Figure G-6. Cumulative Pumpage & VOC Mass Removed to Date-WS-5 UV/H2O2-2003

Haley & Aldrich, Inc.
G:\Projects\26472 - ROC\Reports\M-442 Annual\App G\M442.ETSpumpage-VOCremove03.xls

Figure G-8. Cumulative Pumpage & VOC Mass Removed to Date-STL-IV ASU-2003

Appendix H

APPENDIX H

Data Usability Summary Report

APPENDIX H

DATA USABILITY SUMMARY REPORT

Appendix IX Parameter Analyses – April 2003 Sampling Events Santa Susana Field Laboratory, Ventura County, California Analytical Laboratory: Del Mar Analytical, Irvine, CA Report # IMD0808, IMD0858, IMD0958, IMD1033

This data usability summary report presents the findings of the review for the environmental analysis of seven groundwater samples, four trip blank samples, four field blanks, and site specific matrix spike and matrix spike duplicate samples (MS/MSD) from the Santa Susana Field Laboratory (SSFL) in April 2003. These data were evaluated in accordance with guidance from the United States Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Data Review (EPA540/R-99/008, October 1999), National Functional Guidelines for Inorganic Data Review (EPA540/R-01/008, July 2002) and the respective EPA Method specific protocol criteria, where applicable. This report pertains to the groundwater samples collected by Haley & Aldrich personnel from 14 through 17 April 2003.

The following items/criteria applicable to the QA/QC data and sample analysis data listed above were reviewed:

- Chain of Custody Procedures
- Analytical Holding Time Compliance
- Method and Trip Blank Sample Analyses
- GC/MS and ICP-MS Instrument Performance
- Initial Instrument Calibration Procedures
- Continuing Calibration Verification Procedures
- Surrogate Compound Recoveries
- Laboratory Control Sample Analyses
- Matrix Spike Sample Analyses
- Internal Standard Compound Recoveries
- Sample Data Reporting Procedures
- Laboratory Data Qualification Procedures

Chain of Custody Procedures

External chain of custody documentation was completed by Haley & Aldrich personnel during the performance of sampling activities conducted at SSFL. The external COC documents were completed appropriately upon sample transfer to the primary analytical laboratory personnel (Del Mar Analytical, Irvine, CA). Internal COC documents were produced by Del Mar Analytical and traceable through the execution of the sample analyses within the Irvine, CA facility, and at the subcontractor laboratory facilities engaged to complete specialty analyses prescribed by the Sampling and Analysis Plan (SAP). Del Mar performed the analysis of volatile organic compounds (VOCs) by EPA Method 8260B; 1,2-dibromoethane, 1,2-dibromo-3-chloropropane, and 1,2,3-trichloropropane by EPA Method

Haley & Aldrich, Inc

504.1; organochlorine pesticides and polychlorinated biphenyls by EPA Methods 8081 and 8082, respectively; elemental constituents by EPA Methods 6010/6020/7470A, total cyanide by EPA Method 9014, and sulfide by EPA Method 376.2.

Ceimic Corporation, Narragansett, RI was contracted directly by Haley & Aldrich for the analysis of 1,4-dioxane by modified EPA Method 8260 SIM.

Subcontractor laboratory facilities to Del Mar Analytical included:

- Sequoia Analytical, Morgan Hill, CA for the analysis of organophosphorus pesticides by EPA Method 8141 and organochlorine herbicides by EPA Method 8151;
- Sequoia Analytical, Petaluma, CA for the analysis of semi-volatile organic compounds by EPA Method 8270C;
- Triangle Laboratories, Inc., Durham, NC for the analysis of polychlorinated dibenzo dioxins/furans by EPA Method 8290;
- Weck Laboratories for the analysis of n-Nitrosodimethylamine (NDMA) by EPA Method 1625M; and
- North Creek Analytical, Bothell, WA for the analysis of pentachlorophenol by modified EPA Method 8270.

A review of the COC documents indicate that the sample custody remained intact through the analytical process and the reported results are representative of the samples analyzed. The external and internal COC documents are provided with each laboratory report. No corrective action is recommended.

Holding Time Compliance

Maximum allowable holding times as prescribed by the USEPA, "Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, Update III, 1996 were applied to the evaluation of each project sample. Holding time compliance was measured from the time of sample collection to the time of sample preparation or analysis.

Each project sample was analyzed within the maximum allowable holding time without exception. No corrective action is recommended.

Blank Sample Analyses

Trip blank samples were provided by Del Mar Analytical and accompanied the project sample containers to and from the project site to assess possible field/container contamination. Trip blank samples were analyzed by Del Mar Analytical for VOCs only. Field blank samples were prepared at the sampled well using de-ionized water provided by Del Mar Analytical. Method blank samples were prepared by the analytical laboratories and analyzed concurrently with the project samples to assess possible laboratory contamination. Several target compounds were detected in associated method, field and trip blank samples prepared and analyzed concurrently with the project samples.

Haley & Aldrich, Inc.

The following table provides a list of the target compounds detected in the project trip, field, and/or method blank sample, the associated project samples, and the recommended corrective action for the presentation of the sample analysis results.

Blank Sample Identification	Target Compound(s) Detected in the Blank	Concentration (ug/l)	Associated Field Samples	Flag Associated Field Sample results with a "U" if less than or equal to this value (ug/L)
SH-04-04 (Field Blank)	Methylene Chloride	6000	SH-04	60000
HAR-14-05 (Trip Blank)	Acetone	6.6	HAR-14, HAR-15	66
HAR-15-04 (Field Blank)	Methylene Chloride	4500	HAR-15	45000
HAR-07-05	1,2-Dichloroethane	0.28	HAR-07-01	1.4
(Trip Blank)	Methylene Chloride	1.1	HAR-17-01	11
			HAR-17-02	
	1		HAR-17-04	
HAR-17-04	Methylene Chloride	260000	HAR-17-01	2600000
(Field Blank)			HAR-17-02	
3D23008-BLK1	Methylene Chloride	0.84	HAR-07-01	8.4
			HAR-16 Comp	
			HAR-17-01	
		1	HAR-17-02	
2040505 DY 111			HAR-17-04	250
3040587-BLK1	Bis(2-ethylhexyl)	34.7	HAR-07, HAR-16	350
2D21042 D144	phthalate	0.101	Comp, HAR-17	0.9
3D21043-BLK1	Antimony Arsenic	0.181 0.469	HAR-07, HAR-17	2.34
	Chromium	0.469	HAR-07, HAR-17	1.0
3D18060-BLK1	Antimony	0.133	HAR-14, SH-04,	0.665
3D10000-BER1	Anumony	0.133	RS-08	0.003
3D24017-BLK1	1,4-Dioxane	0.81	HAR-07-03	4.05
	[HAR-14-03	
3D22047-BLK1	n-Nitrosodimethylamine	0.00076	HAR-07-03	0.0038
3D24029-BLK1	1,2-Dibromo-3- chloropropane	0.00187	HAR-16 Comp	0.00935
TO31859	Octachloro-p- dibenzodioxin	0.0117	RS-08, SH-04, HAR- 14, HAR-15	0.117
,	1,2,3,4,7,8-Hexachloro- p-dibenzofuran	0.0022		0.022
	Octachloro-p- dibenzofuran	0.0072		0.072

GC/MS and ICP-MS Instrument Performance Checks

All performance checks of GC/MS and ICP-MS instruments used in the analysis of the project samples in accordance with EPA Methods 8260B, modified 8260 SIM, 8270C, 8290, and 6020 fell within method specific criteria without exception. No corrective action is warranted.

Haley & Aldrich, Inc.

3

Instrument Calibration Procedures

Instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by the USEPA method specific calibration protocols with the following exceptions:

During the analysis of volatile organics, the continuing calibration standards for the following target compounds exhibited a percent difference (%D) greater than the accepted EPA guidance criteria of 25%.

Date	Compound	Affected Samples	Qualifier
4/17/03	Carbon Tetrachloride	HAR-14, HAR-15	Flag "UJ" where the target
ŀ			analyte was non-detect and flag
1			"I" for concentrations detected
			above the reporting limit.
4/17/03	Allyl Chloride	SH-04, RS-08,	Flag "UJ" where the target
		HAR-14, HAR-15,	analyte was non-detect and flag
Ì		HAR-07, HAR-17	"J" for concentrations detected
			above the reporting limit.
4/17/03	2-Butanone	HAR-14, HAR-15	Flag "UJ" where the target
			analyte was non-detect and flag
1			"J" for concentrations detected
			above the reporting limit.
4/17/03	2-Hexanone	HAR-14, HAR-15	Flag "UJ" where the target
			analyte was non-detect and flag
1	Ì		"J" for concentrations detected
			above the reporting limit.
4/17/03	Acetone	HAR-14	Flag "UJ" where the target
			analyte was non-detect and flag
			"J" for concentrations detected
			above the reporting limit.
4/23/03	Propionitrile	HAR-07	Flag "UJ" where the target
			analyte was non-detect and flag
			"J" for concentrations detected
			above the reporting limit.

During the analysis of semi-volatile organics, the continuing calibration standards for the following target compounds exhibited a percent difference (%D) greater than the accepted EPA guidance criteria of 25%:

Date	Compound	Affected Samples	Qualifier
4/29/03	Benzo (b+k) fluoranthene (total)	HAR-07, HAR-17	Flag "UJ" where the target analyte was non-detect and flag "J" for concentrations detected above the reporting limit.
4/29/03	Bis(2-chloroethyl)ether	HAR-07, HAR-17	Flag "UJ" where the target analyte was non-detect and flag "J" for concentrations detected above the reporting limit.

Date	Compound	Affected Samples	Qualifier
4/29/03	Di-n-octyl phthalate	HAR-07, HAR-17	Flag "UI" where the target analyte was non-detect and flag "I" for concentrations detected above the reporting limit.
4/29/03	Hexachlorocyclopentadiene	HAR-07, HAR-17, HAR- 14, HAR-15	Flag "UJ" where the target analyte was non-detect and flag "J" for concentrations detected above the reporting limit.

During the analysis of chlorinated pesticides, the continuing calibration verification standards for the following target compounds exhibited a %D greater than the accepted EPA guidance criteria of 20%:

Date	Compound	Affected Samples	Qualifier
4/22/03 11:49	2,4-D, 2,4,5-T, Dinoseb	HAR-14, HAR-15, HAR-17, SH-04, RS-08	Flag "UJ" where the target analyte was non-detect and flag "J" for concentrations
4/22/03 21:01	Thionazin	HAR-14, HAR-15, HAR-7, HAR-17, SH-04, RS-08	detected above the reporting limit.
4/22/03 11:49	Dalapon, 2,4-DB, MCPA	HAR-14, HAR-15, HAR-17, SH-04, RS-08	These compounds were non-detects, are not Appendix IX compounds, and are not reported. No corrective action is required.

Surrogate Compound Recoveries

Surrogate compounds were added to each sample prior to analysis to confirm the efficiency of the purge and trap sample preparation procedure by EPA Methods 8260B and modified 8260 SIM, and the extraction and concentration process by EPA Methods 8270C, 8270 Mod, 8081A, 8082, 8141, 8151A, 504.1 and 1625M. The surrogate compound recovery calculated in percentage is presented on each report for the project sample analyses. The calculated recovery of surrogate compounds for each sample fell within method specific acceptance criteria without exception.

Based on the reported recovery performance of the surrogate compounds, no additional qualification of the reported results is recommended.

Laboratory Control Sample (LCS/LCSD) Analyses

Analytical precision and accuracy was evaluated based on laboratory control sample (LCS) analysis performed concurrently with the project samples. LCS analyses included the addition of a known amount of each target analyte into lab pure water using a traceable reference material independent of the instrument calibration materials. LCS samples were analyzed to confirm the precision and accuracy of the analytical system calibration.

The percent recovery calculated for each target analyte fell within laboratory specific criteria with the following exceptions.

LCS Sample ID		%R Criteria	%R	Corrective Action
GCMS34 BS1	Acetone	40-110	188	Flag non-detect results "UJ" and detects "J" as estimated values.
4/18/03	2-Butanone	40-110	154	
	2-Hexanone	40-110	146	
GCMS	Benzidine	60-140	26 /	
BS1/BSD			32	
4/24/03	Hexachlorocyclopentadiene	60-140	7.4 /	
			7.9	•

The data for the remaining analytes indicate that the analyses were conducted with acceptable analytical accuracy and precision. No additional qualification of the data presented for the project samples is recommended.

Matrix Spike/ Matrix Spike Duplicate (MS/MSD) Sample Analyses

Analytical precision and accuracy were evaluated based on the matrix spike and matrix spike duplicate analyses performed on the project samples within each sample delivery group (SDG). After the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability of the analytical systems to identify these compounds within the sample matrix. Due to limitation of sample volume, some SDGs contained reports of MS/MSD analyses performed on sample matrices from non-project related samples. However, the analysis of these samples concurrently with the project samples provides some valuable information on the accuracy of the analyses performed.

MS/MSD sample analyses performed on project field samples fell within method and/or laboratory derived QA/QC criteria without exception. No additional qualification of the data presented for the project samples is warranted.

Internal Standard (IS) Compound Recoveries

Internal Standard compounds were added to each sample prior to analysis of organic parameters by EPA Methods 8260B, modified 8260 SIM, and 8270C to quantify the amount of the target compounds detected within each sample matrix. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding continuing calibration verification standard without exception. No qualification of the data is recommended.

Sample Data Reporting

Sample data were reported in summary reports containing laboratory specific data qualifiers. When an analysis was performed without dilution the reporting limit was based on the most recent method detection limit (MDL) study conducted by the laboratory. A review of the adjusted reporting limits indicate that when these reporting limit (RLs) values were presented for sample dilution analyses, the RLs were adjusted for the level of dilution performed.

Haley & Aldrich, Inc. 6

Data Qualifiers

The use of the data qualifiers is intended to aid the data user in the interpretation of the sample results. Laboratory specific data qualifiers were assigned by Del Mar Analytical to the reported results in accordance with the laboratory's standard operating procedures. The data qualifiers used do not correspond with the USEPA guidance referenced in this document. For example, values presented for target compounds detected at concentrations below the reporting limit but above the MDL were flagged with a "B" for inorganic parameters.

As such, the data qualifiers recommended above in accordance with the USEPA National Functional Guidelines guidelines should preclude the use of the laboratory specific qualifiers so that comparability of the reported results can be achieved if future analyses are performed at other laboratory facilities.

Summary of Data Validation Findings

The results presented in each report were found to be compliant with the data quality objectives (DQOs) for the project and useable, with the few exceptions noted above. Based on our review, the data usability is compliant with a completeness goal of greater than 95%.

G:\Projects\26472 - ROC\Reports\M-442 Annual\App H\M442.AppH.doc